Fermentation Quality, In Vitro Digestibility, and Aerobic Stability of Total Mixed Ration Silage in Response to Varying Proportion Alfalfa Silage
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Total Mixed Ration (TMR) Silage Preparation
2.2. Chemical and Microbiological Analyses
2.3. In Vitro Incubation and Degradability Measurement
2.4. Aerobic Stability Test
2.5. Statistical Analyses
3. Results
3.1. Fermentation Quality of TMR Silages
3.2. In Vitro Degradability of TMR Silages
3.3. Aerobic Stability of TMR Silages
4. Discussion
4.1. Effects of Varying Proportions of Alfalfa Silage on the Fermentation Quality of TMR Silages
4.2. Effects of Varying Proportions of Alfalfa Silage on the In Vitro Degradability of TMR Silages
4.3. Effects of Varying Proportions of Alfalfa Silage on the Aerobic Stability of TMR Silages
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Owen, F.G.; Howard, W.T. Effect of ration moisture level on value of alfalfa plus cracked corn as a complete-feed silage for lactating cows. J. Dairy Sci. 1965, 48, 1310–1314. [Google Scholar] [CrossRef]
- Bueno, A.V.I.; Lazzari, G.; Jobim, C.C.; Daniel, J.L.P. Ensiling total mixed ration for ruminants: A review. Agronomy 2020, 10, 879. [Google Scholar] [CrossRef]
- Albrecht, K.A.; Beauchemin, K.A. Alfalfa and Other Perennial Legume Silage. In Silage Science and Technology; USDA-ARS/UNL Faculty: Lincoln, NE, USA, 2003; pp. 633–664. [Google Scholar]
- Hartinger, T.; Gresner, N.; Südekum, K.H. In vitro ruminal fermentation characteristics of alfalfa silages in response to different pre-ensiling treatments. Anim. Feed Sci. Technol. 2019, 258, 114306. [Google Scholar] [CrossRef]
- Xie, Y.; Xu, S.; Li, W.; Wang, M.; Wu, Z.; Bao, J.; Jia, T.; Yu, Z. Effects of the application of Lactobacillus plantarum inoculant and potassium sorbate on the fermentation quality, in vitro digestibility and aerobic stability of total mixed ration silage based on alfalfa silage. Animals 2020, 10, 2229. [Google Scholar] [CrossRef] [PubMed]
- Ruppert, L.D.; Drackley, J.K.; Bremmer, D.R.; Clark, J.H. Effects of tallow in diets based on corn silage or alfalfa silage on digestion and nutrient use by lactating dairy cows. J. Dairy Sci. 2003, 86, 593–609. [Google Scholar] [CrossRef]
- Schingoethe, D.J. A 100-Year Review: Total mixed ration feeding of dairy cows. J. Dairy Sci. 2017, 100, 10143–10150. [Google Scholar] [CrossRef]
- Zhao, J.; Dong, Z.; Chen, L.; Wang, S.; Shao, T. The replacement of whole-plant corn with bamboo shoot shell on the fermentation quality, chemical composition, aerobic stability and in vitro digestibility of total mixed ration silage. Anim. Feed Sci. Technol. 2020, 259, 114348. [Google Scholar] [CrossRef]
- National Academies of Sciences, Engineering, and Medicine. Nutrient Requirements of Beef Cattle, 8th ed.; National Academies Press: Washington, DC, USA, 2015; ISBN 978-0-309-31702-3. [Google Scholar]
