Cryopreservation of Yak Semen: A Comprehensive Review
Abstract
:Simple Summary
Abstract
1. Introduction
1.1. Yak Sperm Cryopreservation
1.2. Difficulties with Sperm Cryopreservation
1.3. Molecular Challenges
1.4. Membrane Changes
1.5. Reactive Oxygen Species
1.6. Molecular Markers of Sperm Freezability
Tittle | Summary | References |
---|---|---|
Effects of cryopreservation on enzyme activities of wild yak sperm. | When wild yak sperm was cryopreserved, enzyme activity decreased. The descent degree increased as the cryopreservation time was extended. | [38] |
The effect of freezing on yak sperm cryosurvival. | After a 4-h equilibration interval, yak semen exhibited a greater cryosurvival when frozen in tris extender with 6.4 percent glycerol and 20% egg yolk. | [39] |
Current sperm cryopreservation status: why is it not better? | Features of sperm cryopreservation are mirrored by capacitation events and assess the potential roles of sperm membrane cholesterol, reactive oxygen species, and seminal plasma as mediators of cryopreservation effects on sperm function. | [40] |
Heparin-induced and caffeine- or ouabain-supplemented capacitation of frozen-thawed yak (Bos grunniens) spermatozoa. | Caffeine synergistically increases yak sperm capacitation with heparin, whereas ouabain does not synergistically boost yak sperm capacitation with heparin. | [41] |
Developmental competence of frozen-thawed yak (Bos grunniens) oocytes followed by in vitro maturation and fertilization. | To cryopreserve yak oocytes in French straws, a mixture of EG and DMSO or EG, Ficoll, and sucrose can be utilized. | [42] |
Effects of orvus paste on the motility and viability of yak (Bos grunniens) epididymal and ejaculated spermatozoa after freezing and thawing. | To preserve yak spermatozoa, 0.75 percent OEP is effective. | [43] |
2. Extender Development
2.1. Cryoprotectant Supplementation of Extenders
2.2. Antioxidant Supplementation of Extenders
2.3. Vitamins and Other Supplementations of Extenders
3. Techniques to Evaluate Sperm Quality
3.1. Microscopy
3.2. Computer-Assisted Sperm Analysis (CASA)
3.3. Flow Cytometry
3.4. Oxidative Stress Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Medeiros, C.; Forell, F.; Oliveira, A.; Rodrigues, J. Current status of sperm cryopreservation: Why isn't it better? Theriogenology 2002, 57, 327–344. [Google Scholar] [CrossRef]
- Bailey, J.L.; Bilodeau, J.F.; Cormier, N. Semen cryopreservation in domestic animals: A damaging and capacitating phenomenon. J. Androl. 2000, 21, 1–7. [Google Scholar] [PubMed]
- Sherman, J. Low temperature research on spermatozoa and eggs. Cryobiology 1964, 1, 103–129. [Google Scholar] [CrossRef] [PubMed]
- Ombelet, W.; Van Robays, J. Artificial insemination history: Hurdles and milestones. Facts, Views Vis. ObGyn 2015, 7, 137–143. [Google Scholar] [PubMed]
- Phillips, P.H.; Lardy, H.A. A yolk-buffer pabulum for the preservation of Yak semen. J Dairy Sci. 1940, 23, 399–404. [Google Scholar] [CrossRef]
- Polge, C.; Smith, A.U.; Parkes, A.S. Revival of Spermatozoa after Vitrification and Dehydration at Low Temperatures. Nature 1949, 164, 666. [Google Scholar] [CrossRef] [PubMed]
- Salisbury, G.; Fuller, H.; Willett, E. Preservation of Bovine Spermatozoa in Yolk-Citrate Diluent and Field Results from its Use. J. Dairy Sci. 1941, 24, 905–910. [Google Scholar] [CrossRef]
- Lu, Z.L. Reproduction and Conservation of Wild Yak. In Recent Advances in Yak Reproduction; International Veterinary Information Service U.S.: Ithaca, NY, USA, 2000. [Google Scholar]
- Zhang, Z.W. Semen Characteristics and Artificial Insemination in Yak. In Recent Advances in Yak Reproduction; International Veterinary Information Service U.S.: Ithaca, NY, USA, 2000; Available online: https://www.ivis.org/library/recent-advances-yak-reproduction/semen-characteristics-and-artificial-insemination-yak (accessed on 31 October 2022).
