The Second Case of Non-Mosaic Trisomy of Chromosome 26 with Homologous Fusion 26q;26q in the Horse
Abstract
:Simple Summary
Abstract
1. Introduction
2. Material and Methods
2.1. Ethics Statement
2.2. Case Description and Sampling
2.3. Cell Cultures and Chromosome Preparations
2.4. Karyotyping and Cytogenetic Analysis
2.5. Fluorescence In Situ Hybridization (FISH)
2.6. DNA Isolation, PCR Analysis and STR Genotyping
3. Results
3.1. Chromosome Analysis
3.2. STR Genotyping: Parentage and the Origin of ECA26 Trisomy
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lear, T.L.; Bailey, E. Equine clinical cytogenetics: The past and future. Cytogenet. Genome Res. 2008, 120, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Bugno-Poniewierska, M.; Raudsepp, T. Horse Clinical Cytogenetics: Recurrent Themes and Novel Findings. Animals 2021, 11, 831. [Google Scholar] [CrossRef]
- Raudsepp, T.; Chowdhary, B. Chromosome Aberrations and Fertility Disorders in Domestic Animals. Annu. Rev. Anim. Biosci. 2016, 4, 15–43. [Google Scholar] [CrossRef] [PubMed]
- Raudsepp, T.; Durkin, K.; Lear, T.L.; Das, P.J.; Avila, F.; Kachroo, P.; Chowdhary, B.P. Chowdhary. Molecular heterogeneity of XY sex reversal in horses. Anim. Genet. 2010, 41 (Suppl. 2), 41–52. [Google Scholar] [CrossRef]
- Janecka, J.E.; Davis, B.W.; Ghosh, S.; Paria, N.; Das, P.J.; Orlando, L.; Schubert, M.; Nielsen, M.K.; Stout, T.A.E.; Brashear, W.; et al. Horse Y chromosome assembly displays unique evolutionary features and putative stallion fertility genes. Nat. Commun. 2018, 9, 2945. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shilton, C.A.; Kahler, A.; Davis, B.W.; Crabtree, J.R.; Crowhurst, J.; McGladdery, A.J.; Wathes, D.C.; Raudsepp, T.; de Mestre, A.M. Whole genome analysis reveals aneuploidies in early pregnancy loss in the horse. Sci. Rep. 2020, 10, 13314. [Google Scholar] [CrossRef] [PubMed]
- Brito, L.; Sertich, P.; Durkin, K.; Chowdhary, B.; Turner, R.; Greene, L.; McDonnell, S. Autosomic 27 Trisomy in a Standardbred Colt. J. Equine Vet. Sci. 2008, 28, 431–436. [Google Scholar] [CrossRef]
- Holečková, B.; Schwarzbacherová, V.; Galdíková, M.; Koleničová, S.; Halušková, J.; Staničová, J.; Verebová, V.; Jutková, A. Chromosomal Aberrations in Cattle. Genes 2021, 12, 1330. [Google Scholar] [CrossRef]
- Iannuzzi, A.; Parma, P.; Iannuzzi, L. Chromosome Abnormalities and Fertility in Domestic Bovids: A Review. Animals 2021, 11, 802. [Google Scholar] [CrossRef]
- Donaldson, B.; Villagomez, D.A.F.; King, W.A. Classical, Molecular, and Genomic Cytogenetics of the Pig, a Clinical Perspective. Animals 2021, 11, 1257. [Google Scholar] [CrossRef]
