The Effect of Heat Stress and Vitamin and Micro-Mineral Supplementation on Some Mineral Digestibility and Electrolyte Balance of Pigs
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design, Animals and Diet
2.2. Digestibility Trial: Sample Collection and Analysis
2.3. Blood Collection and Analysis
2.4. Statistical Analysis
3. Results
3.1. Mineral Digestibility
3.2. Markers for Electrolyte Balance
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Babinszky, L.; Halas, V.; Verstegen, M.W.A. Impacts of climate change on animal production and quality of animal food products. In Climate Change, Socioeconomic Effects; Blanco, J.A., Kheradmand, H., Eds.; InTech Publisher: London, UK, 2011; ISBN 978-953-307-419-1.165-190. [Google Scholar]
- Lacetera, N. Impact of climate change on animal health and welfare. Anim. Front. 2018, 9, 26–31. [Google Scholar] [CrossRef] [Green Version]
- Borges, T.D.; Huerta-Jimenez, M.; Casal, N.; Gonzalez, J.; Panella-Riera, N.; Dalmau, A. To Provide a Double Feeder in Growing Pigs Housed under High Environmental Temperatures Reduces Social Interactions but Does Not Improve Weight Gains. Animals 2020, 10, 2248. [Google Scholar] [CrossRef]
- Renaudeau, D.; Kerdoncuff, M.; Anaïs, C.; Gourdine, J.L. Effect of temperature level on thermal acclimation in Large White growing pigs. Animal 2008, 2, 1619–1626. [Google Scholar] [CrossRef] [Green Version]
- Pearce, S.C.; Sanz-Fernandez, M.V.; Hollis, J.H.; Baumgard, L.H.; Gabler, N.K. Short-term exposure to heat stress attenuates appetite and intestinal integrity in growing pigs. J. Anim. Sci. 2014, 92, 5444–5454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Renaudeau, D.; Anais, C.; Tel, L.; Gourdine, J.L. Effect of temperature on thermal acclimation in growing pigs estimated using a nonlinear function. J. Anim. Sci. 2010, 88, 3715–3724. [Google Scholar] [CrossRef] [Green Version]
- Gabler, N.K.; Pearce, S.C. The impact of heat stress on intestinal function and productivity in grow-finish pigs. Anim. Prod. Sci. 2015, 55, 1403–1410. [Google Scholar] [CrossRef]
- Collin, A.; Lebreton, Y.; Fillaut, M.; Vincent, A.; Thomas, F.; Herpin, P. Effects of exposure to high temperature and feeding level on regional blood flow and oxidative capacity of tissues in piglets. Exp. Physiol. 2001, 86, 83–91. [Google Scholar] [CrossRef] [Green Version]
- Cui, Y.; Gu, X. Proteomic changes of the porcine small intestine in response to chronic heat stress. J. Mol. Endocrinol. 2015, 55, 277–293. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.; Yin, P.; Liu, F.; Cheng, G.; Guo, K.; Lu, A.; Zhu, X.; Luan, W.; Xu, J. Effect of heat stress on the porcine small intestine: A morphological and gene expression study. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2010, 156, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Cottrell, J.J.; Furness, J.B.; Wijesiriwardana, U.A.; Ringuet, M.; Liu, F.; DiGiacomo, K.; Leury, B.J.; Clarke, I.J.; Dunshea, F.R. The Effect of Heat Stress on Respiratory Alkalosis and Insulin Sensitivity in Cinnamon Supplemented Pigs. Animals 2020, 10, 690. [Google Scholar] [CrossRef] [PubMed]
- Heo, J.; Kattesh, H.G.; Roberts, M.P.; Morrow, J.L.; Dailey, J.W.; Saxton, A.M. Hepatic corticosteroid-binding globulin (CBG) messenger RNA expression and plasma CBG concentrations in young pigs in response to heat and social stress. J. Anim. Sci. 2005, 83, 208–215. [Google Scholar] [CrossRef] [PubMed]
- Heat Stress in Pigs. Available online: https://www.agric.wa.gov.au/feeding-nutrition/heat-stress-pigs (accessed on 30 September 2021).
