Effects of Capsicum Oleoresin Supplementation on Lactation Performance, Plasma Metabolites, and Nutrient Digestibility of Heat Stressed Dairy Cow
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Experimental Design
2.2. Sampling and Analyses
2.3. Statistical Analysis
3. Results
3.1. THI and Determination of Heat Stress
3.2. DMI
3.3. Milk Yield and Milk Composition
3.4. Blood Indicators
3.5. Diet Nutrient Digestibility
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Carabano, M.-J.; Logar, B.; Bormann, J.; Minet, J.; Vanrobays, M.-L.; Diaz, C.; Tychon, B.; Gengler, N.; Hammami, H. Modeling heat stress under different environmental conditions. J. Dairy Sci. 2016, 99, 3798–3814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- West, J.W. Effects of heat-stress on production in dairy cattle. J. Dairy Sci. 2003, 86, 2131–2144. [Google Scholar] [CrossRef]
- Nardone, A.; Ronchi, B.; Lacetera, N.; Ranieri, M.S.; Bernabucci, U. Effects of climate changes on animal production and sustainability of livestock systems. Livest. Sci. 2010, 130, 57–69. [Google Scholar] [CrossRef]
- Gernand, E.; König, S.; Kipp, C. Influence of on-farm measurements for heat stress indicators on dairy cow productivity, female fertility, and health. J. Dairy Sci. 2019, 102, 6660–6671. [Google Scholar] [CrossRef] [PubMed]
- Wheelock, J.; Rhoads, R.; VanBaale, M.; Sanders, S.; Baumgard, L. Effects of heat stress on energetic metabolism in lactating Holstein cows. J. Dairy Sci. 2010, 93, 644–655. [Google Scholar] [CrossRef] [PubMed]
- De Vries, A.; Risco, C.A. Trends and seasonality of reproductive performance in Florida and Georgia dairy herds from 1976 to 2002. J. Dairy Sci. 2005, 88, 3155–3165. [Google Scholar] [CrossRef]
- Key, N.; Sneeringer, S.; Marquardt, D. Climate change, heat stress, and US dairy production. USDA-ERS Econ. Res. Rep. 2014, 175. [Google Scholar]
- Baumgard, L.H.; Rhoads Jr, R.P. Effects of heat stress on postabsorptive metabolism and energetics. Annu. Rev. Anim. Biosci. 2013, 1, 311–337. [Google Scholar] [CrossRef] [Green Version]
- Bianca, W. Relative importance of dry-and wet-bulb temperatures in causing heat stress in cattle. Nature 1962, 195, 251–252. [Google Scholar] [CrossRef]
- Cowley, F.; Barber, D.; Houlihan, A.; Poppi, D. Immediate and residual effects of heat stress and restricted intake on milk protein and casein composition and energy metabolism. J. Dairy Sci. 2015, 98, 2356–2368. [Google Scholar] [CrossRef] [Green Version]
- Gao, S.; Guo, Z.; Baumgard, L.; Ma, L.; Bu, D. Cooling ameliorates decreased milk protein metrics in heat-stressed lactating Holstein cows. J. Dairy Sci. 2021, 104, 12139–12152. [Google Scholar] [CrossRef]
- Shiao, T.; Chen, J.; Yang, D.; Lee, S.; Lee, C.; Cheng, W. Feasibility assessment of a tunnel-ventilated, water-padded barn on alleviation of heat stress for lactating Holstein cows in a humid area. J. Dairy Sci. 2011, 94, 5393–5404. [Google Scholar] [CrossRef] [PubMed]
