Canine Spermatozoa—Predictability of Cryotolerance
Abstract
:Simple Summary
Abstract
1. Introduction
2. Cryopreservation and Membrane Damages
3. What Makes Sperm Freezable?
3.1. The Composition of the Sperm Cell Membrane
3.2. Membrane Intactness
3.3. Energy Management
3.4. DNA Stability
3.5. The Composition of the Seminal Plasma
4. Can We Predict Sperm Freezability in Dogs?
4.1. Kinematic and Morphometric Parameters—Cluster Analyses
4.2. Cell Volumetry
4.3. Seminal Plasma Components
4.4. Membrane Proteins
4.5. Response to Ionophore Treatment
5. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bencharif, D.; Dordas-Perpinya, M. Canine semen cryoconservation: Emerging data over the last 20 years. Reprod. Domest. Anim. 2020, 55 (Suppl. 2), 61–65. [Google Scholar] [CrossRef]
- Rijsselaere, T.; van Soom, A.; Maes, D.; de Kruif, A. Effect of centrifugation on in vitro survival of fresh diluted canine spermatozoa. Theriogenology 2002, 57, 1669–1681. [Google Scholar] [CrossRef]
- Platz, C.C.; Seager, S.W. Successful pregnancies with concentrated frozen canine semen. Lab. Anim. Sci. 1977, 27, 1013–1016. [Google Scholar] [PubMed]
- Okano, T.; Murase, T.; Asano, M.; Tsubota, T. Effects of final dilution rate, sperm concentration and times for cooling and glycerol equilibration on post-thaw characteristics of canine spermatozoa. J. Vet. Med. Sci. 2004, 66, 1359–1364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peña, A.; Linde-Forsberg, C. Effects of Equex, one- or two-step dilution, and two freezing and thawing rates on post-thaw survival of dog spermatozoa. Theriogenology 2000, 54, 859–875. [Google Scholar] [CrossRef]
- Linde-Forsberg, C. Achieving canine pregnancy by using frozen or chilled extended semen. Vet Clin. N. Am. Small Anim. Pract. 1991, 21, 467–485. [Google Scholar] [CrossRef]
- Lechner, D.; Aurich, J.; Schäfer-Somi, S.; Aurich, C. Effects of age, size and season on cryotolerance of dog semen—A retrospective analysis. Anim. Reprod. Sci. 2022, 236, 106912. [Google Scholar] [CrossRef] [PubMed]
- Mahiddine, F.Y.; Kim, M.-J. Overview on the Antioxidants, Egg Yolk Alternatives, and Mesenchymal Stem Cells and Derivatives Used in Canine Sperm Cryopreservation. Animals 2021, 11, 1930. [Google Scholar] [CrossRef]
- Amann, R.P.; Pickett, B.W. Principles of cryopreservation and a review of cryopreservation of stallion spermatozoa. J. Equine Vet. Sci. 1987, 7, 145–173. [Google Scholar] [CrossRef]
- Urbano, M.; Dorado, J.; Ortiz, I.; Morrell, J.M.; Demyda-Peyrás, S.; Gálvez, M.J.; Alcaraz, L.; Ramírez, L.; Hidalgo, M. Effect of cryopreservation and single layer centrifugation on canine sperm DNA fragmentation assessed by the sperm chromatin dispersion test. Anim. Reprod. Sci. 2013, 143, 118–125. [Google Scholar] [CrossRef]
- Yeste, M.; Estrada, E.; Rocha, L.G.; Marín, H.; Rodríguez-Gil, J.E.; Miró, J. Cryotolerance of stallion spermatozoa is related to ROS production and mitochondrial membrane potential rather than to the integrity of sperm nucleus. Andrology 2015, 3, 395–407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gautier, C.; Aurich, C. “Fine feathers make fine birds”—The mammalian sperm plasma membrane lipid composition and effects on assisted reproduction. Anim. Reprod. Sci. 2021, 106884. [Google Scholar] [CrossRef] [PubMed]
