Clinical Efficacy and Safety of Malarone®, Azithromycin and Artesunate Combination for Treatment of Babesia gibsoni in Naturally Infected Dogs
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Dogs
2.2. Evaluation of Clinical Parameters
2.3. Treatment Protocol and Monitoring
2.4. Molecular Analysis
2.5. Statistical Analysis
3. Results
3.1. Clinical Efficacy
3.2. Clinicopathological Abnormalities
3.3. Electrophoresis of Serum Proteins
3.4. PCR Assay
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Birkenheuer, A.; Levy, M.; Savary, K.; Gager, R.; Breitschwerdt, E. Babesia gibsoni Infections in Dogs from North Carolina. J. Am. Anim. Hosp. Assoc. 1999, 35, 125–128. [Google Scholar] [CrossRef] [PubMed]
- Víchová, B.; Horská, M.; Blaňarová, L.; Švihran, M.; Andersson, M.; Peťko, B. First Molecular Identification of Babesia gibsoni in Dogs from Slovakia, Central Europe. Ticks Tick-Borne Dis. 2016, 7, 54–59. [Google Scholar] [CrossRef]
- Irwin, P.J. Canine Babesiosis. Vet. Clin. N. Am. Small Anim. Pract. 2010, 40, 1141–1156. [Google Scholar] [CrossRef] [PubMed]
- Birkenheuer, A.J.; Levy, M.G.; Stebbins, M.; Poore, M.; Breitschwerdt, E. Serosurvey of AntiBabesia Antibodies in Stray Dogs and American Pit Bull Terriers and American Staffordshire Terriers from North Carolina. J. Am. Anim. Hosp. Assoc. 2003, 39, 551–557. [Google Scholar] [CrossRef] [PubMed]
- Jefferies, R.; Ryan, U.M.; Jardine, J.; Broughton, D.K.; Robertson, I.D.; Irwin, P.J. Blood, Bull Terriers and Babesiosis: Further Evidence for Direct Transmission of Babesia gibsoni in Dogs. Aust. Vet. J. 2007, 85, 459–463. [Google Scholar] [CrossRef]
- Matsuu, A.; Kawabe, A.; Koshida, Y.; Ikadai, H.; Okano, S.; Higuchi, S. Incidence of Canine Babesia gibsoni Infection and Subclinical Infection among Tosa Dogs in Aomori Prefecture, Japan. J. Vet. Med. Sci. Jpn. Soc. Vet. Sci. 2004, 66, 893–897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karunakaran, S.; Narayana Pillai, U. Babesia gibsoni Infection in a German Shepherd Dog. Vet. World 2011, 4, 269–270. [Google Scholar] [CrossRef]
- Schoeman, J. Canine Babesiosis. Onderstepoort J. Vet. Res. 2009, 76, 59–66. [Google Scholar] [CrossRef] [Green Version]
- Groves, M.G.; Dennis, G.L. Babesia gibsoni: Field and Laboratory Studies of Canine Infections. Exp. Parasitol. 1972, 31, 153–159. [Google Scholar] [CrossRef]
- Irizarry-Rovira, A.R.; Stephens, J.; Christian, J.; Kjemtrup, A.; DeNicola, D.B.; Widmer, W.R.; Conrad, P.A. Babesia gibsoni Infection in a Dog from Indiana. Vet. Clin. Pathol. 2001, 30, 180–188. [Google Scholar] [CrossRef]
- Trotta, M.; Carli, E.; Novari, G.; Furlanello, T.; Solano-Gallego, L. Clinicopathological Findings, Molecular Detection and Characterization of Babesia gibsoni Infection in a Sick Dog from Italy. Vet. Parasitol. 2009, 165, 318–322. [Google Scholar] [CrossRef] [PubMed]