- Zafra, M.A.; Molina, F.; Puerto, A. Effects of perivagal administration of capsaicin on post-surgical food intake. Auton. Neurosci. 2003, 107, 37–44. [Google Scholar] [CrossRef]
- Hsu, C.-L.; Yen, G.-C. Effects of capsaicin on induction of apoptosis and inhibition of adipogenesis in 3T3-L1 cells. J. Agric. Food Chem. 2007, 55, 1730–1736. [Google Scholar] [CrossRef]
- Karadas, F.; Pirgozliev, V.; Rose, S.; Dimitrov, D.; Oduguwa, O.; Bravo, D. Dietary essential oils improve the hepatic antioxidative status of broiler chickens. Br. Poult. Sci. 2014, 55, 329–334. [Google Scholar] [CrossRef]
- Jarupan, T.; Rakangthong, C.; Bunchasak, C.; Poeikhampha, T.; Kromkhun, P. Effect of Colistin and Liquid Methionine with Capsaicin Supplementation in Diets on Growth Performance and Intestinal Morphology of Nursery Pigs. Int. J. Pharm. Med. Biol. Sci. 2018, 7, 46–51. [Google Scholar] [CrossRef]
- Biggs, M.E.; Kroscher, K.A.; Zhao, L.D.; Zhang, Z.; Wall, E.H.; Bravo, D.M.; Rhoads, R.P. Dietary supplementation of artificial sweetener and capsicum oleoresin as a strategy to mitigate the negative consequences of heat stress on pig performance. J. Anim. Sci. 2020, 98, skaa131. [Google Scholar] [CrossRef] [PubMed]
- Kholif, A.; Matloup, O.; Morsy, T.; Abdo, M.; Elella, A.A.; Anele, U.; Swanson, K. Rosemary and lemongrass herbs as phytogenic feed additives to improve efficient feed utilization, manipulate rumen fermentation and elevate milk production of Damascus goats. Livest. Sci. 2017, 204, 39–46. [Google Scholar] [CrossRef]
- Cunha, M.G.; Alba, D.F.; Leal, K.W.; Marcon, H.; Souza, C.F.; Baldissera, M.D.; Paglia, E.B.; Kempka, A.P.; Vedovatto, M.; Zotti, C.A. Inclusion of pepper extract containing capsaicin in the diet of ewes in the mid-lactation period: Effects on health, milk production, and quality. Res. Soc. Dev. 2020, 9, e46791110020. [Google Scholar] [CrossRef]
- Rodríguez-Prado, M.; Ferret, A.; Zwieten, J.; Gonzalez, L.; Bravo, D.; Calsamiglia, S. Effects of dietary addition of capsicum extract on intake, water consumption, and rumen fermentation of fattening heifers fed a high-concentrate diet. J. Anim. Sci. 2012, 90, 1879–1884. [Google Scholar] [CrossRef]
- Oh, J.; Harper, M.; Giallongo, F.; Bravo, D.; Wall, E.; Hristov, A.N. Effects of rumen-protected Capsicum oleoresin on immune responses in dairy cows intravenously challenged with lipopolysaccharide. J. Dairy Sci. 2017, 100, 1902–1913. [Google Scholar] [CrossRef]
- Oh, J.; Harper, M.; Melgar, A.; Räisänen, S.; Chen, X.; Nedelkov, K.; Fetter, M.; Ott, T.; Wall, E.; Hristov, A. Dietary supplementation with rumen-protected capsicum during the transition period improves the metabolic status of dairy cows. J. Dairy Sci. 2021, 104, 11609–11620. [Google Scholar] [CrossRef] [PubMed]
- Grazziotin, R.; Halfen, J.; Rosa, F.; Schmitt, E.; Anderson, J.; Ballard, V.; Osorio, J. Altered rumen fermentation patterns in lactating dairy cows supplemented with phytochemicals improve milk production and efficiency. J. Dairy Sci. 2020, 103, 301–312. [Google Scholar] [CrossRef] [PubMed]