- Ni, K.; Zhao, J.; Zhu, B.; Su, R.; Pan, Y.; Ma, J.; Zhou, G.; Tao, Y.; Liu, X.; Zhong, J. Assessing the fermentation quality and microbial community of the mixed silage of forage soybean with crop corn or sorghum. Bioresour. Technol. 2018, 265, 563–567. [Google Scholar] [CrossRef]
- Krishnamoorthy, U.; Muscato, T.V.; Sniffen, C.J.; Van Soest, P.J. Nitrogen fractions in selected feedstuffs. J. Dairy Sci. 1982, 65, 217–225. [Google Scholar] [CrossRef]
- McDonald, P.; Henderson, A.R. Determination of water-soluble carbohydrates in grass. J. Sci. Food Agric. 1964, 15, 395–398. [Google Scholar] [CrossRef]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Broderick, G.A.; Kang, J.H. Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media. J. Dairy Sci. 1980, 63, 64–75. [Google Scholar] [CrossRef]
- Tian, J.; Li, Z.; Yu, Z.; Zhang, Q.; Li, X. Interactive effect of inoculant and dried jujube powder on the fermentation quality and nitrogen fraction of alfalfa silage. Anim. Sci. J. 2017, 88, 633–642. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, T.; Horiguchi, K.I.; Goto, M. Effect of crushing unhulled rice and the addition of fermented juice of epiphytic lactic acid bacteria on the fermentation quality of whole crop rice silage, and its digestibility and rumen fermentation status in sheep. Anim. Sci. J. 2005, 76, 353–358. [Google Scholar] [CrossRef]
- Wang, M.; Xu, S.; Wang, T.; Jia, T.; Xu, Z.; Wang, X.; Yu, Z. Effect of inoculants and storage temperature on the microbial, chemical and mycotoxin composition of corn silage. Asian-Australas. J. Anim. Sci. 2018, 31, 1903–1912. [Google Scholar] [CrossRef]
- Benbelkacem, H.; Bayard, R.; Abdelhay, A.; Zhang, Y.; Gourdon, R. Effect of leachate injection modes on municipal solid waste degradation in anaerobic bioreactor. Bioresour. Technol. 2010, 101, 5206–5212. [Google Scholar] [CrossRef]
- dos Anjos, G.V.S.; Gonçalves, L.C.; Rodrigues, J.A.S.; Keller, K.M.; Coelho, M.M.; Michel, P.H.F.; Ottoni, D.; Jayme, D.G. Effect of re-ensiling on the quality of sorghum silage. J. Dairy Sci. 2018, 101, 6047–6054. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Franco, M.; Cai, Y.; Yu, Z. Dynamics of fermentation profile and bacterial community of silage prepared with alfalfa, whole-plant corn and their mixture. Anim. Feed Sci. Technol. 2020, 270, 114702. [Google Scholar] [CrossRef]
- Kung, L.; Shaver, R.D.; Grant, R.J.; Schmidt, R.J. Silage review: Interpretation of chemical, microbial, and organoleptic components of silages. J. Dairy Sci. 2018, 101, 4020–4033. [Google Scholar] [CrossRef]
- Pahlow, G.; Muck, R.E.; Driehuis, F.; Elferink, S.J.W.H.O.; Spoelstra, S.F. Microbiology of Ensiling. In Silage Science and Technology; USDA-ARS/UNL Faculty: Lincoln, NE, USA, 2003; pp. 31–93. [Google Scholar]
- Queiroz, O.C.M.; Ogunade, I.M.; Weinberg, Z.; Adesogan, A.T. Silage review: Foodborne pathogens in silage and their mitigation by silage additives. J. Dairy Sci. 2018, 101, 4132–4142. [Google Scholar] [CrossRef]
- Smith, L.H. Theoretical carbohydrates requirement for alfalfa silage production. Agron. J. 1962, 54, 291. [Google Scholar] [CrossRef]