- Conrad, P.; Thomford, J.; Yamane, I.; Whiting, J.; Bosma, L.; Uno, T.; Holshuh, H.J.; Shelly, S. Hemolytic Anemia Caused by Babesia gibsoni Infection in Dogs. J. Am. Vet. Med. Assoc. 1991, 199, 601–605. [Google Scholar] [PubMed]
- Onishi, T.; Suzuki, S.; Horie, M.; Hashimoto, M.; Kajikawa, T.; Ohishi, I.; Ejima, H. Serum Hemolytic Activity of Babesia gibsoni-Infected Dogs: The Difference in the Activity between Self and Nonself Red Blood Cells. J. Vet. Med. Sci. 1993, 55, 203–206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murase, T.; Maede, Y. Increased Erythrophagocytic Activity of Macrophages in Dogs with Babesia gibsoni Infection. Nihon Juigaku Zasshi Jpn. J. Vet. Sci. 1990, 52, 321–327. [Google Scholar] [CrossRef]
- Checa, R.; Montoya, A.; Ortega, N.; González-Fraga, J.L.; Bartolomé, A.; Gálvez, R.; Marino, V.; Miró, G. Efficacy, Safety and Tolerance of Imidocarb Dipropionate versus Atovaquone or Buparvaquone plus Azithromycin Used to Treat Sick Dogs Naturally Infected with the Babesia microti-like Piroplasm. Parasit. Vectors 2017, 10, 145. [Google Scholar] [CrossRef] [Green Version]
- Iguchi, A.; Matsuu, A.; Fujii, Y.; Ikadai, H.; Hikasa, Y. The In Vitro Interactions and In Vivo Efficacy of Atovaquone and Proguanil against Babesia gibsoni Infection in Dogs. Vet. Parasitol. 2013, 197, 527–533. [Google Scholar] [CrossRef]
- Matsuu, A.; Yamasaki, M.; Xuan, X.; Ikadai, H.; Hikasa, Y. In Vitro Evaluation of the Growth Inhibitory Activities of 15 Drugs against Babesia gibsoni (Aomori Strain). Vet. Parasitol. 2008, 157, 1–8. [Google Scholar] [CrossRef]
- Suzuki, K.; Wakabayashi, H.; Takahashi, M.; Fukushima, K.; Yabuki, A.; Endo, Y. A Possible Treatment Strategy and Clinical Factors to Estimate the Treatment Response in Babesia gibsoni Infection. J. Vet. Med. Sci. 2007, 69, 563–568. [Google Scholar] [CrossRef] [Green Version]
- Lin, M.-Y.; Huang, H.-P. Use of a Doxycycline-Enrofloxacin-Metronidazole Combination with/without Diminazene Diaceturate to Treat Naturally Occurring Canine Babesiosis Caused by Babesia gibsoni. Acta Vet. Scand. 2010, 52, 27. [Google Scholar] [CrossRef] [Green Version]
- Shiranaga, N.; Inokuma, H. Effects of Low-Dose Diminazene Aceturate Injection Followed by Clindamycin Administration for Treating Canine Babesia gibsoni Infection. Jpn. J. Vet. Res. 2018, 66, 221–225. [Google Scholar] [CrossRef]
- Baneth, G. Antiprotozoal Treatment of Canine Babesiosis. Vet. Parasitol. 2018, 254, 58–63. [Google Scholar] [CrossRef] [PubMed]
- Birkenheuer, A.; Levy, M.; Breitschwerdt, E. Efficacy of Combined Atovaquone and Azithromycin for Therapy of Chronic Babesia gibsoni (Asian Genotype) Infections in Dogs. J. Vet. Intern. Med. Am. Coll. Vet. Intern. Med. 2004, 18, 494–498. [Google Scholar] [CrossRef]
- Kirk, S.K.; Levy, J.K.; Crawford, P.C. Efficacy of Azithromycin and Compounded Atovaquone for Treatment of Babesia gibsoni in Dogs. J. Vet. Intern. Med. 2017, 31, 1108–1112. [Google Scholar] [CrossRef] [PubMed]