- Bratz, I.N.; Dick, G.M.; Tune, J.D.; Edwards, J.M.; Neeb, Z.P.; Dincer, U.D.; Sturek, M. Impaired capsaicin-induced relaxation of coronary arteries in a porcine model of the metabolic syndrome. Am. J. Physiol.-Heart Circ. Physiol. 2008, 294, H2489–H2496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hopps, J.J.; Dunn, W.R.; Randall, M.D. Vasorelaxation to capsaicin and its effects on calcium influx in arteries. Eur. J. Pharmacol. 2012, 681, 88–93. [Google Scholar] [CrossRef]
- Council, N.R. Nutrient Requirements of Dairy Cattle; National Academies Press: Washington, DC, USA, 2001. [Google Scholar]
- AOAC International. Official Method 990.12 for Aerobic Plate Count in Foods. In Official Methods of Analysis; Association of Official Analytical Chemists: Wshington, DC, USA, 1995. [Google Scholar]
- Van Keulen, J.; Young, B. Evaluation of acid-insoluble ash as a natural marker in ruminant digestibility studies. J. Anim. Sci. 1977, 44, 282–287. [Google Scholar] [CrossRef]
- Van Soest, P.v.; Robertson, J.; Lewis, B. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Brooks, I.; Luster, G.; Easterly, D. A procedure for the rapid determination of the major cations in milk by atomic absorption spectrophotometry. Atom. Absorpt. Newsl. 1970, 9, 93–94. [Google Scholar]
- McDonald, P.; Henderson, A. Determination of water—Soluble carbohydrates in grass. J. Sci. Food Agric. 1964, 15, 395–398. [Google Scholar] [CrossRef]
- Council, N.R. A Guide to Environmental Research on Animals; National Academies: Washington, DC, USA, 1971. [Google Scholar]
- Molavian, M.; Ghorbani, G.; Rafiee, H.; Beauchemin, K. Substitution of wheat straw with sugarcane bagasse in low-forage diets fed to mid-lactation dairy cows: Milk production, digestibility, and chewing behavior. J. Dairy Sci. 2020, 103, 8034–8047. [Google Scholar] [CrossRef]
- Foley, A.E.; Hristov, A.; Melgar, A.; Ropp, J.; Etter, R.; Zaman, S.; Hunt, C.; Huber, K.; Price, W. Effect of barley and its amylopectin content on ruminal fermentation and nitrogen utilization in lactating dairy cows. J. Dairy Sci. 2006, 89, 4321–4335. [Google Scholar] [CrossRef]
- Armstrong, D. Heat stress interaction with shade and cooling. J. Dairy Sci. 1994, 77, 2044–2050. [Google Scholar] [CrossRef]
- Umphrey, J.; Moss, B.; Wilcox, C.; Van Horn, H. Interrelationships in lactating Holsteins of rectal and skin temperatures, milk yield and composition, dry matter intake, body weight, and feed efficiency in summer in Alabama. J. Dairy Sci. 2001, 84, 2680–2685. [Google Scholar] [CrossRef]
- Rhoads, M.; Rhoads, R.; VanBaale, M.; Collier, R.; Sanders, S.; Weber, W.; Crooker, B.; Baumgard, L. Effects of heat stress and plane of nutrition on lactating Holstein cows: I. Production, metabolism, and aspects of circulating somatotropin. J. Dairy Sci. 2009, 92, 1986–1997. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tao, S.; Rivas, R.M.O.; Marins, T.N.; Chen, Y.-C.; Gao, J.; Bernard, J.K. Impact of heat stress on lactational performance of dairy cows. Theriogenology 2020, 150, 437–444. [Google Scholar] [CrossRef] [PubMed]