- Nöthling, J.O.; Gerstenberg, C.; Volkmann, D.H. Semen quality after thawing: Correlation with fertility and fresh semen quality in dogs. J. Reprod. Fertil. Suppl. 1997, 51, 109–116. [Google Scholar] [PubMed]
- Nöthling, J.O.; Shuttleworth, R. The effect of straw size, freezing rate and thawing rate upon post-thaw quality of dog semen. Theriogenology 2005, 63, 1469–1480. [Google Scholar] [CrossRef]
- Eilts, B.E. Theoretical aspects of canine cryopreserved semen evaluation. Theriogenology 2005, 64, 685–691. [Google Scholar] [CrossRef]
- Schäfer-Somi, S.; Palme, N. Seminal Plasma Characteristics and Expression of ATP-binding Cassette Transporter A1 (ABCA1) in Canine Spermatozoa from Ejaculates with Good and Bad Freezability. Reprod. Domest. Anim. 2016, 51, 232–239. [Google Scholar] [CrossRef]
- Schäfer-Somi, S.; Tichy, A. Canine post-thaw sperm quality can be predicted by using CASA, and classification and regression tree (CART)-analysis. Pol. J. Vet. Sci. 2019, 22, 51–59. [Google Scholar] [CrossRef]
- Dorado, J.; Alcaráz, L.; Duarte, N.; Portero, J.M.; Acha, D.; Hidalgo, M. Changes in the structures of motile sperm subpopulations in dog spermatozoa after both cryopreservation and centrifugation on PureSperm(®) gradient. Anim. Reprod. Sci. 2011, 125, 211–218. [Google Scholar] [CrossRef]
- Núñez-Martinez, I.; Moran, J.M.; Peña, F.J. Identification of sperm morphometric subpopulations in the canine ejaculate: Do they reflect different subpopulations in sperm chromatin integrity? Zygote 2007, 15, 257–266. [Google Scholar] [CrossRef]
- Petrunkina, A.M.; Gröpper, B.; Günzel-Apel, A.-R.; Töpfer-Petersen, E. Functional significance of the cell volume for detecting sperm membrane changes and predicting freezability in dog semen. Reproduction 2004, 128, 829–842. [Google Scholar] [CrossRef]
- Karger, S.; Geiser, B.; Grau, M.; Burfeind, O.; Heuwieser, W.; Arlt, S.P. Prognostic value of a pre-freeze hypo-osmotic swelling test on the post-thaw quality of dog semen. Anim. Reprod. Sci. 2016, 166, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Szsz, F.; Sirivaidyapong, S.; Cheng, F.P.; Voorhout, W.F.; Marks, A.; Colenbrander, B.; Solti And, L.; Gadella, B.M. Detection of calcium ionophore induced membrane changes in dog sperm as a simple method to predict the cryopreservability of dog semen. Mol. Reprod. Dev. 2000, 55, 289–298. [Google Scholar] [CrossRef]
- Domoslawska, A.; Zdunczyk, S.; Franczyk, M.; Kankofer, M.; Janowski, T. Total antioxidant capacity and protein peroxidation intensity in seminal plasma of infertile and fertile dogs. Reprod. Domest. Anim. 2019, 54, 252–257. [Google Scholar] [CrossRef] [PubMed]
- Neild, D.M.; Gadella, B.M.; Chaves, M.G.; Miragaya, M.H.; Colenbrander, B.; Agüero, A. Membrane changes during different stages of a freeze–thaw protocol for equine semen cryopreservation. Theriogenology 2003, 59, 1693–1705. [Google Scholar] [CrossRef]