- Baggish, A.L.; Hill, D.R. Antiparasitic Agent Atovaquone. Antimicrob. Agents Chemother. 2002, 46, 1163–1173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iguchi, A.; Shiranaga, N.; Matsuu, A.; Hikasa, Y. Efficacy of Malarone® in Dogs Naturally Infected with Babesia gibsoni. J. Vet. Med. Sci. 2014, 76, 1291–1295. [Google Scholar] [CrossRef] [Green Version]
- Sakuma, M.; Setoguchi, A.; Endo, Y. Possible Emergence of Drug-Resistant Variants of Babesia gibsoni in Clinical Cases Treated with Atovaquone and Azithromycin. J. Vet. Intern. Med. 2009, 23, 493–498. [Google Scholar] [CrossRef]
- Murnigsih, T.; Subeki; Matsuura, H.; Takahashi, K.; Yamasaki, M.; Yamato, O.; Maede, Y.; Katakura, K.; Suzuki, M.; Kobayashi, S.; et al. Evaluation of the Inhibitory Activities of the Extracts of Indonesian Traditional Medicinal Plants against Plasmodium falciparum and Babesia gibsoni. J. Vet. Med. Sci. 2005, 67, 829–831. [Google Scholar] [CrossRef] [Green Version]
- Loo, C.S.N.; Lam, N.; Yu, D.; Su, X.-Z.; Lu, F. Artemisinin and Its Derivatives in Treating Protozoan Infections beyond Malaria. Pharmacol. Res. 2016, 117, 192–217. [Google Scholar] [CrossRef] [Green Version]
- Goo, Y.-K.; Terkawi, M.A.; Jia, H.; Aboge, G.O.; Ooka, H.; Nelson, B.; Kim, S.; Sunaga, F.; Namikawa, K.; Igarashi, I.; et al. Artesunate, a Potential Drug for Treatment of Babesia Infection. Parasitol. Int. 2010, 59, 481–486. [Google Scholar] [CrossRef]
- Nagy, O.; Tóthová, C.; Nagyová, V.; Gabriel, K. Comparison of Serum Protein Electrophoretic Pattern in Cows and Small Ruminants. Acta Vet. Brno 2015, 84, 187–195. [Google Scholar] [CrossRef] [Green Version]
- Fukumoto, S.; Xuan, X.; Shigeno, S.; Kimbita, E.; Igarashi, I.; Nagasawa, H.; Fujisaki, K.; Mikami, T. Development of a Polymerase Chain Reaction Method for Diagnosing Babesia gibsoni Infection in Dogs. J. Vet. Med. Sci. 2001, 63, 977–981. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Casati, S.; Sager, H.; Gern, L.; Piffaretti, J.-C. Presence of Potentially Pathogenic Babesia sp. for Human in Ixodes Ricinus in Switzerland. Ann. Agric. Environ. Med. AAEM 2006, 13, 65–70. [Google Scholar] [PubMed]
- Miyama, T.; Sakata, Y.; Shimada, Y.; Ogino, S.; Watanabe, M.; Itamoto, K.; Okuda, M.; Verdida, R.A.; Xuan, X.; Nagasawa, H.; et al. Epidemiological Survey of Babesia gibsoni Infection in Dogs in Eastern Japan. J. Vet. Med. Sci. 2005, 67, 467–471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Altschul, S.F.; Madden, T.L.; Schäffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST and PSI-BLAST: A New Generation of Protein Database Search Programs. Nucleic Acids Res. 1997, 25, 3389–3402. [Google Scholar] [CrossRef] [Green Version]
- Guo, W.-P.; Xie, G.-C.; Li, D.; Su, M.; Jian, R.; Du, L.-Y. Molecular Detection and Genetic Characteristics of Babesia gibsoni in Dogs in Shaanxi Province, China. Parasit. Vectors 2020, 13, 366. [Google Scholar] [CrossRef]