- Inagaki, H.; Kurganov, E.; Park, Y.; Furube, E.; Miyata, S. Oral gavage of capsaicin causes TRPV1-dependent acute hypothermia and TRPV1-independent long-lasting increase of locomotor activity in the mouse. Physiol. Behav. 2019, 206, 213–224. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, A.; Osaka, T.; Namba, Y.; Inoue, S.; Lee, T.H.; Kimura, S. Capsaicin activates heat loss and heat production simultaneously and independently in rats. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 1998, 275, R92–R98. [Google Scholar] [CrossRef] [PubMed]
- Ludy, M.-J.; Mattes, R.D. The effects of hedonically acceptable red pepper doses on thermogenesis and appetite. Physiol. Behav. 2011, 102, 251–258. [Google Scholar] [CrossRef] [Green Version]
- Oh, J.; Bravo, D.; Wall, E.; Hristov, A. Rumen disappearance of capsaicin and dihydrocapsaicin in lactating dairy cows. J. Anim. Sci. 2016, 94, 801. [Google Scholar] [CrossRef]
- Castillo-Lopez, E.; Rivera-Chacon, R.; Ricci, S.; Petri, R.M.; Reisinger, N.; Zebeli, Q. Short-term screening of multiple phytogenic compounds for their potential to modulate chewing behavior, ruminal fermentation profile, and pH in cattle fed grain-rich diets. J. Dairy Sci. 2021, 104, 4271–4289. [Google Scholar] [CrossRef]
- da Silva, R.B.; Pereira, M.N.; de Araujo, R.C.; de Rezende Silva, W.; Pereira, R.A.N. A blend of essential oils improved feed efficiency and affected ruminal and systemic variables of dairy cows. Transl. Anim. Sci. 2020, 4, 182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shwartz, G.; Rhoads, M.; VanBaale, M.; Rhoads, R.; Baumgard, L. Effects of a supplemental yeast culture on heat-stressed lactating Holstein cows. J. Dairy Sci. 2009, 92, 935–942. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.; Nedelkov, K.; Oh, J.; Harper, M.; Wall, E.; Felix, T.; Hristov, A. Effect of a blend of artificial sweetener and capsicum on productive performance and blood chemistry in growing lambs. Anim. Feed Sci. Technol. 2019, 258, 114308. [Google Scholar] [CrossRef]
- Janssens, P.L.; Hursel, R.; Martens, E.A.; Westerterp-Plantenga, M.S. Acute effects of capsaicin on energy expenditure and fat oxidation in negative energy balance. PLoS ONE 2013, 8, e67786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, L.L.; Yan Liu, D.; Ma, L.Q.; Luo, Z.D.; Cao, T.B.; Zhong, J.; Yan, Z.C.; Wang, L.J.; Zhao, Z.G.; Zhu, S.J. Activation of transient receptor potential vanilloid type-1 channel prevents adipogenesis and obesity. Circ. Res. 2007, 100, 1063–1070. [Google Scholar] [CrossRef] [Green Version]
- Oh, J.; Giallongo, F.; Frederick, T.; Pate, J.; Walusimbi, S.; Elias, R.; Wall, E.; Bravo, D.; Hristov, A. Effects of dietary Capsicum oleoresin on productivity and immune responses in lactating dairy cows. J. Dairy Sci. 2015, 98, 6327–6339. [Google Scholar] [CrossRef]