- Hao, W.; Wang, H.L.; Ning, T.T.; Yang, F.Y.; Xu, C.C. Aerobic stability and effects of yeasts during deterioration of non-fermented and fermented total mixed ration with different moisture levels. Asian-Australas. J. Anim. Sci. 2015, 28, 816–826. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rooke, J.A.; Borman, A.J.; Armstrong, D.G. The effect of inoculation with Lactobacillus plantarum on fermentation in laboratory silos of herbage low in water-soluble carbohydrate. Grass Forage Sci. 1990, 45, 143–152. [Google Scholar] [CrossRef]
- Muck, R.E.; O’Kiely, P.; Wilson, R. Buffering capacity in permanent pasture grasses. Ir. J. Agric. Res. 1991, 30, 129–141. [Google Scholar] [CrossRef]
- Hao, Y.; Huang, S.; Liu, G.; Zhang, J.; Liu, G.; Cao, Z.; Wang, Y.; Wang, W.; Li, S. Effects of different parts on the chemical composition, silage fermentation profile, in vitro and in situ digestibility of paper mulberry. Animals 2021, 11, 413. [Google Scholar] [CrossRef]
- Du, S.; Xu, M.; Yao, J. Relationship between fibre degradation kinetics and chemical composition of forages and by-products in ruminants. J. Appl. Anim. Res. 2016, 44, 189–193. [Google Scholar] [CrossRef] [Green Version]
- Blümmel, M.; Aiple, K.P.; Steingaß, H.; Becker, K. A note on the stoichiometrical relationship of short chain fatty acid production and gas formation in vitro in feedstuffs of widely differing quality. J. Anim. Physiol. Anim. Nutr. 1999, 81, 157–167. [Google Scholar] [CrossRef]
- Getachew, G.; Makkar, H.P.S.; Becker, K. Tropical browses: Contents of phenolic compounds, in vitro gas production and stoichiometric relationship between short chain fatty acid and in vitro gas production. J. Agric. Sci. 2002, 139, 341–352. [Google Scholar] [CrossRef]
- Getachew, G.; Robinson, P.H.; DePeters, E.J.; Taylor, S.J. Relationships between chemical composition, dry matter degradation and in vitro gas production of several ruminant feeds. Anim. Feed Sci. Technol. 2004, 111, 57–71. [Google Scholar] [CrossRef]
- Larbi, A.; Smith, J.W.; Kurdi, I.O.; Adekunle, I.O.; Raji, A.M.; Ladipo, D.O. Chemical composition, rumen degradation, and gas production characteristics of some multipurpose fodder trees and shrubs during wet and dry seasons in the humid tropics. Anim. Feed Sci. Technol. 1998, 72, 81–96. [Google Scholar] [CrossRef]
- Cherney, J.H.; Cherney, D.J.R. Assessing Silage Quality. In Silage Science and Technology; USDA-ARS/UNL Faculty: Lincoln, NE, USA, 2003; pp. 141–198. [Google Scholar]
- Bernardes, T.F.; Daniel, J.L.P.; Adesogan, A.T.; McAllister, T.A.; Drouin, P.; Nussio, L.G.; Huhtanen, P.; Tremblay, G.F.; Bélanger, G.; Cai, Y. Silage review: Unique challenges of silages made in hot and cold regions. J. Dairy Sci. 2018, 101, 4001–4019. [Google Scholar] [CrossRef] [PubMed]
- Muck, R.E.; Nadeau, E.M.G.; McAllister, T.A.; Contreras-Govea, F.E.; Santos, M.C.; Kung, L. Silage review: Recent advances and future uses of silage additives. J. Dairy Sci. 2018, 101, 3980–4000. [Google Scholar] [CrossRef] [PubMed]