- Rosenberg, A.; Rosenkrantz, W.; Griffin, C.; Angus, J.; Keys, D. Evaluation of Azithromycin in Systemic and Toothpaste Forms for the Treatment of Ciclosporin-Associated Gingival Overgrowth in Dogs. Vet. Dermatol. 2013, 24, 337–345, e74–e75. [Google Scholar] [CrossRef]
- Price, R.N. Artemisinin Drugs: Novel Antimalarial Agents. Expert Opin. Investig. Drugs 2000, 9, 1815–1827. [Google Scholar] [CrossRef]
- Clark, R.L.; Arima, A.; Makori, N.; Nakata, Y.; Bernard, F.; Gristwood, W.; Harrell, A.; White, T.E.K.; Wier, P.J. Artesunate: Developmental Toxicity and Toxicokinetics in Monkeys. Birth Defects Res. B Dev. Reprod. Toxicol. 2008, 83, 418–434. [Google Scholar] [CrossRef]
- Yin, J.; Wang, H.; Wang, Q.; Dong, Y.; Han, G.; Guan, Y.; Zhao, K.; Qu, W.; Yuan, Y.; Gao, X.; et al. Subchronic Toxicological Study of Two Artemisinin Derivatives in Dogs. PLoS ONE 2014, 9, e94034. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.-A.; Kim, K.-S.; Kim, E.-J. General Pharmacology of Artesunate, a Commonly Used Antimalarial Drug:Effects on Central Nervous, Cardiovascular, and Respiratory System. Toxicol. Res. 2010, 26, 223–232. [Google Scholar] [CrossRef] [Green Version]
- Kraje, A.C. Canine Haemobartonellosis and Babesiosis. Compend. Contin. Educ. Pract. Vet. 2001, 23, 310–318. [Google Scholar]
- Areshkumar, M.; Vijayalakshmi, P.; Selvi, D.; Raj Kumar, K. Successful Management of Babesia gibsoni Associated with Multi Organ Failure in a Boxer. J. Entomol. Zool. Stud. 2019, 7, 1178–1180. [Google Scholar]
- Köster, L.S.; Lobetti, R.G.; Kelly, P. Canine Babesiosis: A Perspective on Clinical Complications, Biomarkers, and Treatment. Vet. Med. Res. Rep. 2015, 6, 119–128. [Google Scholar] [CrossRef] [Green Version]
- Masuda, M.; Otsuka-Yamasaki, Y.; Shiranaga, N.; Iguchi, A.; Uchida, N.; Sato, R.; Yamasaki, M. Retrospective Study on Intercurrent Pancreatitis with Babesia gibsoni Infection in Dogs. J. Vet. Med. Sci. 2019, 81, 1558–1563. [Google Scholar] [CrossRef] [Green Version]
- Sharma, D.K.; Mahendran, K.; Chethan, G.E.; Banerjee, P.S.; Mondal, D.B.; Gupta, V.K. Medical Management of Babesia gibsoni Induced Hepatopathy and Acute Renal Injury in a Dog. J. Vet. Parasitol. 2016, 30, 32–34. [Google Scholar]
- Yadav, R.; Gattani, A.; Gupta, S.; Sharma, C. Jaundice in Dog Associated with Babesiosis. Int. J. Agro Vet. Med. Sci. 2011, 3. [Google Scholar] [CrossRef]
- Yogeshpriya, S.; Sivakumar, M.; Saravanan, M.; Venkatesan, M.; Muthusamy, V.; Jayalakshmi, K.; Premnath, S. Clinical, Haemato-Biochemical and Ultrasonographical Studies on Naturally Occurring Babesia gibsoni Infection in Dogs. J. Entomol. Res. 2018, 6, 1334–1337. [Google Scholar]
- Tóthová, C.; Karasová, M.; Blaňarová, L.; Fialkovičová, M.; Oskar, N. Differences in Serum Protein Electrophoretic Pattern in Dogs Naturally Infected with Babesia gibsoni and Babesia canis. Sci. Rep. 2020, 10, 18904. [Google Scholar] [CrossRef]