- Zhang, Y. Experimental reports on the manufacture of frozen semen of yak. J. China Yak 1989, 1, 13–24. [Google Scholar]
- Wang, M.Q.; Lu, Z.L. Studies on reproductive characteristics of male yak (domestic and wild). J. China Yak 1990, 2, 20–26. [Google Scholar]
- Du, F.S.; Arlongga; Ma, S.R. Experimental report on conception in strange land and frozen semen making of Jiulong yak. J. China Yak 1994, 3, 26–30. [Google Scholar]
- Zhan, Y. The relation ship between season and age of stud yak bull in Dangxun. In Proceedings of the 1st International Congress on Yak, Lanzhou, China, 4–9 September 1994; pp. 303–307. [Google Scholar]
- Hammerstedt, R.H.; Graham, J.K.; Nolan, J.P. Cryopreservation of mammalian sperm: What we ask them to survive. J. Androl. 1990, 11, 73–88. [Google Scholar] [PubMed]
- Baust, J.G.; Gao, D. Cryopreservation. Organogenesis 2009, 5, 90–96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agarwal, A.; Varghese, A.C.; Sharma, R.K. Markers of Oxidative Stress and Sperm Chromatin Integrity. In Molecular Endocrinology. Methods in Molecular Biology (Methods and Pro-Tocols); Park-Sarge, O.K., Curry, T., Eds.; Humana Press: Totowa, NJ, USA, 2009; Volume 590, pp. 377–402. [Google Scholar]
- Lewis, S.E.M.; Aitken, R.J. DNA damage to spermatozoa has impacts on fertilization and pregnancy. Cell Tissue Res. 2005, 322, 33–41. [Google Scholar] [CrossRef] [PubMed]
- Fraser, L.; Strzeżek, J. Is there a relationship between the chromatin status and DNA fragmentation of boar spermatozoa following freezing–thawing? Theriogenology 2007, 68, 248–257. [Google Scholar] [CrossRef]
- Gliozzi, T.M.; Zaniboni, L.; Cerolini, S. DNA fragmentation in chicken spermatozoa during cryopreservation. Theriogenology 2011, 75, 1613–1622. [Google Scholar] [CrossRef] [PubMed]
- Watson, P.F. Cooling of Spermatozoa and Fertilizing Capacity. Reprod. Domest. Anim. 1995, 31, 135–140. [Google Scholar] [CrossRef]
- McCarthy, M.J.; Baumber, J.; Kass, P.H.; Meyers, S.A. Osmotic Stress Induces Oxidative Cell Damage to Rhesus Macaque Spermatozoa1. Biol. Reprod. 2010, 82, 644–651. [Google Scholar] [CrossRef] [Green Version]
- Bogle, O.A.; Kumar, K.; Attardo-Parrinello, C.; Lewis, S.E.M.; Estanyol, J.M.; Ballescà, J.L.; Oliva, R. Identification of protein changes in human spermatozoa throughout the cryopreservation process. Andrology 2016, 5, 10–22. [Google Scholar] [CrossRef]
- Kopeika, J.; Thornhill, A.; Khalaf, Y. The effect of cryopreservation on the genome of gametes and embryos: Principles of cryobiology and critical appraisal of the evidence. Hum. Reprod. Update 2015, 21, 209–227. [Google Scholar] [CrossRef] [Green Version]
- Johnston, S.D.; Satake, N.; Zee, Y.; López-Fernández, C.; Holt, W.V.; Gosálvez, J. Osmotic stress and cryoinjury of koala sperm: An integrative study of the plasma membrane, chromatin stability and mitochondrial function. Reproduction 2012, 143, 787–797. [Google Scholar] [CrossRef] [Green Version]
- Kumar, D.; Kumar, P.; Singh, P.; Yadav, S.P.; Sarkar, S.K.; Bharadwaj, A.; Yadav, P.S. Characteristics of frozen thawed semen in predicting the fertility of buffalo Yaks. Indian J. Anim. Sci. 2014, 84, 389–392. [Google Scholar]
- Silva, P.; Gadella, B. Detection of damage in mammalian sperm cells. Theriogenology 2006, 65, 958–978. [Google Scholar] [CrossRef] [PubMed]
- Khalil, W.A.; El-Harairy, M.A.; Zeidan, A.E.; Hassan, M.A.; Mohey-Elsaeed, O. Evaluation of bull spermatozoa during and after cryopreservation: Structural and ultrastructural insights. Int. J. Veter.-Sci. Med. 2018, 6, S49–S56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anzar, M.; He, L.; Buhr, M.M.; Kroetsch, T.G.; Pauls, K.P. Sperm Apoptosis in Fresh and Cryopreserved Bull Semen Detected by Flow Cytometry and Its Relationship with Fertility1. Biol. Reprod. 2002, 66, 354–360. [Google Scholar] [CrossRef]
- Castro, L.S.; Hamilton, T.R.D.S.; Mendes, C.M.; Nichi, M.; Barnabe, V.H.; Visintin, J.A.; Assumpção, M.E.O.A. Sperm cryodamage occurs after rapid freezing phase: Flow cytometry approach and antioxidant enzymes activity at different stages of cryopreservation. J. Anim. Sci. Biotechnol. 2016, 7, 17. [Google Scholar] [CrossRef] [Green Version]
- Hammadeh, M.E.; Dehn, C.; Hippach, M.; Zeginiadou, T.; Stieber, M.; Georg, T.; Rosenbaum, P.; Schmidt, W. Comparison between computerized slow-stage and static liquid nitrogen vapour freezing methods with respect to the deleterious effect on chromatin and morphology of spermatozoa from fertile and subfertile men. Int. J. Androl. 2001, 24, 66–72. [Google Scholar] [CrossRef] [PubMed]
- Moura, A.A.; Memili, E. Functional aspects of seminal plasma and sperm proteins and their potential as molecularmarkers of fertility. Anim. Reprod. 2016, 13, 191–199. [Google Scholar] [CrossRef]
- Zhang, X.-G.; Hu, S.; Han, C.; Zhu, Q.-C.; Yan, G.-J.; Hu, J.-H. Association of heat shock protein 90 with motility of post-thawed sperm in bulls. Cryobiology 2015, 70, 164–169. [Google Scholar] [CrossRef]
- De Leeuw, F.E.; Chen, H.-C.; Colenbrander, B.; Verkleij, A.J. Cold-induced ultrastructural changes in bull and boar sperm plasma membranes. Cryobiology 1990, 27, 171–183. [Google Scholar] [CrossRef]
- Said, T.M.; Gaglani, A.; Agarwal, A. Implication of apoptosis in sperm cryoinjury. Reprod. Biomed. Online 2010, 21, 456–462. [Google Scholar] [CrossRef] [Green Version]
- Aitken, R.J. Free radicals, lipid peroxidation and sperm function. Reprod. Fertil. Dev. 1995, 7, 659–668. [Google Scholar] [CrossRef] [PubMed]
- Holt, W.; Del Valle, I.; Fazeli, A. Heat shock protein A8 stabilizes the bull sperm plasma membrane during cryopreservation: Effects of breed, protein concentration, and mode of use. Theriogenology 2015, 84, 693–701. [Google Scholar] [CrossRef] [PubMed]
- Mostek, A.; Dietrich, M.A.; Słowińska, M.; Ciereszko, A. Cryopreservation of bull semen is associated with carbonylation of sperm proteins. Theriogenology 2017, 92, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Einspanier, R.; Krause, I.; Calvete, J.; Töfper-Petersen, E.; Klostermeyer, H.; Karg, H. Bovine seminal plasma ASFP: Localization of disulfide bridges and detection of three different isoelectric forms. FEBS Lett. 1994, 344, 61–64. [Google Scholar] [CrossRef]
- Jinxing, L.; Ping, Y.; Xian, G.; Yufeng, Z.; Yuni, Y. Effects of Cryopreservation on Enzyme Activities of Wild Yak Sperm. 26 November 2010. Available online: https://europepmc.org/article/cba/646855 (accessed on 31 October 2022).