- Yeste, M. Sperm cryopreservation update: Cryodamage, markers, and factors affecting the sperm freezability in pigs. Theriogenology 2016, 85, 47–64. [Google Scholar] [CrossRef]
- Torres, M.A.; Pedrosa, A.C.; Novais, F.J.; Alkmin, D.V.; Cooper, B.R.; Yasui, G.S.; Fukumasu, H.; Machaty, Z.; de Andrade, A.F.C. Metabolomic signature of spermatozoa established during holding time is responsible for differences in boar sperm freezability. Biol. Reprod. 2022, 106, 213–226. [Google Scholar] [CrossRef]
- Pedrosa, A.C.; Andrade Torres, M.; Vilela Alkmin, D.; Pinzon, J.E.P.; Kitamura Martins, S.M.M.; Da Coelho Silveira, J.; Furugen Cesar de Andrade, A. Spermatozoa and seminal plasma small extracellular vesicles miRNAs as biomarkers of boar semen cryotolerance. Theriogenology 2021, 174, 60–72. [Google Scholar] [CrossRef]
- Fraser, L.; Brym, P.; Pareek, C.S.; Mogielnicka-Brzozowska, M.; Paukszto, Ł.; Jastrzębski, J.P.; Wasilewska-Sakowska, K.; Mańkowska, A.; Sobiech, P.; Żukowski, K. Transcriptome analysis of boar spermatozoa with different freezability using RNA-Seq. Theriogenology 2020, 142, 400–413. [Google Scholar] [CrossRef]
- D’Amours, O.; Frenette, G.; Bourassa, S.; Calvo, É.; Blondin, P.; Sullivan, R. Proteomic Markers of Functional Sperm Population in Bovines: Comparison of Low- and High-Density Spermatozoa Following Cryopreservation. J. Proteome Res. 2018, 17, 177–188. [Google Scholar] [CrossRef]
- Alyethodi, R.R.; Deb, R.; Alex, R.; Kumar, S.; Singh, U.; Tyagi, S.; Mandal, D.K.; Raja, T.V.; Das, A.K.; Sharma, S.; et al. Molecular markers, BM1500 and UMN2008, are associated with post-thaw motility of bull sperm. Anim. Reprod. Sci. 2016, 174, 143–149. [Google Scholar] [CrossRef]
- Rickard, J.P.; Leahy, T.; Soleilhavoup, C.; Tsikis, G.; Labas, V.; Harichaux, G.; Lynch, G.W.; Druart, X.; de Graaf, S.P. The identification of proteomic markers of sperm freezing resilience in ram seminal plasma. J. Proteomics 2015, 126, 303–311. [Google Scholar] [CrossRef] [PubMed]
- Muñoz, P.M.; Ferrusola, C.O.; Lopez, L.A.; Del Petre, C.; Garcia, M.A.; de Paz Cabello, P.; Anel, L.; Peña, F.J. Caspase 3 Activity and Lipoperoxidative Status in Raw Semen Predict the Outcome of Cryopreservation of Stallion Spermatozoa. Biol. Reprod. 2016, 95, 53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Usuga, A.; Rojano, B.A.; Restrepo, G. Association of the cysteine-rich secretory protein-3 (CRISP-3) and some of its polymorphisms with the quality of cryopreserved stallion semen. Reprod. Fertil. Dev. 2018, 30, 563–569. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Wang, S.; Wang, W.; Xu, Y.; Xu, Z.; Tang, J.; Sun, H.; Wang, Z.; Zhang, W. Enolase1 (ENO1) and glucose-6-phosphate isomerase (GPI) are good markers to predict human sperm freezability. Cryobiology 2015, 71, 141–145. [Google Scholar] [CrossRef]
- Lozano-Hernández, R.; Gualdrón, J.; Nava, D.; Alejandra Rojas Lozano, M. Efecto de la hiperviscosidad seminal sobre la integridad acrosómica y la movilidad espermática antes y después de la criopreservación. Investig. Clin. 2016, 57, 267–279. [Google Scholar]