- Tang, S.; Zhou, S.; Yin, B.; Xu, J.; Di, L.; Zhang, J.; Bao, E. Heat stress-induced renal damage in poultry and the protective effects of HSP60 and HSP47. Cell Stress Chaperones 2018, 23, 1033–1040. [Google Scholar] [CrossRef]
- Liu, F.; Cottrell, J.J.; Furness, J.B.; Rivera, L.R.; Kelly, F.W.; Wijesiriwardana, U.; Pustovit, R.V.; Fothergill, L.J.; Bravo, D.M.; Celi, P.; et al. Selenium and vitamin E together improve intestinal epithelial barrier function and alleviate oxidative stress in heat-stressed pigs. Exp. Physiol. 2016, 101, 801–810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dennis, J.M.; Witting, P.K. Protective Role for Antioxidants in Acute Kidney Disease. Nutrients 2017, 9, 718. [Google Scholar] [CrossRef] [Green Version]
- Fernandez, M.V.S.; Pearce, S.C.; Gabler, N.K.; Patience, J.F.; Wilson, M.E.; Socha, M.T.; Torrison, J.L.; Rhoads, R.; Baumgard, L.H. Effects of supplemental zinc amino acid complex on gut integrity in heat-stressed growing pigs. Animal 2014, 8, 43–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sivakumar, A.V.N.; Singh, G.; Varshney, V.P. Antioxidants Supplementation on Acid Base Balance during Heat Stress in Goats. Asian Australas. J. Anim. Sci. 2010, 23, 1462–1468. [Google Scholar] [CrossRef]
- Liu, F.; Celi, P.; Chauhan, S.S.; Cottrell, J.J.; Leury, B.J.; Dunshea, F.R. A short-term supranutritional vitamin E supplementation alleviated respiratory alkalosis but did not reduce oxidative stress in heat stressed pigs. Asian Australas J. Anim. Sci. 2018, 31, 263–269. [Google Scholar] [CrossRef] [Green Version]
- NRC (National Research Council). Nutrient Requirements of Swine: Eleventh Revised Edition; The National Academies Press: Washington, DC, USA, 2012; Available online: https://books.google.hu/books?hl=en&lr=&id=myQeL_v_i7sC&oi=fnd&pg=PP1&ots=tF6AQb1obZ&sig=HHx6nnpFRbd5ZZ9twl_vLRl45go&redir_esc=y#v=onepage&q&f=false (accessed on 23 May 2021).
- Heidari, R.; Ahmadi, A.; Mohammadi, H.; Ommati, M.M.; Azarpira, N.; Niknahad, H. Mitochondrial dysfunction and oxidative stress are involved in the mechanism of methotrexate-induced renal injury and electrolytes imbalance. Biomed. Pharmacother. 2018, 107, 834–840. [Google Scholar] [CrossRef]
- Oliveira, R.A.; Sierra, A.; Benetti, M.; Ghorayeb, N.; Sierra, C.A.; Kiss, M.; Cury-Boaventura, M.F. Impact of Hot Environment on Fluid and Electrolyte Imbalance, Renal Damage, Hemolysis, and Immune Activation Postmarathon. Oxid. Med. Cell Longev. 2017, 9824192. [Google Scholar] [CrossRef] [Green Version]
- Patience, J.F.; Umboh, J.F.; Chaplin, R.K.; Nyachoti, C.M. Nutritional and physiological responses of growing pigs exposed to a diurnal pattern of heat stress. Livest. Prod. Sci. 2005, 96, 205–214. [Google Scholar] [CrossRef]
- Hasona, N.A.; Elasbali, A. Evaluation of Electrolytes Imbalance and Dyslipidemia in Diabetic Patients. Med. Sci. 2016, 4, 7, Correction in Med. Sci. 2016, 5, 4. [Google Scholar] [CrossRef] [Green Version]
- Shrimanker, I.; Bhattarai, S. Electrolytes; StatPearls: Treasure Island, FL, USA, 2021. Available online: https://www.ncbi.nlm.nih.gov/books/NBK541123/ (accessed on 5 October 2021).