- Adesogan, A.T.; Krueger, N.; Salawu, M.B.; Dean, D.B.; Staples, C.R. The Influence of Treatment with Dual Purpose Bacterial Inoculants or Soluble Carbohydrates on the Fermentation and Aerobic Stability of Bermudagrass. J. Dairy Sci. 2004, 87, 3407–3416. [Google Scholar] [CrossRef] [Green Version]
- Danner, H.; Holzer, M.; Mayrhuber, E.; Braun, R. Acetic acid increases stability of silage under aerobic conditions. Appl. Environ. Microbiol. 2003, 69, 562–567. [Google Scholar] [CrossRef] [Green Version]
- Weiss, W.P.; Chamberlain, D.G.; Hunt, C.W. Feeding Silages. In Silage Science and Technology; USDA-ARS/UNL Faculty: Lincoln, NE, USA, 2003; pp. 469–504. [Google Scholar]
- Wang, M.; Yu, Z.; Wu, Z.; Hannaway, D.B. Effect of Lactobacillus plantarum ‘KR107070’ and a propionic acid-based preservative on the fermentation characteristics, nutritive value and aerobic stability of alfalfa-corn mixed silage ensiled with four ratios. Grassl. Sci. 2018, 64, 51–60. [Google Scholar] [CrossRef]
- Weinberg, Z.G.; Ashbell, G.; Hen, Y.; Azrieli, A. The effect of applying lactic acid bacteria at ensiling on the aerobic stability of silages. J. Appl. Bacteriol. 1993, 75, 512–518. [Google Scholar] [CrossRef]
- Nishino, N.; Harada, H.; Sakaguchi, E. Evaluation of fermentation and aerobic stability of wet brewers’ grains ensiled alone or in combination with various feeds as a total mixed ration. J. Sci. Food Agric. 2003, 83, 557–563. [Google Scholar] [CrossRef]
- Kung, L.; Robinson, J.R.; Ranjit, N.K.; Chen, J.H.; Golt, C.M.; Pesek, J.D. Microbial populations, fermentation end-products, and aerobic stability of corn silage treated with ammonia or a propionic acid-based preservative. J. Dairy Sci. 2000, 83, 1479–1486. [Google Scholar] [CrossRef]
Item 1 | Alfalfa Silage | Corn Cob | Corn Grain | Mixed Concentrate 2 |
---|---|---|---|---|
Dry matter (g·kg−1 FM) | 473.63 | 940.04 | 887.88 | 921.03 |
Crude protein (g·kg−1 DM) | 152.77 | 35.87 | 83.01 | 325.29 |
Neutral detergent fiber (g·kg−1 DM) | 416.43 | 810.26 | 98.50 | 263.31 |
Acid detergent fiber (g·kg−1 DM) | 306.29 | 417.88 | 38.09 | 110.84 |
pH | 4.19 | / | / | / |
Lactic acid (g·kg−1 DM) | 61.73 | / | / | / |
Acetic acid (g·kg−1 DM) | 5.55 | / | / | / |
Propionic acid (g·kg−1 DM) | 11.14 | / | / | / |
Butyric acid (g·kg−1 DM) | ND | / | / | / |
Ammonia nitrogen (g·kg−1 TN) | 15.01 | / | / | / |
Item 1 | Treatment 3 | SEM | p-Value | ||
---|---|---|---|---|---|
AS60 | AS40 | AS20 | |||
Ingredient compositions (g·kg−1 DM) | |||||
Alfalfa silage | 600 | 400 | 200 | ||
Corn cob | 60 | 210 | 360 | ||
Corn grain | 240 | 290 | 340 | ||
Mixed concentrate 2 | 100 | 100 | 100 | ||
Total | 1000 | 1000 | 1000 | ||
Chemical compositions | |||||
Dry matter (g·kg−1 FM) | 569.12 A | 537.61 B | 501.36 C | 9.86 | <0.001 |
Crude protein (g·kg−1 DM) | 151.54 A | 132.54 B | 97.61 C | 8.00 | <0.001 |
Water-soluble carbohydrate (g·kg−1 DM) | 12.92 | 14.94 | 14.35 | 1.77 | 0.917 |
Neutral detergent fiber (g·kg−1 DM) | 359.14 B | 386.90 AB | 418.88 A | 10.79 | 0.047 |