- Reynolds, A.M.; Lee, R.E.; Costanzo, J.P. Membrane adaptation in phospholipids and cholesterol in the widely distributed, freeze-tolerant wood frog, Rana sylvatica. J. Comp. Physiol. B 2014, 184, 371–383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huebinger, J. Modification of cellular membranes conveys cryoprotection to cells during rapid, non-equilibrium cryopreservation. PLoS ONE 2018, 13, e0205520. [Google Scholar] [CrossRef]
- Liu, X.; Xu, Y.; Liu, F.; Pan, Y.; Miao, L.; Zhu, Q.; Tan, S. The Feasibility of Antioxidants Avoiding Oxidative Damages from Reactive Oxygen Species in Cryopreservation. Front. Chem. 2021, 26, 648684. [Google Scholar] [CrossRef]
- Holt, W.V.; North, R.D. Partially irreversible cold-induced lipid phase transitions in mammalian sperm plasma membrane domains: Freeze-fracture study. J. Exp. Zool. 1984, 230, 473–483. [Google Scholar] [CrossRef]
- De Leeuw, F.E.; Chen, H.-C.; Colenbrander, B.; Verkleij, A.J. Cold-induced ultrastructural changes in bull and boar sperm plasma membranes. Cryobiology 1990, 27, 171–183. [Google Scholar] [CrossRef]
- Ricker, J.V.; Linfor, J.J.; Delfino, W.J.; Kysar, P.; Scholtz, E.L.; Tablin, F.; Crowe, J.H.; Ball, B.A.; Meyers, S.A. Equine sperm membrane phase behavior: The effects of lipid-based cryoprotectants. Biol. Reprod. 2006, 74, 359–365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rota, A.; Linde-Forsberg, C.; Vannozzi, J.; Romagnoli, S.; Rodriguez-Martinez, H. Cryosurvival of Dog Spermatozoa at Different Glycerol Concentrations and Freezing/Thawing Rates. Reprod. Dom. Anim. 1998, 33, 355–361. [Google Scholar] [CrossRef]
- Parks, J.E.; Lynch, D.V. Lipid composition and thermotropic phase behavior of boar, bull, stallion, and rooster sperm membranes. Cryobiology 1992, 29, 255–266. [Google Scholar] [CrossRef]
- Brinsko, S.P.; Love, C.C.; Bauer, J.E.; Macpherson, M.L.; Varner, D.D. Cholesterol-to-phospholipid ratio in whole sperm and seminal plasma from fertile stallions and stallions with unexplained subfertility. Anim. Reprod. Sci. 2007, 99, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Khan, J.; Tahir, M.Z.; Khalid, A.; Sattar, A.; Ahmad, N. Effect of cholesterol-loaded cyclodextrins on cryosurvival of dog spermatozoa. Reprod. Domest. Anim. 2017, 52 (Suppl. 2), 265–268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Batissaco, L.; de Arruda, R.P.; Alves, M.B.R.; Torres, M.A.; Lemes, K.M.; Prado-Filho, R.R.; de Almeida, T.G.; de Andrade, A.F.C.; Celeghini, E.C.C. Cholesterol-loaded cyclodextrin is efficient in preserving sperm quality of cryopreserved ram semen with low freezability. Reprod. Biol. 2020, 20, 14–24. [Google Scholar] [CrossRef] [PubMed]
- Murphy, C.; English, A.M.; Holden, S.A.; Fair, S. Cholesterol-loaded-cyclodextrins improve the post-thaw quality of stallion sperm. Anim. Reprod. Sci. 2014, 145, 123–129. [Google Scholar] [CrossRef]
- Blommaert, D.; Franck, T.; Donnay, I.; Lejeune, J.-P.; Detilleux, J.; Serteyn, D. Substitution of egg yolk by a cyclodextrin-cholesterol complex allows a reduction of the glycerol concentration into the freezing medium of equine sperm. Cryobiology 2016, 72, 27–32. [Google Scholar] [CrossRef]