- Ishimine, T.; Makimura, S.; Kitazawa, S.; Tamura, S.; Suzuki, N. Pathophysiological Findings on Blood of Beagles Experimentally Infected With Babesia gibsoni. Jpn. J. Trop. Med. Hyg. 1978, 6, 15–26. [Google Scholar] [CrossRef] [Green Version]
- Brown, A.L.; Shiel, R.E.; Irwin, P.J. Clinical, Haematological, Cytokine and Acute Phase Protein Changes during Experimental Babesia gibsoni Infection of Beagle Puppies. Exp. Parasitol. 2015, 157, 185–196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bilwal, A.K.; Mandali, G.C.; Tandel, F.B. Clinicopathological Alterations in Naturally Occurring Babesia gibsoni Infection in Dogs of Middle-South Gujarat, India. Vet. World 2017, 10, 1227–1232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wozniak, E.J.; Barr, B.C.; Thomford, J.W.; Yamane, I.; McDonough, S.P.; Moore, P.F.; Naydan, D.; Robinson, T.W.; Conrad, P.A. Clinical, Anatomic, and Immunopathologic Characterization of Babesia gibsoni Infection in the Domestic Dog (Canis familiaris). J. Parasitol. 1997, 83, 692–699. [Google Scholar] [CrossRef] [PubMed]
- Ceron, J.J.; Caldin, M.; Martinez-Subiela, S. Answers to Some Common Questions on Serum Protein Electrophoresis. Vet. Rec. 2011, 168, 453–454. [Google Scholar] [CrossRef] [PubMed]
- Tuska-Szalay, B.; Vizi, Z.; Hofmann-Lehmann, R.; Vajdovich, P.; Takács, N.; Meli, M.L.; Farkas, R.; Stummer-Knyihár, V.; Jerzsele, Á.; Kontschán, J.; et al. Babesia gibsoni Emerging with High Prevalence and Co-Infections in “Fighting Dogs” in Hungary. Curr. Res. Parasitol. Vector-Borne Dis. 2021, 1, 100048. [Google Scholar] [CrossRef]
Parameter | Reference Range | Day 0 | PCR Negative | Day 56 | Day 720 | ||||
---|---|---|---|---|---|---|---|---|---|
OOR | Mean ± SD | OOR | Mean ± SD | OOR | Mean ± SD | OOR | Mean ± SD | ||
RBC, 1012/L | 5.65–8.87 | 8 | 4.76 ± 2.46 • | 3 | 8.04 ± 0.94 * | 0 | 6.69 ± 1.07 | 0 | 7.84 ± 0.33 |
HCT, % | 37.3–61.7 | 8 | 33.25 ± 15.80 • | 3 | 49.44 ± 4.41 * | 0 | 41.68 ± 6.31 | 0 | 48.50 ± 2.58 |
HGB, g/dL | 13.1–20.5 | 8 | 11.51 ± 5.41 • | 3 | 16.51 ± 1.38 * | 0 | 14.09 ± 2.34 | 0 | 17.28 ± 0.10 |
RDW, % | 13.6–21.7 | 4 | 20.01 ± 2.76 | 3 | 21.23 ± 2.03 | 1 | 20.52 ± 1.91 | 0 | 18.18 ± 0.34 |
RET, K/µL | 10.0–110.0 | 3 | 99.14 ± 73.02 | 4 | 50.39 ± 16.80 | 0 | 64.09 ± 50.71 | 0 | 80.28 ± 50.27 |
PLT, K/µL | 148–484 | 8 | 151.50 ± 102.20 | 3 | 280.10 ± 100.70 ** | 0 | 318.30 ± 178.80 * | 0 | 291.25 ± 31.48 |
ALT, µkat/L | ˂0.949 | 5 | 1.39 ± 1.28 • | 2 | 2.50 ± 4.38 • | 1 | 1.00 ± 1.15 | 1 | 0.94 ± 0.14 |
ALP, µkat/L | ˂1.24 | 3 | 1.25 ± 1.74 | 0 | 0.65 ± 0.29 | ND | ND | 0 | 0.50 ± 0.36 |
T BIL, µmol/L | ˂3.1 | 3 | 5.29 ± 6.55 • | 0 | 0.37 ± 0.64 ** | 0 | 0.80 ± 0.94 * | 0 | 1.45 ± 1.22 |
AMS, µkat/L | ˂7.21 | 6 | 7.34 ± 2.36 • | 0 | 7.07 ± 2.74 | 0 | 6.33 ± 2.10 | 0 | 5.35 ± 0.94 |
SDMA, µg/dL | 0–14 | 1 | 9.90 ± 2.42 | ND | ND | 0 | 7.42 ± 2.28 | 0 | 8.16 ± 2.11 |
CREA, µmol/L | 46–88 | 0 | 49.80 ± 14.67 | 1 | 64.69 ± 15.97 | 0 | 61.48 ± 20.39 | 0 | 53.00 ± 4.10 |