- Santos, L.S.D.; Pomar, C.; Campos, P.H.R.F.; da Silva, W.C.; Gobi, J.D.P.; Veira, A.M.; Fraga, A.Z.; Hauschild, L. Precision feeding strategy for growing pigs under heat stress conditions. J. Anim. Sci. 2018, 96, 4789–4801. [Google Scholar] [CrossRef]
- Kim, B.; Kim, H.R.; Kim, K.H.; Kim, M.; Baek, Y.C.; Lee, S.D.; Jeong, J.Y. Effect of heat stress on growth performance and blood profiles in finishing pigs. Korean J. Agric. Sci. 2020, 47, 683–691. [Google Scholar] [CrossRef]
- Campos, P.H.R.F.; Floc’h, L.; Noblet, J.; Renaudeau, D. Physiological responses of growing pigs to high ambient temperature and/or inflammatory challenges. Rev. Bras. Zootec. 2017, 46, 537–544. [Google Scholar] [CrossRef] [Green Version]
- Xie, Y.; Zhang, Q.; Wang, L.; Wang, Y.; Cheng, Z.; Yang, Z.; Yang, W. The Effects of Partially or Completely Substituted Dietary Zinc Sulfate by Lower Levels of Zinc Methionine on Growth Performance, Apparent Total Tract Digestibility, Immune Function, and Visceral Indices in Weaned Piglets. Animals 2019, 9, 236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reboul, E. Vitamin E Bioavailability: Mechanisms of Intestinal Absorption in the Spotlight. Antioxidants 2017, 6, 95. [Google Scholar] [CrossRef] [Green Version]
- Traber, M.G.; Stevens, J.F. Vitamins C and E: Beneficial effects from a mechanistic perspective. Free Radic. Biol. Med. 2011, 51, 1000–1013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Padayatty, S.J.; Levine, M. Vitamin C: The known and the unknown and Goldilocks. Oral Dis. 2016, 22, 463–493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shenkin, A. Basics in clinical nutrition: Physiological function and deficiency states of trace elements. e-SPEN Eur. E J. Clin. Nutr. Metab. 2008, 6, e255-8. [Google Scholar] [CrossRef] [Green Version]
- Mehdi, Y.; Hornick, J.-L.; Istasse, L.; Dufrasne, I. Selenium in the Environment, Metabolism and Involvement in Body Functions. Molecules 2013, 18, 3292–3311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kiełczykowska, M.; Kocot, J.; Paździor, M.; Musik, I. Selenium—A fascinating antioxidant of protective properties. Adv. Clin. Exp. Med. 2018, 27, 245–255. [Google Scholar] [CrossRef] [PubMed]
- Maares, M.; Haase, H. A Guide to Human Zinc Absorption: General Overview and Recent Advances of In Vitro Intestinal Models. Nutrients 2020, 12, 762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jarosz, M.; Olbert, M.; Wyszogrodzka, G.; Młyniec, K.; Librowski, T. Antioxidant and anti-inflammatory effects of zinc. Zinc-dependent NF-κB signaling. Inflammopharmacology 2017, 25, 11–24. [Google Scholar] [CrossRef] [Green Version]
- Pearce, S.C.; Sanz Fernandez, M.V.; Torrison, J.; Wilson, M.E.; Baumgard, L.H.; Gabler, N.K. Dietary organic zinc attenuates heat stress-induced changes in pig intestinal integrity and metabolism. J. Anim. Sci. 2015, 93, 4702–4713. [Google Scholar] [CrossRef] [PubMed]
- Mayorga, E.J.; Kvidera, S.K.; Horst, E.A.; Al-Qaisi, M.; Dickson, M.J.; Seibert, J.T.; Lei, S.; Keating, A.F.; Ross, J.W.; Rhoads, R.P.; et al. Effects of zinc amino acid complex on biomarkers of gut integrity and metabolism during and following heat stress or feed restriction in pigs. J. Anim. Sci. 2018, 96, 4173–4185. [Google Scholar] [CrossRef]
- Mani, V.; Rubach, J.K.; Sanders, D.J.; Pham, T.; Koltes, D.A.; Gabler, N.K.; Poss, M.J. Evaluation of the protective effects of zinc butyrate in IPEC-J2 cells and grower pigs under heat stress. Transl. Anim. Sci. 2019, 3, 842–854. [Google Scholar] [CrossRef] [Green Version]
- Health Guide. Vitamin C and Its Role in Optimal Bone Health. Available online: https://ro.co/health-guide/vitamin-c-and-bone-health/#:~:text=This%20vitamin%20helps%20boost%20the,bones%20(Lohakare%2C%202005 (accessed on 9 December 2021).
- Craig, T.A.; Benson, L.M.; Naylor, S.; Kumar, R. Modulation effects of zinc on the formation of vitamin D receptor and retinoid X receptor alpha-DNA transcription complexes: Analysis by microelectrospray mass spectrometry. Rapid Commun. Mass Spectrom. 2001, 15, 1011–1016. [Google Scholar] [CrossRef]
- Christakos, S.; Dhawan, P.; Porta, A.; Mady, L.J.; Seth, T. Vitamin D and intestinal calcium absorption. Mol. Cell Endocrinol. 2011, 347, 25–29. [Google Scholar] [CrossRef] [Green Version]
- Wasserman, R.H. Intestinal absorption of calcium and phosphorus. Fed. Proc. 1981, 40, 68–72. [Google Scholar] [PubMed]
- Vivo Pathophysiology. Absorption of Minerals and Metals. Available online: http://www.vivo.colostate.edu/hbooks/pathphys/digestion/smallgut/absorb_minerals.html (accessed on 9 December 2021).