- Cheng, F.-P.; Wu, J.-T.; Tsai, P.-S.; Chang, C.L.-T.; Lee, S.-L.; Lee, W.-M.; Fazeli, A. Effects of cryo-injury on progesterone receptor(s) of canine spermatozoa and its response to progesterone. Theriogenology 2005, 64, 844–854. [Google Scholar] [CrossRef]
- Mogielnicka-Brzozowska, M.; Fraser, L.; Czarzasta, J.; Kordan, W. Isolation and characterization of zinc-binding proteins of canine seminal plasma. Pol. J. Vet. Sci. 2012, 15, 493–498. [Google Scholar] [CrossRef] [Green Version]
- Tsikis, G.; Reynaud, K.; Ferchaud, S.; Druart, X. Seminal plasma differentially alters the resistance of dog, ram and boar spermatozoa to hypotonic stress. Anim. Reprod. Sci. 2018, 193, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Goericke-Pesch, S.; Hauck, S.; Failing, K.; Wehrend, A. Effect of seminal plasma vesicular structures in canine frozen-thawed semen. Theriogenology 2015, 84, 1490–1498. [Google Scholar] [CrossRef] [PubMed]
- Harrison, R.A.; Vickers, S.E. Use of fluorescent probes to assess membrane integrity in mammalian spermatozoa. J. Reprod. Fertil. 1990, 88, 343–352. [Google Scholar] [CrossRef]
- Peña, A.; Johannisson, A.; Linde-Forsberg, C. Post-thaw evaluation of dog spermatozoa using new triple fluorescent staining and flow cytometry. Theriogenology 1999, 52, 965–980. [Google Scholar] [CrossRef]
- Rigau, T.; Rivera, M.; Palomo, M.J.; Fernández-Novell, J.M.; Mogas, T.; Ballester, J.; Peña, A.; Otaegui, P.J.; Guinovart, J.J.; Rodríguez-Gil, J.E. Differential effects of glucose and fructose on hexose metabolism in dog spermatozoa. Reproduction 2002, 123, 579–591. [Google Scholar] [CrossRef]
- Bucci, D.; Isani, G.; Spinaci, M.; Tamanini, C.; Mari, G.; Zambelli, D.; Galeati, G. Comparative immunolocalization of GLUTs 1, 2, 3 and 5 in boar, stallion and dog spermatozoa. Reprod. Domest. Anim. 2010, 45, 315–322. [Google Scholar] [CrossRef]
- Ribeiro, J.C.; Carrageta, D.F.; Bernardino, R.L.; Alves, M.G.; Oliveira, P.F. Aquaporins and Animal Gamete Cryopreservation: Advances and Future Challenges. Animals 2022, 12, 359. [Google Scholar] [CrossRef]
- Yeung, C.-H. Aquaporins in spermatozoa and testicular germ cells: Identification and potential role. Asian J. Androl. 2010, 12, 490–499. [Google Scholar] [CrossRef] [Green Version]
- Prieto-Martínez, N.; Vilagran, I.; Morató, R.; Del Rivera Álamo, M.M.; Rodríguez-Gil, J.E.; Bonet, S.; Yeste, M. Relationship of aquaporins 3 (AQP3), 7 (AQP7), and 11 (AQP11) with boar sperm resilience to withstand freeze-thawing procedures. Andrology 2017, 5, 1153–1164. [Google Scholar] [CrossRef] [Green Version]
- Ito, J.; Kawabe, M.; Ochiai, H.; Suzukamo, C.; Harada, M.; Mitsugi, Y.; Seita, Y.; Kashiwazaki, N. Expression and immunodetection of aquaporin 1 (AQP1) in canine spermatozoa. Cryobiology 2008, 57, 312–314. [Google Scholar] [CrossRef]
- Santiago, C.; Yeste, M.; Rigau, T.; Rodríguez-Gil, J.; Del Rivera Alamo, M. Canine sperm cells express aquaporin-8, but not aquaporin-2. Reprod. Domest. Anim. 2019, 54-S3, 63. [Google Scholar]
- Peña, F.J.; Johannisson, A.; Wallgren, M.; Rodriguez Martinez, H. Antioxidant supplementation in vitro improves boar sperm motility and mitochondrial membrane potential after cryopreservation of different fractions of the ejaculate. Anim. Reprod. Sci. 2003, 78, 85–98. [Google Scholar] [CrossRef]