- Deori, S. The effect of freezing on cryosurvival of yak sperm. SAARC J. Agric. 2018, 15, 215–218. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.; Chu, M.; Chen, Y.; Yan, P. Heparin-induced and caffeine or ouabain supplemented capacitation of frozen-thawed yak (Bos grunniens) spermatozoa. Reprod. Domest. Anim. 2022, 57, 587–597. [Google Scholar] [CrossRef] [PubMed]
- Niu, H.-R.; Zi, X.-D.; Xiao, X.; Xiong, X.-R.; Zhong, J.-C.; Li, J.; Wang, L.; Wang, Y. Developmental competence of frozen-thawed yak (Bos grunniens) oocytes followed by in vitro maturation and fertilization. Cryobiology 2014, 68, 152–154. [Google Scholar] [CrossRef]
- Shimazaki, M.; Sambuu, R.; Sato, Y.; Do, L.T.K.; Tanihara, F.; Taniguchi, M.; Otoi, T. Effects of Orvus Es Paste on The Motility And Viability Of Yak (Bos Grunniens) Epididymal And Ejaculated Spermatozoa After Freezing And Thawing. Cryoletters 2015, 36, 264–269. [Google Scholar]
- Bathgate, R.; Maxwell, W.; Evans, G. Studies on the Effect of Supplementing Boar Semen Cryopreservation Media with Different Avian Egg Yolk Types on in Vitro Post-thaw Sperm Quality. Reprod. Domest. Anim. 2006, 41, 68–73. [Google Scholar] [CrossRef]
- Moussa, M.; Martinet, V.; Trimeche, A.; Tainturier, D.; Anton, M. Low density lipoproteins extracted from hen egg yolk by an easy method: Cryoprotective effect on frozen–thawed bull semen. Theriogenology 2002, 57, 1695–1706. [Google Scholar] [CrossRef]
- Amirat, L.; Tainturier, D.; Jeanneau, L.; Thorin, C.; Gérard, O.; Courtens, J.L.; Anton, M. Bull semen in vitro fertility after cryopreservation using egg yolk LDL: A comparison with Optidyl®, a commercial egg yolk extender. Theriogenology 2003, 61, 895–907. [Google Scholar] [CrossRef] [PubMed]
- Murphy, E.; O’Meara, C.; Eivers, B.; Lonergan, P.; Fair, S. Comparison of plant- and egg yolk-based semen diluents on in vitro sperm kinematics and in vivo fertility of frozen-thawed bull semen. Anim. Reprod. Sci. 2018, 191, 70–75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yodmingkwan, P.; Guntaprom, S.; Jaksamrit, J.; Lertchunhakiat, K. Effects of Extenders on Fresh and Freezing Semen of Boer Goat. Agric. Agric. Sci. Procedia 2016, 11, 125–130. [Google Scholar] [CrossRef]
- Vidal, A.H.; Batista, A.M.; da Silva, E.C.B.; Gomes, W.A.; Pelinca, M.A.; Silva, S.V.; Guerra, M.M.P. Soybean lecithin-based extender as an alternative for goat sperm cryopreservation. Small Rumin. Res. 2013, 109, 47–51. [Google Scholar] [CrossRef] [Green Version]
- Naz, S.; Umair, M.; Iqbal, S. Comparison of Tris egg yolk-based, Triladyl®and Optixell®extender on post-thaw quality, Kinematics and in vivo fertility of Nili Ravi Buffalo (Bubalus bubalis) bull spermatozoa. Andrologia 2018, 50, e13063. [Google Scholar] [CrossRef] [PubMed]
- Muiño, R.; Fernández, M.; Peña, A. Post-thaw Survival and Longevity of Bull Spermatozoa Frozen with an Egg Yolk-based or Two Egg Yolk-free Extenders after an Equilibration Period of 18 h. Reprod. Domest. Anim. 2007, 42, 305–311. [Google Scholar] [CrossRef]
- Crespilho, A.; Filho, M.S.; Dell'Aqua, J.; Nichi, M.; Monteiro, G.; Avanzi, B.; Martins, A.; Papa, F. Comparison of in vitro and in vivo fertilizing potential of bovine semen frozen in egg yolk or new lecithin based extenders. Livest. Sci. 2012, 149, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Oldenhof, H.; Friedel, K.; Sieme, H.; Glasmacher, B.; Wolkers, W.F. Membrane permeability parameters for freezing of stallion sperm as determined by Fourier transform infrared spectroscopy. Cryobiology 2010, 61, 115–122. [Google Scholar] [CrossRef]
- Barbas, J.P.; Mascarenhas, R.D. Cryopreservation of domestic animal sperm cells. Cell Tissue Bank. 2008, 10, 49–62. [Google Scholar] [CrossRef]
- Best, B.P. Cryoprotectant Toxicity: Facts, Issues, and Questions. Rejuvenation Res. 2015, 18, 422–436. [Google Scholar] [CrossRef] [Green Version]
- Purdy, P. A review on goat sperm cryopreservation. Small Rumin. Res. 2006, 63, 215–225. [Google Scholar] [CrossRef]