- Koch, F.; Thom, U.; Albrecht, E.; Weikard, R.; Nolte, W.; Kuhla, B.; Kuehn, C. Heat stress directly impairs gut integrity and recruits distinct immune cell populations into the bovine intestine. Proc. Natl. Acad. Sci. USA 2019, 116, 10333–10338. [Google Scholar] [CrossRef] [Green Version]
- Hall, D.M.; Buettner, G.R.; Oberley, L.W.; Xu, L.; Matthes, R.D.; Gisolfi, C.V. Mechanisms of circulatory and intestinal barrier dysfunction during whole body hyperthermia. Am. J. Physiol.-Heart Circ. Physiol. 2001, 280, H509–H521. [Google Scholar] [CrossRef] [Green Version]
- Eslamizad, M.; Albrecht, D.; Kuhla, B. The effect of chronic, mild heat stress on metabolic changes of nutrition and adaptations in rumen papillae of lactating dairy cows. J. Dairy Sci. 2020, 103, 8601–8614. [Google Scholar] [CrossRef]
- Liu, J.H.; Xu, T.-T.; Liu, Y.-J.; Zhu, W.-Y.; Mao, S.-Y. A high-grain diet causes massive disruption of ruminal epithelial tight junctions in goats. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2013, 305, R232–R241. [Google Scholar] [CrossRef]
- Zhang, R.; Zhu, W.; Mao, S. High-concentrate feeding upregulates the expression of inflammation-related genes in the ruminal epithelium of dairy cattle. J. Anim. Sci. Biotechnol. 2016, 7, 42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orndorff, B.; Novak, C.; Pierson, F.; Caldwell, D.; McElroy, A. Comparison of prophylactic or therapeutic dietary administration of capsaicin for reduction of Salmonella in broiler chickens. Avian Dis. 2005, 49, 527–533. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Tang, H.; Zheng, Y.; Zhang, J.; Zhou, Y. Study on antimicrobial activities of ethanol extracts from different capsicum cultivars. Agric. Sci. Technol. 2012, 13, 2514. [Google Scholar]
Ingredients | Content (%) | Nutritional Level | Content (%) |
---|---|---|---|
Corn silage | 19.63 | CP | 16.79 |
Alfalfa hay | 16.80 | NDF | 31.48 |
Cottonseed, whole | 6.28 | ADF | 11.32 |
Soybean hulls, pelleted | 4.29 | EE | 8.35 |
Oat hay | 4.27 | Soluble-carbohydrate | 3.94 |
Soybean meal | 4.17 | Ash | 7.72 |
Commercial concentrate mixture 1 | 43.38 | Ca | 0.80 |
Sodium bicarbonate | 1.18 | P | 0.77 |
Experimental Week | ||||||||
---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||||
Variable | Mean | Range | Mean | Range | Mean | Range | Mean | Range |
T (°C) | 27.2 | 22.1–33.5 | 28.1 | 23.4–33.5 | 27.1 | 22.3–33.6 | 30.6 | 27.5–35.4 |
RH (%) | 78.6 | 56.5–97.5 | 81.6 | 52.6–90.8 | 78.9 | 41.2–93.0 | 81.1 | 63.3–90.5 |
THI 1 | 78.0 | 70.6–86.9 | 79.9 | 73.4–83.3 | 77.8 | 71.6–84.4 | 83.9 | 77.5–88.3 |
Parameter | Treatment 1 | p-Value 2 | |||||
---|---|---|---|---|---|---|---|
Control | 20CAP | 40CAP | 80CAP | SEM | L | Q | |
DMI, kg/d | 23.26 b | 24.43 a | 23.90 ab | 23.45 ab | 0.21 | 0.01 | 0.13 |
RT, °C | 39.99 | 39.25 | 39.84 | 39.94 | 0.19 | 0.49 | 0.03 |
Milk yield | |||||||
Milk, kg/d | 27.14 ab | 30.73 a | 29.46 ab | 28.32 b | 2.41 | 0.01 | 0.08 |
4%FCM 3, kg/d | 29.17 | 32.83 | 31.58 | 29.72 | 4.72 | 0.60 | 0.02 |