BUN, mmol/L | 3.97–8.05 | 0 | 3.92 ± 1.44 | 0 | 3.98 ± 0.79 | 0 | 4.16 ± 1.47 | 0 | 4.97 ± 1.16 |
TP, g/L | 47–74 | 4 | 72.90 ± 6.29 | 1 | 64.23 ± 2.28 *** | 2 | 66.59 ± 7.62 * | 1 | 73.18 ± 3.45 |
ALB, g/L | 26–41 | 6 | 27.03 ± 4.75 | 3 | 32.64 ± 3.14 ** | 0 | 30.18 ± 4.58 | 0 | 36.65 ± 4.57 |
Alpha 1, g/L | ND | 2.77 ± 0.46 | ND | 2.59 ± 0.42 | ND | 2.61 ± 0.43 | ND | 3.23 ± 0.19 | |
Alpha 2, g/L | ND | 8.45 ± 1.60 | ND | 10.04 ± 2.01 | ND | 9.39 ± 1.83 | ND | 10.13 ± 0.99 | |
Beta 1, g/L | ND | 7.12 ± 1.70 | ND | 6.51 ± 2.31 | ND | 6.88 ± 4.34 * | ND | 7.55 ± 1.05 | |
Beta 2, g/L | ND | 7.56 ± 1.86 | ND | 6.50 ± 1.60 | ND | 6.88 ± 1.20 | ND | 7.95 ± 0.97 | |
Gamma, g/L | ND | 17.75 ± 9.45 | ND | 13.61 ± 17.35 * | ND | 10.00 ± 6.41 ** | ND | 7.65 ± 2.00 | |
A/G ratio | 0.6–1.1 | 9 | 0.47 ± 0.13 • | 2 | 0.93 ± 0.21 *** | 0 | 0.95 ± 0.32 * | 0 | 1.02 ± 0.20 |
Day | PCR+ (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|
0 | 14 | 28 | 42 | 56 | 180 | 360 | 540 | 720 | |
Severe anemia n = 3 | 3/3 (100) | 1/3 (33) | 1/3 (33) | 0/3 (0) | 0/3 (0) | 0/3 (0) | 0/3 (0) | 0/3 (0) | 0/3 (0) |
Mild anemia n = 5 | 5/5 (100) | 4/5 (80) | 1/5 (20) | 0/5 (0) | 0/5 (0) | 0/5 (0) | 0/5 (0) | 0/5 (0) | 0/5 (0) |
Without anemia n = 4 | 4/4 (100) | 2/4 (50) | 2/4 (50) | 0/4 (0) | 0/4 (0) | 0/4 (0) | 0/4 (0) | 0/4 (0) | 0/4 (0) |
Total | 12/12 (100) | 7/12 (58) | 4/12 (33) | 0/12 (0) | 0/12 (0) | 0/12 (0) | 0/12 (0) | 0/12 (0) | 0/12 (0) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karasová, M.; Tóthová, C.; Víchová, B.; Blaňarová, L.; Kisková, T.; Grelová, S.; Staroňová, R.; Micháľová, A.; Kožár, M.; Nagy, O.; et al. Clinical Efficacy and Safety of Malarone®, Azithromycin and Artesunate Combination for Treatment of Babesia gibsoni in Naturally Infected Dogs. Animals 2022, 12, 708. https://doi.org/10.3390/ani12060708
Karasová M, Tóthová C, Víchová B, Blaňarová L, Kisková T, Grelová S, Staroňová R, Micháľová A, Kožár M, Nagy O, et al. Clinical Efficacy and Safety of Malarone®, Azithromycin and Artesunate Combination for Treatment of Babesia gibsoni in Naturally Infected Dogs. Animals. 2022; 12(6):708. https://doi.org/10.3390/ani12060708
Chicago/Turabian StyleKarasová, Martina, Csilla Tóthová, Bronislava Víchová, Lucia Blaňarová, Terézia Kisková, Simona Grelová, Radka Staroňová, Alena Micháľová, Martin Kožár, Oskar Nagy, and et al. 2022. "Clinical Efficacy and Safety of Malarone®, Azithromycin and Artesunate Combination for Treatment of Babesia gibsoni in Naturally Infected Dogs" Animals 12, no. 6: 708. https://doi.org/10.3390/ani12060708
APA StyleKarasová, M., Tóthová, C., Víchová, B., Blaňarová, L., Kisková, T., Grelová, S., Staroňová, R., Micháľová, A., Kožár, M., Nagy, O., & Fialkovičová, M. (2022). Clinical Efficacy and Safety of Malarone®, Azithromycin and Artesunate Combination for Treatment of Babesia gibsoni in Naturally Infected Dogs. Animals, 12(6), 708. https://doi.org/10.3390/ani12060708