- Vishwanath, R.; Shannon, P. Storage of bovine semen in liquid and frozen state. Anim. Reprod. Sci. 2000, 62, 23–53. [Google Scholar] [CrossRef] [PubMed]
- Sarmah, B.; Kaker, M.; Razdan, M. Effect of cold shock and freezing on loss of total lipids and phospholipids of buffalo spermatozoa (Bubalusbubalis). Theriogenology 1984, 22, 621–624. [Google Scholar] [CrossRef]
- Takahashi, T.; Itoh, R.; Nishinomiya, H.; Katoh, M.; Manabe, N. Effect of Linoleic Acid Albumin in a Dilution Solution and Long-term Equilibration for Freezing of Bovine Spermatozoa with Poor Freezability. Reprod. Domest. Anim. 2011, 47, 92–97. [Google Scholar] [CrossRef] [PubMed]
- Tarig, A.; Wahid, H.; Rosnina, Y.; Yimer, N.; Goh, Y.; Baiee, F.; Khumran, A.; Salman, H.; Ebrahimi, M. Effect of different concentrations of egg yolk and virgin coconut oil in Tris-based extenders on chilled and frozen-thawed bull semen. Anim. Reprod. Sci. 2017, 182, 21–27. [Google Scholar] [CrossRef]
- Saragusty, J.; Gacitua, H.; Rozenboim, I.; Arav, A. Protective effects of iodixanol during bovine sperm cryopreservation. Theriogenology 2009, 71, 1425–1432. [Google Scholar] [CrossRef]
- Kaka, A.; Wahid, H.; Rosnina, Y.; Yimer, N.; Khumran, A.; Sarsaifi, K.; Behan, A.A.; Kaka, U.; Ebrahimi, M. α-Linolenic acid supplementation in BioXcell® extender can improve the quality of post-cooling and frozen-thawed bovine sperm. Anim. Reprod. Sci. 2015, 153, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanocka, D.; Kurpisz, M. Reactive oxygen species and sperm cells. Reprod. Biol. Endocrinol. 2004, 2, 12. [Google Scholar] [CrossRef] [Green Version]
- Peña, F.; Johannisson, A.; Wallgren, M.; Martinez, H.R. Antioxidant supplementation in vitro improves boar sperm motility and mitochondrial membrane potential after cryopreservation of different fractions of the ejaculate. Anim. Reprod. Sci. 2003, 78, 85–98. [Google Scholar] [CrossRef]
- Sariözkan, S.; Tuncer, P.B.; Bucak, M.N.; Ulutaş, P.A. Influence of Various Antioxidants on Microscopic-Oxidative Stress Indicators and Fertilizing Ability of Frozen-Thawed Bull Semen. Acta Veter. Brno 2009, 78, 463–469. [Google Scholar] [CrossRef] [Green Version]
- Bucak, M.N.; Tuncer, P.B.; Sarıözkan, S.; Başpınar, N.; Taşpınar, M.; Çoyan, K.; Bilgili, A.; Akalın, P.P.; Büyükleblebici, S.; Aydos, S.; et al. Effects of antioxidants on post-thawed bovine sperm and oxidative stress parameters: Antioxidants protect DNA integrity against cryodamage. Cryobiology 2010, 61, 248–253. [Google Scholar] [CrossRef] [PubMed]
- Khan, H.; Khan, M.; Qureshi, M.S.; Ahmad, S.; Gohar, A.; Ullah, H.; Ullah, F.; Hussain, A.; Khatri, P.; Shah, S.S.A.; et al. Effect of Green Tea Extract (Camellia sinensis) on Fertility Indicators of Post-Thawed Bull Spermatozoa. Pak. J. Zool. 2017, 49, 1243–1249. [Google Scholar] [CrossRef]
- Mizera, A.; Kuczaj, M.; Szul, A. Impact of the Spirulina maxima extract addition to semen extender on bovine sperm quality. Ital. J. Anim. Sci. 2019, 18, 601–607. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.-H.; Zan, L.-S.; Zhao, X.-L.; Li, Q.-W.; Jiang, Z.-L.; Li, Y.-K.; Li, X. Effects of trehalose supplementation on semen quality and oxidative stress variables in frozen-thawed bovine semen1. J. Anim. Sci. 2010, 88, 1657–1662. [Google Scholar] [CrossRef]
- Zubair, M.; Ali, M.; Ahmad, M.; Sajid, S.M.; Ahmad, I.; Gul, S.T. Effect of Selenium and Vitamin E on Cryopreservation of Semen and Reproductive Performance of Animals (A Review). J. Entomol. Zool. Stud. 2015, 3, 82–86. [Google Scholar]
- Mittal, P.K.; Anand, M.; Madan, A.K.; Yadav, S.; Kumar, J. Antioxidative capacity of vitamin E, vitamin C and their combination in cryopreserved Bhadavari bull semen. Veter-World 2014, 7, 1127–1131. [Google Scholar] [CrossRef]
- Andrabi, S.M.H.; Ansari, M.; Ullah, N.; Afzal, M.N. Effect of NonEnzymatic Antioxidants in Extender on Post-Thaw Quality of Buffalo (Bubalus Bubalis) Spermatozoa. Pak. Vet. J. 2008, 28, 159–162. Available online: https://agris.fao.org/agris-search/search.do?recordID=PK2009000626 (accessed on 31 October 2022).