- Szczerbal, I.; Switonski, M. Clinical Cytogenetics of the Dog: A Review. Animals 2021, 11, 947. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Liu, D.; Zhang, J.; Li, S.; Zhang, L.; Fan, J.; Luo, Y.; Qian, Y.; Huang, H.; Liu, C.; et al. A copy number variation genotyping method for aneuploidy detection in spontaneous abortion specimens. Prenat. Diagn. 2017, 37, 176–183. [Google Scholar] [CrossRef] [PubMed]
- Hassold, T.; Hunt, P. To err (meiotically) is human: The genesis of human aneuploidy. Nat. Rev. Genet. 2001, 2, 280–291. [Google Scholar] [CrossRef] [PubMed]
- Hassold, T.; Maylor-Hagen, H.; Wood, A.; Gruhn, J.; Hoffmann, E.; Broman, K.W.; Hunt, P. Failure to recombine is a common feature of human oogenesis. Am. J. Hum. Genet. 2021, 108, 16–24. [Google Scholar] [CrossRef]
- Hervé, B.; Quibel, T.; Taieb, S.; Ruiz, M.; Molina-Gomes, D.; Vialard, F. Are de novo rea(21;21) chromosomes really de novo? Clin. Case Rep. 2015, 3, 786–789. [Google Scholar] [CrossRef] [Green Version]
- Antonarakis, S.E.; Adelsberger, P.A.; Petersen, M.B.; Binkert, F.; Schinzel, A.A. Analysis of DNA polymorphisms suggests that most de novo dup(21q) chromosomes in patients with Down syndrome are isochromosomes and not translocations. Am. J. Hum. Genet. 1990, 47, 968–972. [Google Scholar]
- Bandyopadhyay, R.; McCaskill, C.; Knox-Du Bois, C.; Zhou, Y.; Berend, S.A.; Bijlsma, E.; Shaffer, L.G. Mosaicism in a patient with Down syndrome reveals post-fertilization formation of a Robertsonian translocation and isochromosome. Am. J. Med. Genet. A 2003, 116, 159–163. [Google Scholar] [CrossRef]
- Shaffer, L.G.; Lupski, J.R. Molecular mechanisms for constitutional chromosomal rearrangements in humans. Annu. Rev. Genet. 2000, 34, 297–329. [Google Scholar] [CrossRef] [Green Version]
- Israni, A.; Mandal, A. De Novo Robertsonian Translocation t(21; 21) in a Child with Down Syndrome. J. Nepal Paediatr. Soc. 2017, 37, 92–94. [Google Scholar] [CrossRef]
- Bowling, A.T.; Millon, L.; Hughes, J.P. An update of chromosomal abnormalities in mares. J. Reprod. Fertil. Suppl. 1987, 35, 149–155. [Google Scholar]
- Bowling, A.T.; Millon, L.V. Two autosomal trisomies in the horse: 64,XX, −26, +t(26q26q) and 65,XX, +30. Genome 1990, 33, 679–682. [Google Scholar] [CrossRef] [PubMed]
- Raudsepp, T.; Chowdhary, B.P. FISH for mapping single copy genes. Methods Mol. Biol. 2008, 422, 31–49. [Google Scholar] [PubMed]
- Seabright, M. A rapid banding technique for human chromosomes. Lancet 1971, 2, 971–972. [Google Scholar] [CrossRef]
- Bowling, A.T.; Breen, M.; Chowdhary, B.P.; Hirota, K.; Lear, T.; Millon, L.V.; Ponce de Leon, F.A.; Raudsepp, T.; Stranzinger, G.; ISCNH. International system for cytogenetic nomenclature of the domestic horse. Report of the Third International Committee for the Standardization of the domestic horse karyotype, Davis, CA, USA, 1996. Chromosome Res. 1997, 5, 433–443. [Google Scholar] [CrossRef] [PubMed]
- ISCNH. An International System for Human Cytogenomic Nomenclature; McGowan-Jordan, J., Simons, A., Schmid, M., Eds.; S. Karger: Basel, Switzerland, 2020; p. 163. [Google Scholar]
