Adaptive Vertical Positioning as Anti-Predator Behavior: The Case of a Prey Fish Cohabiting with Multiple Predatory Fish within Temperate Marine Algal Forests
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Model Species and Habitats
2.2. Fish Collection and Housing
2.3. Experimental Design and Procedures
2.4. Survival and Behavioral Data Collection
2.5. Statistical Analysis
2.5.1. Effects of Habitat Structure on Lethal Interactions
2.5.2. Statistical Unit and General Method Used for Comparing Averaged Behavior between Habitats
2.5.3. Effects of Predator–Prey Co-Occurrence on Their Respective Habitat Selection
2.5.4. Effects of Habitat Structure on Averaged Behavioral Interactions
3. Results
3.1. Effects of Habitat Structure on Lethal Interactions
3.2. Effects of Predator–Prey Co-Occurrence on Their Respective Habitat Selection
3.3. Effects of Habitat Structure on Averaged Behavioral Interactions
3.3.1. Activities
3.3.2. Vertical Distribution
3.3.3. Predator–Prey Distances
3.4. Within-Habitat Description of Short-Term Behavioral Interactions
4. Discussion
4.1. The Paramount Effect of Habitat Structure on Fish Habitat Selection
4.2. Comber–Wrasse Within-Habitat Behavioral Interactions
4.3. Scorpionfish–Wrasse Within-Habitat Behavioral Interactions
4.4. The Apparent Low Foraging Efficiency of Scorpionfish
4.5. Vertical Movements in Structured Habitats in the Face of Multiple Predators
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tews, J.; Brose, U.; Grimm, V.; Tielbörger, K.; Wichmann, M.C.; Schwager, M.; Jeltsch, F. Animal Species Diversity Driven by Habitat Heterogeneity/Diversity: The Importance of Keystone Structures. J. Biogeogr. 2004, 31, 79–92. [Google Scholar] [CrossRef] [Green Version]
- Gorman, O.T.; Karr, J.R. Habitat Structure and Stream Fish Communities. Ecology 1978, 59, 507–515. [Google Scholar] [CrossRef]
- Alvarez-Filip, L.; Gill, J.A.; Dulvy, N.K. Complex Reef Architecture Supports More Small-Bodied Fishes and Longer Food Chains on Caribbean Reefs. Ecosphere 2011, 2, art118. [Google Scholar] [CrossRef]
- Bostrom, C.; Jackson, E.L.; Simenstad, C.A. Seagrass Landscapes and Their Effects on Associated Fauna: A Review. Estuar. Coast. Shelf Sci. 2006, 68, 383–403. [Google Scholar] [CrossRef]
- Guidetti, P. Differences Among Fish Assemblages Associated with Nearshore Posidonia Oceanica Seagrass Beds, Rocky–Algal Reefs and Unvegetated Sand Habitats in the Adriatic Sea. Estuar. Coast. Shelf Sci. 2000, 50, 515–529. [Google Scholar] [CrossRef]
- Horinouchi, M.; Tongnunui, P.; Nanjyo, K.; Nakamura, Y.; Sano, M.; Ogawa, H. Differences in Fish Assemblage Structures between Fragmented and Continuous Seagrass Beds in Trang, Southern Thailand. Fish. Sci. 2009, 75, 1409–1416. [Google Scholar] [CrossRef]
- Schultz, S.; Kruschel, C. Frequency and Success of Ambush and Chase Predation in Fish Assemblages Associated with Seagrass and Bare Sediment in an Adriatic Lagoon. Hydrobiologia 2010, 649, 25–37. [Google Scholar] [CrossRef]