- Gabr, A.A.-W.; El Basuini, M. Effect of tonophosphan, zinc oxide, and ascorbic acid on semen, sexual desire, and the fertility rate of Egyptian buffalo bulls. Ann. Agric. Sci. 2018, 63, 215–221. [Google Scholar] [CrossRef]
- Das, S.K.; Vasudevan, D. Protective effects of silymarin, a milk thistle (Silybium marianum) derivative on ethanol-induced oxidative stress in liver. Indian, J. Biochem. Biophys. 2006, 43, 306–311. [Google Scholar]
- El-Sheshtawy, R.; El-Nattat, W. Impact of silymarin enriched semen extender on bull sperm preservability. Asian Pac. J. Reprod. 2017, 6, 81–84. [Google Scholar] [CrossRef]
- Daghigh-Kia, H.; Olfati-Karaji, R.; Hoseinkhani, A.; Ashrafi, I. Effect of rosemary (Rosmarinus officinalis) extracts and glutathione antioxidants on bull semen quality after cryopreservation. Span. J. Agric. Res. 2014, 12, 98. [Google Scholar] [CrossRef] [Green Version]
- Ugur, M.R.; Saber Abdelrahman, A.; Evans, H.C.; Gilmore, A.A.; Hitit, M.; Arifiantini, R.I.; Purwantara, B.; Kaya, A.; Memili, E. Advances in Cryopreservation of Bull Sperm. Front. Vet. Sci. 2019, 6, 268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anton, M.; Martinet, V.; Dalgalarrondo, M.; Beaumal, V.; David-Briand, E.; Rabesona, H. Chemical and structural characterisation of low-density lipoproteins purified from hen egg yolk. Food Chem. 2003, 83, 175–183. [Google Scholar] [CrossRef]
- Holt, W. Basic aspects of frozen storage of semen. Anim. Reprod. Sci. 2000, 62, 3–22. [Google Scholar] [CrossRef] [PubMed]
- El-Sheshtawy, R.I.; Sisy, G.A.; El-Nattat, W.S. Effects of different concentrations of sucrose or trehalose on the post-thawing quality of cattle Yak semen. Asian Pac. J. Reprod. 2015, 4, 26–31. [Google Scholar] [CrossRef]
- Ijaz, A.; Hussain, A.; Aleem, M.; Yousaf, M.; Rehman, H. Butylated hydroxytoluene inclusion in semen extender improves the post-thawed semen quality of Nili-Ravi buffalo (Bubalus bubalis). Theriogenology 2009, 71, 1326–1329. [Google Scholar] [CrossRef] [PubMed]
- Ansari, M.S.; Rakha, B.A.; Andrabi, S.M.; Ullah, N.; Iqbal, R.; Holt, W.V.; Akhter, S. Glutathione-supplemented tris-citric acid extender improves the post-thaw quality and in vivo fertility of buffalo (Bubalus bubalis) bull spermatozoa. Reprod. Biol. 2012, 12, 271–276. [Google Scholar] [CrossRef] [PubMed]
- Sarlós, P.; Molnár, A.; Kókai, M.; Al, E. Comparative evaluation of the effect of antioxidants in the conservation of ram semen. Acta Veter- Hung. 2002, 50, 235–245. [Google Scholar] [CrossRef]
- Li, K.L.; Lu, J.H.; Zhu, X.S. Semen freezing and artificial insemination of semi-blood wild yak. J. China Yak 1986, 1, 42–44. [Google Scholar]
- Campi, S.; Jorge, A.; Lombardo, D.; Blasi, C.; Gambarotta, M. Yak (Bos Grunniens) sperm nuclei morphology, morphometry and DNA content. J. Dairy Vet. Anim. Res. 2016, 4, 272–275. [Google Scholar] [CrossRef]
- Dvořáková, K.; Moore, H.D.M.; Šebková, N.; Paleček, J. Cytoskeleton localization in the sperm head prior to fertilization. Reproduction 2005, 130, 61–69. [Google Scholar] [CrossRef] [Green Version]
- Peknicova, J.; Kubatova, A.; Sulimenko, V.; Draberova, E.; Viklicky, V.; Hozak, P. Differential subcellular distribution of tubulin epitopes in Yak spermatozoa: Recognition of class III beta-tubulin epitope in sperm tail. Biol. Reprod. 2001, 65, 672–679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romarowski, A.; Velasco Félix, Á.G.; Rodríguez, P.T.; Gervasi, M.G.; Xu, X.; Luque, G.; Contreras-Jiménez, G.; Sánchez-Cárdenas, C.; Ramirez-Gomez, H.V.; Krapf, D.; et al. Super-resolution imaging of live sperm reveals dynamic changes of the actin cytoskeleton during acrosomal exocytosis. J. Cell Sci. 2018, 131, jcs218958. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milardi, D.; Colussi, C.; Grande, G.; Vincenzoni, F.; Pierconti, F.; Mancini, F.; Baroni, S.; Castagnola, M.; Marana, R.; Pontecorvi, A. Olfactory Receptors in Semen and in the Male Tract: From Proteome to Proteins. Front. Endocrinol. 2018, 23, 379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.W.; Ki, M.S.; Kim, C.-L.; Hwang, I.-S.; Jeon, I.S. A Simple Confocal Microscopy-based Method for Assessing Sperm Movement. Dev. Reprod. 2017, 21, 229–235. [Google Scholar] [CrossRef] [Green Version]