- Volpe, S.; Leoci, R.; Aiudi, G.; Lacalandra, G.M. Relationship between motility and mitochondrial functional status in canine spermatozoa. Reprod. Domest. Anim. 2009, 44 (Suppl. 2), 275–278. [Google Scholar] [CrossRef] [PubMed]
- Albarracín, J.L.; Mogas, T.; Palomo, M.J.; Peña, A.; Rigau, T.; Rodríguez-Gil, J.E. In vitro capacitation and acrosome reaction of dog spermatozoa can be feasibly attained in a defined medium without glucose. Reprod. Domest. Anim. 2004, 39, 129–135. [Google Scholar] [CrossRef] [PubMed]
- Gosálvez, J.; López-Fernández, C.; Fernández, J.L.; Gouraud, A.; Holt, W.V. Relationships between the dynamics of iatrogenic DNA damage and genomic design in mammalian spermatozoa from eleven species. Mol. Reprod. Dev. 2011, 78, 951–961. [Google Scholar] [CrossRef] [PubMed]
- Koderle, M.; Aurich, C.; Schäfer-Somi, S. The influence of cryopreservation and seminal plasma on the chromatin structure of dog spermatozoa. Theriogenology 2009, 72, 1215–1220. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-H.; Yu, D.-H.; Kim, Y.-J. Effects of cryopreservation on phosphatidylserine translocation, intracellular hydrogen peroxide, and DNA integrity in canine sperm. Theriogenology 2010, 73, 282–292. [Google Scholar] [CrossRef]
- Pereira, A.F.; Borges, P.; Fontbonne, A.; Cardoso, L.; Gaivão, I.; Martins-Bessa, A. The Comet assay for detection of DNA damage in canine sperm. Reprod. Domest. Anim. 2017, 52, 1149–1152. [Google Scholar] [CrossRef]
- Evenson, D.P. Sperm chromatin structure assay (SCSA®). Methods Mol. Biol. 2013, 927, 147–164. [Google Scholar] [CrossRef]
- Evenson, D.; Jost, L. Sperm chromatin structure assay is useful for fertility assessment. Methods Cell Sci. 2000, 22, 169–189. [Google Scholar] [CrossRef]
- Erenpreisa, J.; Erenpreiss, J.; Freivalds, T.; Slaidina, M.; Krampe, R.; Butikova, J.; Ivanov, A.; Pjanova, D. Toluidine blue test for sperm DNA integrity and elaboration of image cytometry algorithm. Cytometry A 2003, 52, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Rui, B.R.; Angrimani, D.S.; Bicudo, L.C.; Losano, J.D.; Nichi, M.; Pereira, R.J. A fast, low-cost and efficient method for the diagnosis of sperm DNA fragmentation in several species. Reprod. Dom. Anim. 2018, 53, 171–175. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhu, Y.; Li, Z. Application of Raman spectroscopy in Andrology: Non-invasive analysis of tissue and single cell. Transl. Androl. Urol. 2014, 3, 12133–12533. [Google Scholar]
- Aquino-Cortez, A.; Pinheiro, B.Q.; Lima, D.B.C.; Silva, H.V.R.; Mota-Filho, A.C.; Martins, J.A.M.; Rodriguez-Villamil, P.; Moura, A.A.; Silva, L.D.M. Proteomic characterization of canine seminal plasma. Theriogenology 2017, 95, 178–186. [Google Scholar] [CrossRef]
- Vieira, N.D.M.G.; de Agostini Losano, J.D.; Angrimani, D.D.S.R.; Kawai, G.K.V.; de Cássia Bicudo, L.; Rui, B.R.; da Silva, B.D.C.S.; Assumpção, M.E.O.D.A.; Nichi, M. Induced sperm oxidative stress in dogs: Susceptibility against different reactive oxygen species and protective role of seminal plasma. Theriogenology 2018, 108, 39–45. [Google Scholar] [CrossRef]