- Raudsepp, T.; Gustafson-Seabury, A.; Durkin, K.; Wagner, M.L.; Goh, G.; Seabury, C.M.; Brinkmeyer-Langford, C.; Lee, E.J.; Agarwala, R.; Stallknecht-Rice, E.; et al. A 4103 marker integrated physical and comparative map of the horse genome. Cytogenet. Genome Res. 2008, 122, 28–36. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, S.; Carden, C.F.; Juras, R.; Mendoza, M.N.; Jevit, M.J.; Castaneda, C.; Phelps, O.; Dube, J.; Kelley, D.E.; Varner, D.D.; et al. Two Novel Cases of Autosomal Translocations in the Horse: Warmblood Family Segregating t(4;30) and a Cloned Arabian with a de novo t(12;25). Cytogenet. Genome Res. 2020, 160, 688–697. [Google Scholar] [CrossRef]
- Khanshour, A.; Conant, E.; Juras, R.; Cothran, E.G. Microsatellite analysis of genetic diversity and population structure of Arabian horse populations. J. Hered. 2013, 104, 386–398. [Google Scholar] [CrossRef] [Green Version]
- Juras, R.; Cothran, E.G.; Klimas, R. Genetic analysis of three Lithuanian native horse breeds. Acta Agric. Scand. Sect. A Anim. Sci. 2003, 53, 180–185. [Google Scholar] [CrossRef]
- Schuelke, M. An economic method for the fluorescent labeling of PCR fragments. Nat. Biotechnol. 2000, 18, 233–234. [Google Scholar] [CrossRef]
- Tozaki, T.; Penedo, M.C.; Oliveira, R.P.; Katz, J.P.; Millon, L.V.; Ward, T.; Pettigrew, D.C.; Brault, L.S.; Tomita, M.; Kurosawa, M.; et al. Isolation, characterization and chromosome assignment of 341 newly isolated equine TKY microsatellite markers. Anim. Genet. 2004, 35, 487–496. [Google Scholar] [CrossRef]
- Shaffer, L.G.; Jackson-Cook, C.K.; Meyer, J.M.; Brown, J.A.; Spence, J.E. A molecular genetic approach to the identification of isochromosomes of chromosome 21. Hum. Genet. 1991, 86, 375–382. [Google Scholar] [CrossRef] [PubMed]
- Harel, T.; Pehlivan, D.; Caskey, C.T.; Lupski, J.R. Chapter 1—Mendelian, Non-Mendelian, Multigenic Inheritance, and Epigenetics. In Rosenberg’s Molecular and Genetic Basis of Neurological and Psychiatric Disease, 5th ed.; Rosenberg, R.N., Pascual, J.M., Eds.; Academic Press: Boston, MA, USA, 2015; pp. 3–27. [Google Scholar]
- Trifonov, V.A.; Stanyon, R.; Nesterenko, A.I.; Fu, B.; Perelman, P.L.; O’Brien, P.C.; Stone, G.; Rubtsova, N.V.; Houck, M.L.; Robinson, T.J.; et al. Multidirectional cross-species painting illuminates the history of karyotypic evolution in Perissodactyla. Chromosome Res. 2008, 16, 89–107. [Google Scholar] [CrossRef]
- Shaffer, L.G.; McCaskill, C.; Haller, V.; Brown, J.A.; Jackson-Cook, C.K. Further characterization of 19 cases of rea(21q21q) and delineation as isochromosomes or Robertsonian translocations in Down syndrome. Am. J. Med. Genet. 1993, 47, 1218–1222. [Google Scholar] [CrossRef] [PubMed]