- Moscatelli, N.; Spagnolo, B.; Pisanello, M.; Lemma, E.D.; De Vittorio, M.; Zara, V.; Pisanello, F.; Ferramosca, A. Single-cell-based evaluation of sperm progressive motility via fluorescent assessment of mitochondria membrane potential. Sci. Rep. 2017, 7, 17931. [Google Scholar] [CrossRef] [Green Version]
- Zhao, N.; Chen, S.; Hong, Y.; Tang, B.Z. A red emitting mitochondria-targeted AIE probe as an indicator for membrane potential and mouse sperm activity. Chem. Commun. 2015, 51, 13599–13602. [Google Scholar] [CrossRef]
- Moretti, E.; Sutera, G.; Collodel, G. The importance of transmission electron microscopy analysis of spermatozoa: Diagnostic applications and basic research. Syst. Biol. Reprod. Med. 2016, 62, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Coppola, G.; Di Caprio, G.; Wilding, M.; Ferraro, P.; Esposito, G.; Di Matteo, L.; Dale, R.; Dale, B. Digital holographic microscopy for the evaluation of human sperm structure. Zygote 2013, 22, 446–454. [Google Scholar] [CrossRef] [PubMed]
- Di Caprio, G.; Gioffrè, M.A.; Saffioti, N.; Grilli, S.; Ferraro, P.; Puglisi, R.; Balduzzi, D.; Galli, A.; Coppola, G. Quantitative Label-Free Animal Sperm Imaging by Means of Digital Holographic Microscopy. IEEE J. Sel. Top. Quantum Electron. 2010, 16, 833–840. [Google Scholar] [CrossRef]
- Kemper, B.; Von Bally, G. Digital holographic microscopy for live cell applications. Appl. Opt. 2008, 47, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Merola, F.; Miccio, L.; Memmolo, P.; Di Caprio, G.; Galli, A.; Puglisi, R.; Balduzzi, D.; Coppola, G.; Netti, P.; Ferraro, P. Digital holography as a method for 3D imaging and estimating the biovolume of motile cells. Lab A Chip 2013, 13, 4512–4516. [Google Scholar] [CrossRef] [PubMed]
- Huser, T.; Orme, C.A.; Hollars, C.W.; Corzett, M.H.; Balhorn, R. Raman spectroscopy of DNA packaging in individual human sperm cells distinguishes normal from abnormal cells. J. Biophotonics 2009, 2, 322–332. [Google Scholar] [CrossRef] [PubMed]
- Mallidis, C.; Wistuba, J.; Bleisteiner, B.; Damm, O.S.; Gross, P.; Wubbeling, F.; Fallnich, C.; Burger, M.; Schlatt, S. In situ visualization of damaged DNA in human sperm by Raman microspectroscopy. Hum. Reprod. 2011, 26, 1641–1649. [Google Scholar] [CrossRef] [Green Version]
- Edengeiser, E.; Meister, K.; Bründermann, E.; Büning, S.; Ebbinghaus, S.; Havenith, M. Non-invasive chemical assessment of living human spermatozoa. RSC Adv. 2015, 5, 10424–10429. [Google Scholar] [CrossRef]
- DE Angelis, A.; Managò, S.; Ferrara, M.A.; Napolitano, M.; Coppola, G.; De Luca, A.C. Combined Raman Spectroscopy and Digital Holographic Microscopy for Sperm Cell Quality Analysis. J. Spectrosc. 2017, 2017, 9876063. [Google Scholar] [CrossRef] [Green Version]
- Ferrara, M.A.; De Angelis, A.; De Luca, A.C.; Coppola, G.; Dale, B.; Coppola, G. Simultaneous Holographic Microscopy and Raman Spectroscopy Monitoring of Human Spermatozoa Photodegradation. IEEE J. Sel. Top. Quantum Electron. 2015, 22, 27–34. [Google Scholar] [CrossRef]
- Holt, W.V.; O'Brien, J.; Abaigar, T. Applications and interpretation of computer-assisted sperm analyses and sperm sorting methods in assisted breeding and comparative research. Reprod. Fertil. Dev. 2007, 19, 709–718. [Google Scholar] [CrossRef]
- Alquézar-Baeta, C.; Gimeno-Martos, S.; Jiménez, S.M.; Santolaria, P.; Yániz, J.; Palacín, I.; Casao, A.; Cebrián-Pérez, J.; Muiño-Blanco, T.; Pérez-Pé, R. OpenCASA: A new open-source and scalable tool for sperm quality analysis. PLOS Comput. Biol. 2019, 15, e1006691. [Google Scholar] [CrossRef]
- Quintero-Moreno, A.; Miró, J.; Rigau, A.T.; Rodríguez-Gil, J. Identification of sperm subpopulations with specific motility characteristics in stallion ejaculates. Theriogenology 2003, 59, 1973–1990. [Google Scholar] [CrossRef]
- Amann, R.P.; Waberski, D. Computer-assisted sperm analysis (CASA): Capabilities and potential developments. Theriogenology 2014, 81, 5–17.e3. [Google Scholar] [CrossRef] [PubMed]
- Givan, A.L. Flow Cytometry: An Introduction; Hanover, N.H., Ed.; Humana Press: Totowa, NJ, USA, 2011; pp. 1–29. [Google Scholar] [CrossRef]