- Schultz, S.T.; Kruschel, C.; Bakran-Petricioli, T. Influence of Seagrass Meadows on Predator-Prey Habitat Segregation in an Adriatic Lagoon. Mar. Ecol.-Prog. Ser. 2009, 374, 85–99. [Google Scholar] [CrossRef]
- Laegdsgaard, P.; Johnson, C. Why Do Juvenile Fish Utilise Mangrove Habitats? J. Exp. Mar. Biol. Ecol. 2001, 257, 229–253. [Google Scholar] [CrossRef] [Green Version]
- Manson, F.J.; Loneragan, N.R.; Skilleter, G.A.; Phinn, S.R. An Evaluation of the Evidence for Linkages between Mangroves and Fisheries. In Oceanography and Marine Biology; Oceanography and Marine Biology—An Annual Review; CRC Press: Boca Raton, FL, USA, 2005; pp. 483–513. ISBN 978-0-8493-3597-6. [Google Scholar]
- Nanjo, K.; Nakamura, Y.; Horinouchi, M.; Kohno, H.; Sano, M. Predation Risks for Juvenile Fishes in a Mangrove Estuary: A Comparison of Vegetated and Unvegetated Microhabitats by Tethering Experiments. J. Exp. Mar. Biol. Ecol. 2011, 405, 53–58. [Google Scholar] [CrossRef]
- Anderson, M.J.; Millar, R.B. Spatial Variation and Effects of Habitat on Temperate Reef Fish Assemblages in Northeastern New Zealand. J. Exp. Mar. Biol. Ecol. 2004, 305, 191–221. [Google Scholar] [CrossRef]
- Jones, G.P. Population Ecology of the Temperate Reef Fish Pseudolabrus Celidotus Bloch & Schneider (Pisces: Labridae). I. Factors Influencing Recruitment. J. Exp. Mar. Biol. Ecol. 1984, 75, 257–276. [Google Scholar] [CrossRef]
- Cheminée, A.; Sala, E.; Pastor, J.; Bodilis, P.; Thiriet, P.; Mangialajo, L.; Cottalorda, J.-M.; Francour, P. Nursery Value of Cystoseira Forests for Mediterranean Rocky Reef Fishes. J. Exp. Mar. Biol. Ecol. 2013, 442, 70–79. [Google Scholar]
- Bonaca, M.O.; Lipej, L. Factors Affecting Habitat Occupancy of Fish Assemblage in the Gulf of Trieste (Northern Adriatic Sea). Mar. Ecol. 2005, 26, 42–53. [Google Scholar] [CrossRef]
- Sala, E.; Ballesteros, E.; Dendrinos, P.; Di Franco, A.; Ferretti, F.; Foley, D.; Fraschetti, S.; Friedlander, A.; Garrabou, J.; Güçlüsoy, H.; et al. The Structure of Mediterranean Rocky Reef Ecosystems across Environmental and Human Gradients, and Conservation Implications. PLoS ONE 2012, 7, e32742. [Google Scholar] [CrossRef] [Green Version]
- Thiriet, P.D.; Di Franco, A.; Cheminée, A.; Guidetti, P.; Bianchimani, O.; Basthard-Bogain, S.; Cottalorda, J.-M.; Arceo, H.; Moranta, J.; Lejeune, P. Abundance and Diversity of Crypto-and Necto-Benthic Coastal Fish Are Higher in Marine Forests than in Structurally Less Complex Macroalgal Assemblages. PLoS ONE 2016, 11, e0164121. [Google Scholar]
- Cheminée, A.; Pastor, J.; Bianchimani, O.; Thiriet, P.; Sala, E.; Cottalorda, J.-M.; Dominici, J.-M.; Lejeune, P.; Francour, P. Juvenile Fish Assemblages in Temperate Rocky Reefs Are Shaped by the Presence of Macro-Algae Canopy and Its Three-Dimensional Structure. Sci. Rep. 2017, 7, 14638. [Google Scholar]
- Gotceitas, V.; Colgan, P. Predator Foraging Success and Habitat Complexity: Quantitative Test of the Threshold Hypothesis. Oecologia 1989, 80, 158–166. [Google Scholar] [CrossRef] [PubMed]