- Zelli, R.; Bellezza, I.; Rambotti, M.G.; Minelli, A.; Polisca, A. Ultrastructural and enzymatic activity of membranous vesicles isolated from canine seminal plasma. Reprod. Domest. Anim. 2013, 48, 252–257. [Google Scholar] [CrossRef]
- Núñez-Martínez, I.; Moran, J.M.; Peña, F.J. A three-step statistical procedure to identify sperm kinematic subpopulations in canine ejaculates: Changes after cryopreservation. Reprod. Domest. Anim. 2006, 41, 408–415. [Google Scholar] [CrossRef]
- Langlade, C.; Buff, S.; Dias, C.; Commin, L. Assessment of Optimized Frozen/Thawed Semen Samples in Canines with the New A-Kinase Anchor Protein 4 Precursor Biomarker. Biopreserv. Biobank. 2020, 18, 409–414. [Google Scholar] [CrossRef]
- Peña, F.J.; Saravia, F.; García-Herreros, M.; Núñez-martínez, I.; Tapia, J.A.; Johannisson, A.; Wallgren, M.; Rodríguez-Martínez, H. Identification of sperm morphometric subpopulations in two different portions of the boar ejaculate and its relation to postthaw quality. J. Androl. 2005, 26, 716–723. [Google Scholar] [CrossRef]
- Petrunkina, A.; Radcke, S.; Günzel-Apel, A.-R.; Harrison, R.; Töpfer-Petersen, E. Role of potassium channels, the sodium-potassium pump and the cytoskeleton in the control of dog sperm volume. Theriogenology 2004, 61, 35–54. [Google Scholar] [CrossRef]
- Miller, I.; Schlosser, S.; Palazzolo, L.; Veronesi, M.C.; Eberini, I.; Gianazza, E. Some more about dogs: Proteomics of neglected biological fluids. J. Proteomics 2020, 218, 103724. [Google Scholar] [CrossRef] [PubMed]
- Araujo, M.S.; Paulo, O.L.D.O.H.; Paranzini, C.S.; Scott, C.; Codognoto, V.M.; Dell’Aqua, C.D.P.F.; Papa, F.O.; de Souza, F.F. Proteomic data of seminal plasma and spermatozoa of four purebred dogs. Data Brief 2020, 30, 105498. [Google Scholar] [CrossRef] [PubMed]
- Mogielnicka-Brzozowska, M.; Kowalska, N.; Fraser, L.; Kordan, W. Proteomic Characterization of Zinc-Binding Proteins of Canine Seminal Plasma. Reprod. Domest. Anim. 2015, 50, 1017–1021. [Google Scholar] [CrossRef] [PubMed]
- Blommaert, D.; Sergeant, N.; Delehedde, M.; Donnay, I.; Lejeune, J.P.; Franck, T.; Serteyn, D. First results about ProAKAP4 concentration in stallion semen after cryopreservation in two different freezing media. Cryobiology 2021, 102, 133–135. [Google Scholar] [CrossRef] [PubMed]
- Dewulf, Q.; Briand-Amirat, L.; Chambonnet, F.; Delehedde, M.; Sergeant, N. Dairy and Vet Sci J The Effects of Freeze-Thaw Cycles and of Storage Time on the Stability of Proakap4 Polypeptide in Raw Sperm Samples: Implications for Semen Analysis Assessment in Breeding Activities. J. Dairy Vet. Sci. 2019, 13, 1–7. [Google Scholar] [CrossRef]
- Le Couazer, D.; Delehedde, M.; Ruelle, I.; Sergeant, N.; Michaud, S.; Briand, L.; Bencharif, D. ProAKAP4 as a valuable marker to assess sperm quality in dogs. Reprod. Domest. Anim. 2019, 54, 91–92. [Google Scholar]
- Casas, I.; Sancho, S.; Ballester, J.; Briz, M.; Pinart, E.; Bussalleu, E.; Yeste, M.; Fàbrega, A.; Rodríguez-Gil, J.E.; Bonet, S. The HSP90AA1 sperm content and the prediction of the boar ejaculate freezability. Theriogenology 2010, 74, 940–950. [Google Scholar] [CrossRef]