- Cossarizza, A.; Chang, H.; Radbruch, A.; Akdis, M.; Andrä, I.; Annunziato, F.; Bacher, P.; Barnaba, V.; Battistini, L.; Bauer, W.M.; et al. Guidelines for the use of flow cytometry and cell sorting in immunological studies. Eur. J. Immunol. 2017, 47, 1584–1797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Julius, M.H.; Masuda, T.; Herzenberg, L.A. Demonstration That Antigen-Binding Cells Are Precursors of Antibody-Producing Cells After Purification with a Fluorescence-Activated Cell Sorter. Proc. Natl. Acad. Sci. USA 1972, 69, 1934–1938. [Google Scholar] [CrossRef] [Green Version]
- Althouse, G.; Hopkins, S. Assessment of boar sperm viability using a combination of two fluorophores. Theriogenology 1995, 43, 595–603. [Google Scholar] [CrossRef] [PubMed]
- Matyus, L.; Szabo, G.; Resli, I.; Gaspar, R.; Damjanovich, S. Flow cytometric analysis of viability of Yak sperm cells. Acta Biochim. Biophys. Acad. Sci. Hung. 1984, 19, 209–214. [Google Scholar]
- Kavak, A.; Johannisson, A.; Lundeheim, N.; Rodriguez-Martinez, H.; Aidnik, M.; Einarsson, S. Evaluation of cryopreserved stallion semen from Tori and Estonian breeds using CASA and flow cytometry. Anim. Reprod. Sci. 2002, 76, 205–216. [Google Scholar] [CrossRef] [PubMed]
- Wronski, R.; Golob, N.; Grygar, E.; Windisch, M. Two-color, fluorescence-based microplate assay for apoptosis detection. BioTechniques 2002, 32, 666–668. [Google Scholar]
- Peña, F.; Ball, B.A.; Squires, E.L. A New Method for Evaluating Stallion Sperm Viability and Mitochondrial Membrane Potential in Fixed Semen Samples. Cytom. Part B Clin. Cytom. 2017, 94, 302–311. [Google Scholar] [CrossRef] [Green Version]
- Kumaresan, A.; Johannisson, A.; Al-Essawe, E.M.; Morrell, J.M. Sperm viability, reactive oxygen species, and DNA fragmentation index combined can discriminate between above- and below-average fertility bulls. J. Dairy Sci. 2017, 100, 5824–5836. [Google Scholar] [CrossRef] [Green Version]
- Morrell, J.M.; Valeanu, A.S.; Lundeheim, N.; Johannisson, A. Sperm quality in frozen beef and dairy bull semen. Acta Veter. Scand. 2018, 60, 41. [Google Scholar] [CrossRef]
- Nagy, S.; Jansen, J.; Topper, E.K.; Gadella, B.M. A Triple-Stain Flow Cytometric Method to Assess Plasma- and Acrosome-Membrane Integrity of Cryopreserved Bovine Sperm Immediately after Thawing in Presence of Egg-Yolk Particles1. Biol. Reprod. 2003, 68, 1828–1835. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, M.; Tamayo-Canul, J.; Anel, E.; Boixo, J.; Mata-Campuzano, M.; Martinez-Pastor, F.; Anel, L.; de Paz, P. Sperm concentration at freezing affects post-thaw quality and fertility of ram semen. Theriogenology 2012, 77, 1111–1118. [Google Scholar] [CrossRef] [PubMed]
- Robles, V.; Martínez-Pastor, F. Flow Cytometric Methods for Sperm Assessment. In Spermatogenesis; Humana Press: Totowa, NJ, USA, 2012; Volume 927, pp. 175–186. [Google Scholar] [CrossRef]
- Agarwal, A.; Virk, G.; Ong, C.; Du Plessis, S.S. Effect of Oxidative Stress on Male Reproduction. World J. Men’s Health 2014, 32, 1–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guthrie, H.D.; Welch, G.R. Determination of intracellular reactive oxygen species and high mitochondrial membrane potential in Percoll-treated viable boar sperm using fluorescence-activated flow cytometry1. J. Anim. Sci. 2006, 84, 2089–2100. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Joseph, J.A. Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radic. Biol. Med. 1999, 27, 612–616. [Google Scholar] [CrossRef]
- Wardman, P. Fluorescent and luminescent probes for measurement of oxidative and nitrosative species in cells and tissues: Progress, pitfalls, and prospects. Free. Radic. Biol. Med. 2007, 43, 995–1022. [Google Scholar] [CrossRef]
- Zielonka, J.; Vasquez-Vivar, J.; Kalyanaraman, B. Detection of 2-hydroxyethidium in cellular systems: A unique marker product of superoxide and hydroethidine. Nat. Protoc. 2007, 3, 8–21. [Google Scholar] [CrossRef]
- Evenson, D.; Jost, L. Sperm chromatin structure assay is useful for fertility assessment. Methods Cell Sci. 2000, 22, 169–189. [Google Scholar] [CrossRef]