- Hindell, J.S.; Jenkins, G.P.; Keough, M.J. Evaluating the Impact of Predation by Fish on the Assemblage Structure of Fishes Associated with Seagrass (Heterozostera Tasmanica) (Martens Ex Ascherson) Den Hartog, and Unvegetated Sand Habitats. J. Exp. Mar. Biol. Ecol. 2000, 255, 153–174. [Google Scholar] [PubMed]
- Scharf, F.S.; Manderson, J.P.; Fabrizio, M.C. The Effects of Seafloor Habitat Complexity on Survival of Juvenile Fishes: Species-Specific Interactions with Structural Refuge. J. Exp. Mar. Biol. Ecol. 2006, 335, 167–176. [Google Scholar] [CrossRef]
- Nanjo, K.; Kohno, H.; Nakamura, Y.; Horinouchi, M.; Sano, M. Effects of Mangrove Structure on Fish Distribution Patterns and Predation Risks. J. Exp. Mar. Biol. Ecol. 2014, 461, 216–225. [Google Scholar] [CrossRef]
- Thiriet, P.; Cheminée, A.; Mangialajo, L.; Francour, P. How 3D Complexity of Macrophyte-Formed Habitats Affect the Processes Structuring Fish Assemblages within Coastal Temperate Seascapes? In Underwater Seascapes; Springer: New York, NY, USA, 2014; pp. 185–199. [Google Scholar]
- Sheaves, M. Are There Really Few Piscivorous Fishes in Shallow Estuarine Habitats? Mar. Ecol. Prog. Ser. 2001, 222, 279–290. [Google Scholar] [CrossRef]
- Eklov, P.; Persson, L. The Response of Prey to the Risk of Predation: Proximate Cues for Refuging Juvenile Fish. Anim. Behav. 1996, 51, 105–115. [Google Scholar] [CrossRef] [Green Version]
- Martin, C.W.; Fodrie, F.J.; Heck, K.L.; Mattila, J. Differential Habitat Use and Antipredator Response of Juvenile Roach (Rutilus Rutilus) to Olfactory and Visual Cues from Multiple Predators. Oecologia 2010, 162, 893–902. [Google Scholar] [CrossRef]
- Savino, J.; Stein, R. Behavior of Fish Predators and Their Prey: Habitat Choice between Open Water and Dense Vegetation. Environ. Biol. Fishes 1989, 24, 287–293. [Google Scholar] [CrossRef] [Green Version]
- Smith, T.M.; Hindell, J.S.; Jenkins, G.P.; Connolly, R.M.; Keough, M.J. Edge Effects in Patchy Seagrass Landscapes: The Role of Predation in Determining Fish Distribution. J. Exp. Mar. Biol. Ecol. 1989, 399, 8–16. [Google Scholar] [CrossRef]
- Laurel, B.J.; Brown, J.A. Influence of Cruising and Ambush Predators on 3-Dimensional Habitat Use in Age 0 Juvenile Atlantic Cod Gadus Morhua. J. Exp. Mar. Biol. Ecol. 2006, 329, 34–46. [Google Scholar] [CrossRef]
- McCauley, D.; Micheli, F.; Young, H.; Tittensor, D.; Brumbaugh, D.; Madin, E.P.; Holmes, K.; Smith, J.; Lotze, H.; DeSalles, P.; et al. Acute Effects of Removing Large Fish from a Near-Pristine Coral Reef. Mar. Biol. 2010, 157, 2739–2750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gianni, F.; Bartolini, F.; Airoldi, L.; Ballesteros, E.; Francour, P.; Guidetti, P.; Meinesz, A.; Thibaut, T.; Mangialajo, L. Conservation and Restoration of Marine Forests in the Mediterranean Sea and the Potential Role of Marine Protected Areas. Adv. Oceanogr. Limnol. 2013, 4, 83–101. [Google Scholar] [CrossRef]
- Stergiou, K.I.; Karpouzi, V.S. Feeding Habits and Trophic Levels of Mediterranean Fish. Rev. Fish Biol. Fish. 2002, 11, 217–254. [Google Scholar] [CrossRef]