- Fausnacht, D.W.; Kroscher, K.A.; McMillan, R.P.; Martello, L.S.; Baumgard, L.H.; Selsby, J.T.; Hulver, M.W.; Rhoads, R.P. Heat Stress Reduces Metabolic Rate While Increasing Respiratory Exchange Ratio in Growing Pigs. Animals 2021, 11, 215. [Google Scholar] [CrossRef]
- Xiong, Y.; Yi, H.; Wu, Q.; Jiang, Z.; Wang, L. Effects of acute heat stress on intestinal microbiota in grow-finishing pigs, and associations with feed intake and serum profile. J. Appl. Microbiol. 2020, 128, 840–852. [Google Scholar] [CrossRef]
- Cui, Y.; Wang, C.; Hao, Y.; Gu, X.; Wang, H. Chronic Heat Stress Induces Acute Phase Responses and Serum Metabolome Changes in Finishing Pigs. Animals 2019, 9, 395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaneko, J.J.; Harvey, J.W.; Bruss, M.L. Fluid, Electrolyte, and Acid-Base Balance. In Clinical Biochemistry of Domestic Animals, 6th ed.; Carlson, P., Bruss, M., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2008; pp. 529–559. [Google Scholar] [CrossRef]
- Pearce, S.C.; Gabler, N.K.; Ross, J.W.; Escobar, J.; Patience, J.F.; Rhoads, R.P.; Baumgard, L.H. The effects of heat stress and plane of nutrition on metabolism in growing pigs. J. Anim. Sci. 2013, 91, 2108–2118. [Google Scholar] [CrossRef] [Green Version]
- Mendoza, S.M.; Boyd, R.D.; Ferket, P.R.; van Heugten, E. Effects of dietary supplementation of the osmolyte betaine on growing pig performance and serological and hematological indices during thermoneutral and heat-stressed conditions. J. Anim. Sci. 2017, 95, 5040–5053. [Google Scholar] [CrossRef]
- Hypochloremia: What Is It and How Is It Treated? Available online: https://www.healthline.com/health/hypochloremia (accessed on 8 October 2021).
- Cui, Y.; Hao, Y.; Li, J.; Bao, W.; Li, G.; Gao, Y.; Gu, X. Chronic Heat Stress Induces Immune Response, Oxidative Stress Response, and Apoptosis of Finishing Pig Liver: A Proteomic Approach. Int. J. Mol. Sci. 2016, 17, 393. [Google Scholar] [CrossRef] [Green Version]
- Yoon, S.Y.; Sa, S.J.; Cho, E.S.; Ko, H.S.; Choi, J.W.; Kim, J.S. Effects of Zinc Oxide and Arginine on the Intestinal Microbiota and Immune Status of Weaned Pigs Subjected to High Ambient Temperature. Animals 2020, 10, 1537. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Tang, J.; He, Y.; Jia, G.; Liu, G.; Tian, G.; Chen, X.; Cai, J.; Kang, B.; Zhao, H. Selenogenome and AMPK signal insight into the protective effect of dietary selenium on chronic heat stress-induced hepatic metabolic disorder in growing pigs. J. Anim. Sci. Biotechnol. 2021, 12, 68. [Google Scholar] [CrossRef] [PubMed]
Ingredients | Inclusion Rate (%) | Nutrient | Calculated Value |
---|---|---|---|
Corn | 78.68 | Digestible energy, MJ/kg | 14.24 |
Soybean meal | 16.33 | Crude protein, % | 12.81 |
Plant oil | 2.11 | SID c Lys, % | 0.78 |
Limestone | 0.92 | SID Met+Cys, % | 0.45 |
MCP b | 0.80 | SID Thr, % | 0.49 |
L-Lys | 0.30 | SID Trp, % | 0.14 |
DL-Met | 0.01 | Ca, % | 0.59 |
L-Trp | 0.03 | Digestible P, % | 0.23 |
L-Thr | 0.06 | Na, % | 0.10 |
Salt | 0.26 | ||
Vit. and min. premix | 0.50 |
Nutrient | Unit | Amount |
---|---|---|
Zinc | mg/kg | 9999 |
Cupper | mg/kg | 1454 |
Iron | mg/kg | 7281 |