- Shaffer, L.G.; McCaskill, C.; Han, J.Y.; Choo, K.H.; Cutillo, D.M.; Donnenfeld, A.E.; Weiss, L.; Van Dyke, D.L. Molecular characterization of de novo secondary trisomy 13. Am. J. Hum. Genet. 1994, 55, 968–974. [Google Scholar]
- Kalbfleisch, T.S.; Rice, E.S.; DePriest, M.S., Jr.; Walenz, B.P.; Hestand, M.S.; Vermeesch, J.R.; O′Connell, B.L.; Fiddes, I.T.; Vershinina, A.O.; Saremi, N.F.; et al. Improved reference genome for the domestic horse increases assembly contiguity and composition. Commun. Biol. 2018, 1, 197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, F.; Fu, B.; O’Brien, P.C.M.; Nie, W.; Ryder, O.A.; Ferguson-Smith, M.A. Refined genome-wide comparative map of the domestic horse, donkey and human based on cross-species chromosome painting: Insight into the occasional fertility of mules. Chromosome Res. 2004, 12, 65–76. [Google Scholar] [CrossRef] [PubMed]
- Burns, E.N.; Finno, C.J. Equine degenerative myeloencephalopathy: Prevalence, impact, and management. Vet. Med.-Res. Rep. 2018, 9, 63–67. [Google Scholar] [CrossRef] [Green Version]
- Parizot, E.; Dard, R.; Janel, N.; Vialard, F. Down syndrome and infertility: What support should we provide? J. Assist. Reprod. Genet. 2019, 36, 1063–1067. [Google Scholar] [CrossRef]
- Bull, M.J. Down Syndrome. N. Engl. J. Med. 2020, 382, 2344–2352. [Google Scholar] [CrossRef]
CHORI-241 BAC Clone | BAC Location in EquCab3 | Cytogenetic Location | Representative Genes |
---|---|---|---|
9N4 | chr26:12,142,705–12,318,937 | 26q14 | ROBO2 |
91H11 | chr26:42,857,954–43,065,765 | 26q17 | S100B |
STR | Forward Primer: 5′-3′ | Reverse Primer: 5′-3′ | NCBI Accession or Reference |
---|---|---|---|
A-17 ** | GTGGAGAGATAAAAGAAGATCC | GGCCACAAGGAATGAACACAC | X94446 |
COR071 ** | CTTGGGCTACAACAGGGAATA | CTGCTATTTCAAACACTTGGA | AF142608 |
LEX044 * | TTGGGCTTCTTATCTTGTTAC | GGCCATATGATTTGCTTT | AF075646 |
NVHEQ070 ** | GCTGGTCAAGTCACACTGTG | AACCTCACCCCAAGTTGTAT | AJ245765 |
TKY1155 * | AGCTCAGGGCGAATCTTACA | AAACCTGGGCATCTTCCTTT | AB104373 |
TKY275 * | TCTCAGTGGATATAACTAGC | GAGATGGATACAGATAGAAG | AB033926 |
TKY3385 * | TGACACCACCAGGGAAAAGT | CATGTTCCCTCACCTCTGGT | AB217328 |
TKY414 * | CCTGAAATCCGCTTCCATTA | ACCGGGTTATTTTGACATGG | AB103632 |
TKY488 * | TGTGTTTGTGTGCTATATACATGCTT | TGACATGAAGGCTGGACTTG | AB103706 |
TKY502 * | ACGGAAAACGTATGCCACTC | AGTGGGGACTTTGTTGAGGA | AB103720 |
TKY523 * | TGCACACCCATTCTAGCTCA | GTGGCTCACTCCTCGCTTAC | AB103741 |
TKY664 * | TACTGCCCTTGGCTGACTCT | CAGAACATGAACCCCTCCAG | AB103882 |
TKY766 * | ACTTTGCACCTGTGCAAAAAG | CTGATTCTTGGCATCTGGAAA | AB103984 |
TKY778 * | CTTAGATGGAGTCCTCCTAC | GGGTTCCTTTTACCTTCTCC | AB103996 |
TKY846 * | TCAAACCATCTGCTCAGAAG | AAATCCCAATCTGAGGGTAG | AB104064 |
TKY934 * | TTCCAGTGGTTAGGATGTAG | TTGAGCATAGTGATAGCATATG | AB104152 |
UM005 * | CCCTACCTGAAATGAGAATTG | GGCAAAAGATCAGGCCAT | AF195127 |