- Thiriet, P. Comparisons of Fish Assemblage Structure and Underlying Ecologigal Processes, between Cystoseira Forests and Less Structurally Complex Habitats, in North-Western Mediterranean Subtidal Rocky Reefs. Ph.D. Thesis, University Nice Sophia Antipolis, Nice, France, 2014. [Google Scholar]
- Clarisse, S. Apport de Différentes Techniques Cartographiques à La Connaissance de l’autoécologie de Cystoseira Balearica Sauvageau, Macroalgue Marine Dominante Dans La Région de Calvi (Corse); Les Éditions de Lejeumia: Belgium, Bruxelles, 1984. [Google Scholar]
- D’Anna, G.; Giacalone, V.M.; Fernandez, T.V.; Vaccaro, A.M.; Pipitone, C.; Mirto, S.; Mazzola, S.; Badalamenti, F. Effects of Predator and Shelter Conditioning on Hatchery-Reared White Seabream Diplodus sargus (L., 1758) Released at Sea. Aquaculture 2012, 356, 91–97. [Google Scholar] [CrossRef]
- Fay, M.P.; Shaw, P.A. Exact and Asymptotic Weighted Logrank Tests for Interval Censored Data: The interval R Package. J. Stat. Softw. 2010, 36, 1–34. [Google Scholar]
- R Development Core Team R. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013. [Google Scholar]
- Anderson, M.J.; Gorley, R.N.; Clarke, K.R. PERMANOVA+ for PRIMER: Guide to Software and Statistical Methods; PRIMER-E: Plymouth, UK, 2008. [Google Scholar]
- Jacobs, J. Quantitative Measurement of Food Selection: A Modification of the Forage Ratio and Ivlev’s Electivity Index. Oecologia 1974, 14, 413–417. [Google Scholar] [CrossRef] [PubMed]
- Lima, S.L. Strong Preferences for Apparently Dangerous Habitats—A Consequence of Differential Escape from Predators. Oikos 1992, 64, 597–600. [Google Scholar] [CrossRef]
- Gozler, A.M.; Kopuz, U.; Agirbas, E. Seasonal Changes of Invertebrate Fauna Associated with Cystoseira Barbata Facies of Southeastern Black Sea Coast. Afr. J. Biotechnol. 2010, 9, 8852–8859. [Google Scholar]
- Lannin, R.; Hovel, K. Variable Prey Density Modifies the Effects of Seagrass Habitat Structure on Predator−prey Interactions. Mar. Ecol. Prog. Ser. 2011, 442, 59–70. [Google Scholar] [CrossRef] [Green Version]
- Horinouchi, M.; Mizuno, N.; Jo, Y.; Fujita, M.; Suzuki, Y.; Aranishi, F.; Sano, M. Habitat Preference Rather than Predation Risk Determines the Distribution Patterns of Filefish Rudarius Ercodes in and around Seagrass Habitats. Mar. Ecol. Prog. Ser. 2013, 488, 255–266. [Google Scholar] [CrossRef]
- Tait, K.J.; Hovel, K.A. Do Predation Risk and Food Availability Modify Prey and Mesopredator Microhabitat Selection in Eelgrass (Zostera Marina) Habitat? J. Exp. Mar. Biol. Ecol. 2012, 426, 60–67. [Google Scholar] [CrossRef]
- Bell, J.D.; Westoby, M. Abundance of Macrofauna in Dense Seagrass Is Due to Habitat Preference, Not Predation. Oecologia 1986, 68, 205–209. [Google Scholar] [CrossRef]
- Dahlgren, C.P.; Eggleston, D.B. Ecological Processes Underlying Ontogenetic Habitat Shifts in a Coral Reef Fish. Ecology 2000, 81, 2227–2240. [Google Scholar]