Manganese | mg/kg | 9999 |
Iodine | mg/kg | 136 |
Selenium | mg/kg | 32 |
Vitamin A | IU/kg | 410,000 |
Vitamin D-3 | IU/kg | 82,000 |
Vitamin E | mg/kg | 2205 |
Vitamin K-3 | mg/kg | 82 |
Vitamin B-1 | mg/kg | 62 |
Vitamin B-2 | mg/kg | 205 |
Ca-d-pantothenate | mg/kg | 492 |
Vitamin B-6 | mg/kg | 164 |
Vitamin B-12 | mg/kg | 1 |
Biotin | mg/kg | 5 |
Niacin | mg/kg | 1026 |
Folate | mg/kg | 25 |
Choline chloride | mg/kg | 60,000 |
Nutrient | Basal Feed a | Elevated 1 | Elevated 2 |
---|---|---|---|
Vitamin C | 0 | 150 | 300 |
Vitamin E | 11 | 41 | 71 |
Zinc b | 50 | 100 | 150 |
Selenium b | 0.16 | 0.21 | 0.26 |
Treatment | p Values | ||||||
---|---|---|---|---|---|---|---|
Minerals | TC | HC | HT1 | HT2 | SEM | Period | Treatment |
Calcium | 0.3796 | 0.0115 | |||||
Week 1 | 88.1 | 86.2 | 91.4 | 89.0 | 0.71 | ||
Week 2 | 86.0 b | 90.1 ab | 91.4 a | 90.1 ab | 0.85 | ||
Phosphorus | 0.1103 | 0.0113 | |||||
Week 1 | 90.1 ab | 86.9 b | 91.9 a | 90.4 ab | 0.70 | ||
Week 2 | 87.5 b | 91.7 ab | 92.6 a | 92.5 a | 0.79 | ||
Sodium | 0.0004 | 0.0012 | |||||
Week 1 | 92.0 ab | 90.3 b | 94.5 a | 94.0 a | 0.57 | ||
Week 2 | 87.4 b | 89.4 ab | 91.3 a | 91.9 a | 0.69 | ||
Selenium | 0.0720 | <0.0001 | |||||
Week 1 | 67.8 b | 61.4 b | 82.4 a | 86.3 a | 3.24 | ||
Week 2 | 55.3 c | 66.1 bc | 77.2 ab | 83.6 a | 3.56 | ||
Zinc | 0.0166 | <0.0001 | |||||
Week 1 | 78.1 b | 70.1 b | 90.0 a | 89.8 a | 2.82 | ||
Week 2 | 63.7 b | 72.1 b | 85.9 a | 86.1 a | 3.05 |
Treatment | p Values | ||||||
---|---|---|---|---|---|---|---|
Electrolytes | TC | HC | HT1 | HT2 | SEM | Time | Treatment |
Sodium | 0.0315 | 0.2798 | |||||
day 7 | 204.3 | 194.0 | 205.7 | 213.1 | 2.95 | ||
day 21 | 219.7 | 210.7 | 210.8 | 213.6 | 3.12 | ||
Potassium | 0.1540 | 0.3365 | |||||
day 7 | 8.9 | 7.2 | 7.9 | 8.9 | 0.36 | ||
day 21 | 9.6 | 9.0 | 8.7 | 8.5 | 0.34 | ||
Chloride | 0.2098 | 0.0013 | |||||
day 7 | 100.3 a | 88.5 b | 96.2 ab | 100.9 a | 1.60 | ||
day 21 | 104.7 a | 93.3 b | 97.7 ab | 101.0 ab | 1.65 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ortega, A.D.S.V.; Babinszky, L.; Ozsváth, X.E.; Oriedo, O.H.; Szabó, C. The Effect of Heat Stress and Vitamin and Micro-Mineral Supplementation on Some Mineral Digestibility and Electrolyte Balance of Pigs. Animals 2022, 12, 386. https://doi.org/10.3390/ani12030386
Ortega ADSV, Babinszky L, Ozsváth XE, Oriedo OH, Szabó C. The Effect of Heat Stress and Vitamin and Micro-Mineral Supplementation on Some Mineral Digestibility and Electrolyte Balance of Pigs. Animals. 2022; 12(3):386. https://doi.org/10.3390/ani12030386
Chicago/Turabian StyleOrtega, Arth David Sol Valmoria, László Babinszky, Xénia Erika Ozsváth, Ogonji Humphrey Oriedo, and Csaba Szabó. 2022. "The Effect of Heat Stress and Vitamin and Micro-Mineral Supplementation on Some Mineral Digestibility and Electrolyte Balance of Pigs" Animals 12, no. 3: 386. https://doi.org/10.3390/ani12030386
APA StyleOrtega, A. D. S. V., Babinszky, L., Ozsváth, X. E., Oriedo, O. H., & Szabó, C. (2022). The Effect of Heat Stress and Vitamin and Micro-Mineral Supplementation on Some Mineral Digestibility and Electrolyte Balance of Pigs. Animals, 12(3), 386. https://doi.org/10.3390/ani12030386