- Benchaib, M.; Lornage, J.; Mazoyer, C.; Lejeune, H.; Salle, B.; Guerin, J.F. Sperm deoxyribonucleic acid fragmentation as a prognostic indicator of assisted reproductive technology outcome. Fertil. Steril. 2007, 87, 93–100. [Google Scholar] [CrossRef]
- Domínguez-Rebolledo, Á.E.; Fernández-Santos, M.; García-Álvarez, O.; Maroto-Morales, A.; Garde, J.; Martínez-Pastor, F. Washing increases the susceptibility to exogenous oxidative stress in red deer spermatozoa. Theriogenology 2009, 72, 1073–1084. [Google Scholar] [CrossRef]
- Johnson, L.A.; Welch, G.R.; Rens, W. The Beltsville sperm sexing technology: High-speed sperm sorting gives improved sperm output for in vitro fertilization and AI. J. Anim. Sci. 1999, 77, 213–220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garner, D.L. Sex-Sorting mammalian sperm: Concept to application in animals. J. Androl. 2001, 22, 519–526. [Google Scholar] [PubMed]
- Ge, S.; Garner, D. Current status of sexing mammalian spermatozoa. Reproduction 2002, 124, 733–743. [Google Scholar] [CrossRef]
Supplement | Functions or Effects | References |
---|---|---|
CRYOPROTECTANTS | ||
Egg yolk | When frozen, low-density lipoproteins in egg yolk bind to cell membrane and create an interfacial coating. | [78,79] |
Milk | Sperm cells are shielded from cryodamage by the protein part of skim milk. | [1] |
Glycerol | Responsible for lipid and protein rearrangement in the membrane. | [54] |
Ethylene glycol | Increase dehydration at lower temperatures to reduce intracellular ice formation. | [80] |
Dimethyl sulfoxide | ||
Propylene Glycol | ||
Trehalose | By substituting for water, replace the bound water surrounding macromolecules and protectively hydrate those macromolecules. | [81] |
Polyols | Create hydrogen bonds with lipid membrane; therefore, sperm membrane is stabilized at low temperatures. | [2] |
Butylated hydroxytoluene | Increases fluidity of the membrane and decreases activity of the lipid peroxyl radicals, which increase motility, acrosomal integrity, and membrane integrity. | [82] |
ANTIOXIDANTS | ||
Glutathione | Supplementing with glutathione increases vitality, plasma membrane stability, and motility. | [63] |
Resveratrol | Removes radicals produced by metals, hydroxyl, and superoxide. In light of this, it guards against ROS damage to sperm chromatin and membranes. | [83] |
Bovine Serum Albumin | Increases the catalase activity and aids in maintaining the integrity of the acrosome and the shape of the cell. | [64] |
Methionine | Keeps sperm morphology normal. | [65] |
Carnitine | Enhances sperm motility, acrosome integrity, and DNA damage prevention. | [66] |
VITAMINS | ||
Vitamin C | Post-thaw motility and the percentage of intact plasma are both increased by vitamin C intake. | [72] |
Vitamin E | Positively influences membrane integrity, membrane potential, and sperm motility. | [9] |
Basic Solution (mL) | Egg Yolk (mL) | Glycerol (mL) | Post-Thawing Motility | Conception Rate (%) | References |
---|---|---|---|---|---|
12% sucrose 75 | 20 | 5 | 0.55 ± 0.14 0.36 ± 0.04 | 13/20 (65) 39/52 (5) | [85,86] |
12% sucrose 75 | 20 | 5 | 0.43 | 49/61 (80.3) | [87] |
12% sucrose 75 | 20 | 5 | 0.4 ± 0.11 | [88] | |
12% sucrose 75 | 20 | 5 | 0.4 ± 0.5 | [89] | |
Skimmed milk 80 | 20 | 3 | 0.4 ± 0.5 | 0.55+/−0.07 | [85] |
3.97% sodium citrate dihydrate | 20 | 7 | 0.4 ± 0.5 | 84/114 (73.7) | [89] |
12% lactose 75 | 20 | 5 | 0.4 ± 0.5 | ||
7.5% glucose 75 | 20 | 5 | 0.38 ± 0.09 | [90] | |
11% lactose 75 | 20 | 5 | 0.4 ± 0.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalwar, Q.; Chu, M.; Korejo, R.A.; Soomro, H.; Yan, P. Cryopreservation of Yak Semen: A Comprehensive Review. Animals 2022, 12, 3451. https://doi.org/10.3390/ani12243451
Kalwar Q, Chu M, Korejo RA, Soomro H, Yan P. Cryopreservation of Yak Semen: A Comprehensive Review. Animals. 2022; 12(24):3451. https://doi.org/10.3390/ani12243451
Chicago/Turabian StyleKalwar, Qudratullah, Min Chu, Rashid Ali Korejo, Hidayatullah Soomro, and Ping Yan. 2022. "Cryopreservation of Yak Semen: A Comprehensive Review" Animals 12, no. 24: 3451. https://doi.org/10.3390/ani12243451
APA StyleKalwar, Q., Chu, M., Korejo, R. A., Soomro, H., & Yan, P. (2022). Cryopreservation of Yak Semen: A Comprehensive Review. Animals, 12(24), 3451. https://doi.org/10.3390/ani12243451