- Morris, D.W. Toward an Ecological Synthesis: A Case for Habitat Selection. Oecologia 2003, 136, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Alos, J.; March, D.; Palmer, M.; Grau, A.; Morales-Nin, B. Spatial and Temporal Patterns in Serranus cabrilla Habitat Use in the NW Mediterranean Revealed by Acoustic Telemetry. Mar. Ecol. Prog. Ser. 2011, 427, 173–186. [Google Scholar] [CrossRef] [Green Version]
- Viladiu, C.; Vandewalle, P.; Osse, J.W.M.; Casinos, A. Suction Feeding Strategies of Two Species of Mediterranean Serranidae (Serranus cabrilla and Serranus scriba). Neth. J. Zool. 1999, 49, 81–95. [Google Scholar] [CrossRef] [Green Version]
- Horinouchi, M. Review of the Effects of Within-Patch Scale Structural Complexity on Seagrass Fishes. J. Exp. Mar. Biol. Ecol. 2007, 350, 111–129. [Google Scholar] [CrossRef]
- Main, K.L. Predator Avoidance in Seagrass Meadows—Prey Behavior, Microhabitat Selection, and Cryptic Coloration. Ecology 1987, 68, 170–180. [Google Scholar] [CrossRef]
- McCormick, M.I.; Lonnstedt, O.M. Degrading Habitats and the Effect of Topographic Complexity on Risk Assessment. Ecol. Evol. 2013, 3, 4221–4229. [Google Scholar] [CrossRef]
- Huey, R.B.; Pianka, E.R. Ecological Consequences of Foraging Mode. Ecology 1981, 62, 991–999. [Google Scholar] [CrossRef] [Green Version]
- Harmelin-Vivien, M.L.; Kaim-Malka, R.A.; Ledoyer, M.; Jacob-Abraham, S.S. Food Partitioning among Scorpaenid Fishes in Mediterranean Seagrass Beds. J. Fish Biol. 1989, 34, 715–734. [Google Scholar] [CrossRef]
- Bascinar, N.S.; Saglam, H. Feeding Habits of Black Scorpionfish Scorpaena porcus, in the South-Eastern Black Sea. Turk. J. Fish. Aquat. Sci. 2009, 9, 99–103. [Google Scholar]
- Demirhan, S.A.; Can, M.F. Age, Growth and Food Composition of Scorpaena porcus (Linnaeus, 1758) in the Southeastern Black Sea. J. Appl. Ichthyol. 2009, 25, 215–218. [Google Scholar] [CrossRef]
- Horinouchi, M.; Mizuno, N.; Jo, Y.; Fujita, M.; Sano, M.; Suzuki, Y. Seagrass Habitat Complexity Does Not Always Decrease Foraging Efficiencies of Piscivorous Fishes. Mar. Ecol.-Prog. Ser. 2009, 377, 43–49. [Google Scholar] [CrossRef] [Green Version]
- Rilov, G.; Figueira, W.F.; Lyman, S.J.; Crowder, L.B. Complex Habitats May Not Always Benefit Prey: Linking Visual Field with Reef Fish Behavior and Distribution. Mar. Ecol. Prog. Ser. 2007, 329, 225–238. [Google Scholar] [CrossRef]
- Savino, J.F.; Stein, R.A. Behavioral interactions between fish predators and their prey—Effects of plant-density. Anim. Behav. 1989, 37, 311–321. [Google Scholar] [CrossRef]
- Dill, L. Distance-to-Cover and the Escape Decisions of an African Cichlid Fish, Melanochromis Chipokae. Environ. Biol. Fishes 1990, 27, 147–152. [Google Scholar] [CrossRef]
- Makin, D.F.; Payne, H.F.P.; Kerley, G.I.H.; Shrader, A.M. Foraging in a 3-D World: How Does Predation Risk Affect Space Use of Vervet Monkeys? J. Mammal. 2012, 93, 422–428. [Google Scholar] [CrossRef] [Green Version]
- Husson, F.; Josse, J.; Pagès, J. Principal Component Methods-Hierarchical Clustering-Partitional Clustering: Why Would We Need to Choose for Visualizing Data? 2010. Available online: http://factominer.free.fr/more/HCPC_husson_josse.pdf (accessed on 29 November 2021).