UMNe127 * | TTATAAATCACCACTGTTTACACAC | TCTTGAAGCAGGATGGGC | AY391298 |
UMNe153 * | GTGCTGGAGTGAGCTGACC | ATCCAAATCGGAGACCATATG | AF536265 |
UMNe188 * | GTTAACAAGGATTGTTTTGGGC | TGCGTTTCTGCTTCTCCC | AY391317 |
UMNe434 * | TCTGCTGTTGGCCATCATC | ACCTGCCTGCAAAACCTTC | [26] |
UMNe542 * | TGAAAGAGACCATACACGATGC | CACGACTTAGAGACGTGTGAGC | AY735263 |
UMNe559 * | CTTCCCATTCTCTATCACCCC | CTGTTCTCCCAATTCTTTCTGG | [26] |
UMNe588 * | CGCAGGTAGACTGTGTTAGGC | CAAGACTGGAAATTTTCAAGGG | [26] |
ECA26 Genomic Location, EquCab3 | ECA26 STR | H1063: Alleles | H1066: Alleles |
---|---|---|---|
5,190,320–5,190,461 | UMNe588 | 156 | 156 |
6,518,546–6,518,920 | TKY934 | 158/160 | 158/160 |
7,006,025–7,006,186 | UMNe559 | 173/175/177 | 173/175 |
8,845,111–8,845,452 | TKY846 | 201/203 | 201 |
11,835,911–11,836,148 | TKY766 | 104/110 | 110 |
19,109,482–19,110,003 | TKY502 | 220 | 220 |
19,136,880–19,137,134 | UMNe153 | 142/162 | 142/162 |
19,767,544–19,767,787 | COR071 | 202/210 | 202/210 |
20,212,459–20,212,887 | TKY275 | 142/158 | 142/158 |
20,367,221–20,367,742 | LEX044 | 204/218 | 204/218 |
21,795,871–21,795,973 | A-17 | 107/109 | 107/109 |
23,979,076–23,979,467 | TKY778 | 226 | 226 |
24,637,783–24,638,172 | TKY488 | 107/109 | 107/109 |
26,379,056–26,379,415 | UMNe127 | 148 | 148 |
26,766,980–26,767,353 | UM005 | 230/232/234 | 232/234 |
31,041,466–31,041,914 | TKY1155 | 180/188/192 | 180/188 |
31,486,888–31,487,451 | NVHEQ70 | 198/202/204 | 198/202 |
32,006,987–32,007,419 | UMNe188 | 142/144 | 142/144 |
34,426,999–34,427,199 | TKY3385 | 204 | 204 |
36,846,956–36,847,298 | TKY664 | 271 | 271 |
37,488,847–37,489,215 | UMNe542 | 270/276 | 270/276 |
38,794,949–38,795,212 | UMNe434 | 284/286/288 | 284/288 |
39,259,334–39,259,638 | TKY414 | 171/173 | 171/173 |
39,552,914–39,553,412 | TKY523 | 162 | 162 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghosh, S.; Kjöllerström, J.; Metcalfe, L.; Reed, S.; Juras, R.; Raudsepp, T. The Second Case of Non-Mosaic Trisomy of Chromosome 26 with Homologous Fusion 26q;26q in the Horse. Animals 2022, 12, 803. https://doi.org/10.3390/ani12070803
Ghosh S, Kjöllerström J, Metcalfe L, Reed S, Juras R, Raudsepp T. The Second Case of Non-Mosaic Trisomy of Chromosome 26 with Homologous Fusion 26q;26q in the Horse. Animals. 2022; 12(7):803. https://doi.org/10.3390/ani12070803
Chicago/Turabian StyleGhosh, Sharmila, Josefina Kjöllerström, Laurie Metcalfe, Stephen Reed, Rytis Juras, and Terje Raudsepp. 2022. "The Second Case of Non-Mosaic Trisomy of Chromosome 26 with Homologous Fusion 26q;26q in the Horse" Animals 12, no. 7: 803. https://doi.org/10.3390/ani12070803
APA StyleGhosh, S., Kjöllerström, J., Metcalfe, L., Reed, S., Juras, R., & Raudsepp, T. (2022). The Second Case of Non-Mosaic Trisomy of Chromosome 26 with Homologous Fusion 26q;26q in the Horse. Animals, 12(7), 803. https://doi.org/10.3390/ani12070803