- Volpe, S.; Galeati, G.; Bernardini, C.; Tamanini, C.; Mari, G.; Zambelli, D.; Seren, E.; Spinaci, M. Comparative immunolocalization of heat shock proteins (Hsp)-60, -70, -90 in boar, stallion, dog and cat spermatozoa. Reprod. Domest. Anim. 2008, 43, 385–392. [Google Scholar] [CrossRef]
- Whitfield, C.H.; Parkinson, T.J. Assessment of the fertilizing potential of frozen bovine spermatozoa by in vitro induction of acrosome reactions with calcium ionophore (A23187). Theriogenology 1995, 44, 413–422. [Google Scholar] [CrossRef]
- Januskauskas, A.; Johannisson, A.; Söderquist, L.; Rodriguez-Martinez, H. Assessment of sperm characteristics post-thaw and response to calcium ionophore in relation to fertility in Swedish dairy AI bulls. Theriogenology 2000, 53, 859–875. [Google Scholar] [CrossRef]
- Troup, S.A.; Lieberman, B.A.; Matson, P.L. The acrosome reaction to ionophore challenge test: Assay reproducibility, effect of sexual abstinence and results for fertile men. Hum. Reprod. 1994, 9, 2079–2083. [Google Scholar] [CrossRef] [PubMed]
- Gororo, E.; Chatiza, F.P.; Chidzwondo, F.; Makuza, S.M. Is neutral genetic diversity related to quantitative variation in semen traits in bulls? Reprod. Domest. Anim. 2021, 56, 1293–1301. [Google Scholar] [CrossRef] [PubMed]
Principle | Parameter | Assay/Method | Authors |
---|---|---|---|
Kinematic data and cluster analyses | Kinematic data | CASA | [77] [17] |
DNA integrity assays | DNA damage | Comet assay, SCSA, Toluidine blue stain | [68] [66] [72] |
Cell volumetry | Adaptability to changing osmotic milieu | Electric field multi-channel cell counting system | [20] |
Mitochondria assays | Inner mitochondrial membrane potential, Mitochondria function ATP production | Flow cytometry, ICC (JC-1 probe) Commercial assays | [63] |
Induction of acrosome reaction by Ca2+ ionophore | Acrosome reaction | Addition of Ca2+ ionophore | [22] |
Membrane components | proAKAP4 | Commercial ELISA | [78] |
Aquaporin 1, 8 | ICC | [60,61] | |
Hexose transporters | ICC | [55] | |
Seminal plasma components | Cholesterol | Chemiluminescence | [16] |
Lactate | [64] | ||
Transcriptome analysis | Identification of genes related to good/bad freezability | ||
Microsatellite markers, SNPs | Post-thaw motility, viability, fertility |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schäfer-Somi, S.; Colombo, M.; Luvoni, G.C. Canine Spermatozoa—Predictability of Cryotolerance. Animals 2022, 12, 733. https://doi.org/10.3390/ani12060733
Schäfer-Somi S, Colombo M, Luvoni GC. Canine Spermatozoa—Predictability of Cryotolerance. Animals. 2022; 12(6):733. https://doi.org/10.3390/ani12060733
Chicago/Turabian StyleSchäfer-Somi, Sabine, Martina Colombo, and Gaia Cecilia Luvoni. 2022. "Canine Spermatozoa—Predictability of Cryotolerance" Animals 12, no. 6: 733. https://doi.org/10.3390/ani12060733
APA StyleSchäfer-Somi, S., Colombo, M., & Luvoni, G. C. (2022). Canine Spermatozoa—Predictability of Cryotolerance. Animals, 12(6), 733. https://doi.org/10.3390/ani12060733