- Lê, S.; Josse, J.; Husson, F. FactoMineR: An R Package for Multivariate Analysis. J. Stat. Softw. 2008, 25, 1–18. [Google Scholar]
Wrasse | Scorpionfish | Comber | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Source | df | SS | F | df | SS | F | df | SS | F | |||
Pr | 2 | 0.68 | 1.38 | ns | 1 | 0.28 | 0.5 | ns | 1 | 0.13 | 0.86 | ns |
Ha | 2 | 1.36 | 2.75 | ° | 2 | 4.77 | 4.32 | * | 2 | 3.18 | 10.25 | *** |
PrxHa | 4 | 3.17 | 3.21 | * | 2 | 0.89 | 0.81 | ns | 2 | 0.09 | 0.3 | ns |
Res | 34 | 8.4 | 18 | 9.94 | 25 | 3.87 | ||||||
Total | 42 | 14.65 | 23 | 15.87 | 30 | 7.72 |
Wrasse | Scorpionfish | Comber | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Source | df | SS | F | df | SS | F | df | SS | F | |||
Pr | 2 | 6.03 | 129.74 | *** | 1 | 0.02 | 4.66 | * | 1 | 0.34 | 111.23 | *** |
Ha | 2 | 0.05 | 1.13 | ns | 2 | 0.03 | 3.96 | * | 2 | 0.01 | 1.26 | ns |
PrxHa | 3 | 0.03 | 0.37 | ns | 2 | 0.02 | 2.67 | ns | 1 | 0.00 | 0.01 | ns |
Res | 28 | 0.65 | 18 | 0.06 | 19 | 0.06 | ||||||
Total | 35 | 7.87 | 23 | 0.12 | 23 | 0.47 | ||||||
Pr: W = SW ≠ CW | Ha: B = S; S = F; B ≠ F |
Mean Vertical Distribution | Variation in Vertical Distribution | |||||||
---|---|---|---|---|---|---|---|---|
Source | df | SS | F | SS | F | |||
Wrasse | Pr | 2 | 283.59 | 57.70 | *** | 22.56 | 9.44 | *** |
Ha | 2 | 297.46 | 60.52 | *** | 147.21 | 61.58 | *** | |
Pr × Ha | 3 | 109.74 | 14.89 | *** | 8.18 | 2.28 | ns | |
Res | 28 | 68.81 | 33.47 | |||||
Total | 35 | 960.22 | 288.36 | |||||
Scorpionfish | Pr | 1 | 6.89 | 5.54 | * | 6.80 | 6.59 | * |
Ha | 2 | 14.31 | 5.75 | ** | 15.36 | 7.44 | ** | |
Pr × Ha | 2 | 15.37 | 6.17 | ** | 18.88 | 9.14 | ** | |
Res | 18 | 22.39 | 18.58 | |||||
Total | 23 | 58.95 | 59.61 | |||||
Comber | Pr | 1 | 25.87 | 26.67 | *** | 1.29 | 2.90 | ns |
Ha | 2 | 215.12 | 110.91 | *** | 81.71 | 91.98 | *** | |
Pr × Ha | 1 | 0.68216 | 0.70 | ns | 0.05 | 0.11 | ns | |
Res | 19 | 18.43 | 8.44 | |||||
Total | 23 | 241.27 | 94.93 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thiriet, P.D.; Di Franco, A.; Cheminée, A.; Mangialajo, L.; Guidetti, P.; Branthomme, S.; Francour, P. Adaptive Vertical Positioning as Anti-Predator Behavior: The Case of a Prey Fish Cohabiting with Multiple Predatory Fish within Temperate Marine Algal Forests. Animals 2022, 12, 826. https://doi.org/10.3390/ani12070826
Thiriet PD, Di Franco A, Cheminée A, Mangialajo L, Guidetti P, Branthomme S, Francour P. Adaptive Vertical Positioning as Anti-Predator Behavior: The Case of a Prey Fish Cohabiting with Multiple Predatory Fish within Temperate Marine Algal Forests. Animals. 2022; 12(7):826. https://doi.org/10.3390/ani12070826
Chicago/Turabian StyleThiriet, Pierre D., Antonio Di Franco, Adrien Cheminée, Luisa Mangialajo, Paolo Guidetti, Samuel Branthomme, and Patrice Francour. 2022. "Adaptive Vertical Positioning as Anti-Predator Behavior: The Case of a Prey Fish Cohabiting with Multiple Predatory Fish within Temperate Marine Algal Forests" Animals 12, no. 7: 826. https://doi.org/10.3390/ani12070826
APA StyleThiriet, P. D., Di Franco, A., Cheminée, A., Mangialajo, L., Guidetti, P., Branthomme, S., & Francour, P. (2022). Adaptive Vertical Positioning as Anti-Predator Behavior: The Case of a Prey Fish Cohabiting with Multiple Predatory Fish within Temperate Marine Algal Forests. Animals, 12(7), 826. https://doi.org/10.3390/ani12070826