ECM 4, kg/d | 31.36 | 35.39 | 33.68 | 32.32 | 4.89 | 0.39 | 0.02 |
Milk solids concentration | |||||||
Fat, % | 4.61 ab | 4.28 ab | 4.99 a | 4.01 b | 0.66 | 0.03 | 0.18 |
Protein, % | 3.45 | 3.43 | 3.45 | 3.39 | 0.18 | 0.16 | 0.57 |
MUN, mg/dL | 10.84 b | 15.33 ab | 15.05 ab | 16.78 a | 3.13 | 0.01 | 0.25 |
Fat/Protein | 1.29 | 1.31 | 1.44 | 1.18 | 0.13 | 0.09 | 0.01 |
Milk solids yields | |||||||
Fat, kg/d | 1.24 | 1.34 | 1.37 | 1.18 | 0.21 | 0.44 | 0.02 |
Protein, kg/d | 1.24 | 1.34 | 1.37 | 1.18 | 0.12 | 0.20 | 0.47 |
Parameter | Treatment 1 | p-Value 2 | |||||
---|---|---|---|---|---|---|---|
Control | 20CAP | 40CAP | 80CAP | SEM | L | Q | |
Glu, mmol/L | 4.44 | 4.76 | 5.30 | 4.65 | 0.23 | 0.28 | 0.05 |
TG, mmol/L | 6.71 | 6.47 | 6.62 | 6.94 | 0.28 | 0.51 | 0.36 |
TC, mmol/L | 5.19 ab | 4.93 b | 5.38 a | 5.33 a | 0.08 | 0.03 | 0.26 |
β-HB, μmol/L | 8.89 | 10.47 | 10.13 | 9.99 | 0.40 | 0.11 | 0.05 |
NEFA, ng/mL | 237.38 a | 215.91 ab | 213.58 ab | 200.12 b | 7.05 | 0.01 | 0.95 |
Insulin, mU/L | 43.12 | 44.79 | 41.40 | 41.18 | 1.54 | 0.57 | 0.70 |
LPS, ng/mL | 90.82 | 79.90 | 92.36 | 91.12 | 5.10 | 0.57 | 0.38 |
IgG, μg/mL | 20.49 | 21.88 | 21.54 | 21.60 | 0.80 | 0.68 | 0.63 |
HSP-70, ng/mL | 45.44 | 42.28 | 45.97 | 46.64 | 1.68 | 0.35 | 0.29 |
Treatment 1 | p-Value 2 | ||||||
---|---|---|---|---|---|---|---|
Apparent Digestibility (%) | Control | 20CAP | 40CAP | 80CAP | SEM | L | Q |
DM | 73.76 | 74.71 | 72.39 | 76.09 | 0.03 | 0.60 | 0.50 |
OM | 75.79 | 76.49 | 74.26 | 78.03 | 0.03 | 0.61 | 0.44 |
CP | 74.51 | 76.63 | 74.66 | 76.82 | 0.03 | 0.56 | 0.98 |
NDF | 69.02 | 70.41 | 66.72 | 74.16 | 0.04 | 0.27 | 0.22 |
ADF | 61.63 | 62.42 | 58.54 | 64.40 | 0.05 | 0.75 | 0.42 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
An, Z.; Zhang, X.; Gao, S.; Zhou, D.; Riaz, U.; Abdelrahman, M.; Hua, G.; Yang, L. Effects of Capsicum Oleoresin Supplementation on Lactation Performance, Plasma Metabolites, and Nutrient Digestibility of Heat Stressed Dairy Cow. Animals 2022, 12, 797. https://doi.org/10.3390/ani12060797
An Z, Zhang X, Gao S, Zhou D, Riaz U, Abdelrahman M, Hua G, Yang L. Effects of Capsicum Oleoresin Supplementation on Lactation Performance, Plasma Metabolites, and Nutrient Digestibility of Heat Stressed Dairy Cow. Animals. 2022; 12(6):797. https://doi.org/10.3390/ani12060797
Chicago/Turabian StyleAn, Zhigao, Xinxin Zhang, Shanshan Gao, Di Zhou, Umair Riaz, Mohamed Abdelrahman, Guohua Hua, and Liguo Yang. 2022. "Effects of Capsicum Oleoresin Supplementation on Lactation Performance, Plasma Metabolites, and Nutrient Digestibility of Heat Stressed Dairy Cow" Animals 12, no. 6: 797. https://doi.org/10.3390/ani12060797
APA StyleAn, Z., Zhang, X., Gao, S., Zhou, D., Riaz, U., Abdelrahman, M., Hua, G., & Yang, L. (2022). Effects of Capsicum Oleoresin Supplementation on Lactation Performance, Plasma Metabolites, and Nutrient Digestibility of Heat Stressed Dairy Cow. Animals, 12(6), 797. https://doi.org/10.3390/ani12060797