Acid detergent fiber (g·kg−1 DM) | 239.49 | 232.95 | 219.01 | 4.88 | 0.234 |
Item 1 | Treatment 2 | Days of Ensiling | SEM | p-Value 3 | |||||
---|---|---|---|---|---|---|---|---|---|
0 | 7 | 14 | 30 | D | T | D × T | |||
pH | AS60 | 4.44 b | 4.43 a | 4.46 b | 4.42 b | 0.01 | <0.001 | <0.001 | <0.001 |
AS40 | 4.50 bA | 4.30 bB | 4.28 cBC | 4.22 cC | |||||
AS20 | 4.79 aA | 4.35 bC | 4.62 aB | 4.52 aB | |||||
LA | AS60 | 51.80 aAB | 45.29 B | 65.08 aA | 55.62 AB | 1.40 | <0.001 | <0.001 | 0.046 |
AS40 | 39.83 bB | 24.22 C | 62.83 aA | 65.41 A | |||||
AS20 | 18.47 cB | 23.31 B | 41.81 bA | 45.16 A | |||||
AA | AS60 | 2.95 B | 1.79 B | 2.36 bB | 11.13 A | 0.23 | <0.001 | 0.050 | 0.021 |
AS40 | 2.67 AB | 0.92 B | 3.24 aAB | 6.17 A | |||||
AS20 | 2.28 B | 1.34 B | 3.08 aB | 6.86 A | |||||
PA | AS60 | 9.43 aAB | 7.81 aB | 11.92 aA | 12.03 aA | 0.25 | <0.001 | <0.001 | 0.216 |
AS40 | 7.75 bA | 3.07 bB | 9.29 abA | 8.67 bA | |||||
AS20 | 4.34 cB | 2.07 bB | 8.84 bA | 9.35 abA | |||||
BA | AS60 | ND | ND | ND | ND | 0.12 | <0.001 | <0.001 | <0.001 |
AS40 | ND | ND | ND | ND | |||||
AS20 | ND | ND | 4.41 B | 10.3 A | |||||
NH3-N | AS60 | 10.85 aB | 2.91 C | 29.11 bA | 24.08 bA | 0.93 | <0.001 | <0.001 | <0.001 |
AS40 | 6.06 bB | 2.54 B | 33.60 bA | 26.95 bA | |||||
AS20 | 4.84 bB | 3.18 B | 66.20 aA | 63.98 aA | |||||
V-score | AS60 | 92.02 bAB | 94.16 bA | 90.66 aB | 90.00 aB | 0.47 | <0.001 | <0.001 | <0.001 |
AS40 | 93.52 bB | 98.47 abA | 91.90 aB | 91.65 aB | |||||
AS20 | 96.44 aA | 98.92 aA | 58.05 bB | 47.32 bC |
Item 1 | Treatment 2 | SEM | p-Value | ||
---|---|---|---|---|---|
AS60 | AS40 | AS20 | |||
Chemical compositions | |||||
Dry matter (g·kg−1 FM) | 555.25 A | 520.35 B | 459.81 C | 14.21 | <0.001 |
Crude protein (g·kg−1 DM) | 153.62 A | 135.83 B | 117.80 C | 5.21 | <0.001 |
Water-soluble carbohydrate (g·kg−1 DM) | 17.19 A | 7.06 B | 4.33 B | 2.02 | <0.001 |
Neutral detergent fiber (g·kg−1 DM) | 360.56 B | 371.05 B | 426.15 A | 11.42 | 0.009 |
Acid detergent fiber (g·kg−1 DM) | 237.56 | 218.69 | 239.41 | 5.36 | 0.236 |
DM losses (g·kg−1 DM) | 26.39 C | 35.58 B | 93.80 A | 6.17 | <0.001 |
In vitro degradability | |||||
DMD (g·kg−1) | 583.73 A | 570.10 AB | 534.72 B | 8.94 | 0.037 |
NDFD (g·kg−1) | 331.60 | 325.89 | 323.86 | 14.19 | 0.980 |
In vitro gas production parameters | |||||
V24h (mL) | 58.60 | 56.10 | 51.86 | 1.90 | 0.394 |
V48h (mL) | 64.82 | 66.94 | 65.59 | 1.93 | 0.925 |
V(∞) (mL) | 63.82 | 65.66 | 64.26 | 1.87 | 0.935 |
k (mL·h−1) | 4.16 | 3.12 | 2.88 | 0.29 | 0.166 |
Item 1 | Treatment 2 | Days of Air Exposure | SEM | p-Value 3 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 3 | 5 | 7 | D | T | D × T | |||
Fermentative characteristics | ||||||||||
pH | AS60 | 4.42 bC | 4.43 bC | 4.47 C | 4.70 abB | 7.29 aA | 0.05 | <0.001 | <0.001 | <0.001 |
AS40 | 4.22 cC | 4.24 cC | 4.39 C | 5.45 aB | 6.86 aA | |||||
AS20 | 4.52 a | 4.54 a | 4.5 | 4.54 b | 4.59 b | |||||
LA | AS60 | 55.62 A | 54.41 abA | 70.04 aA | 65.26 A | 31.97 bB | 1.72 | 0.025 | 0.001 | 0.027 |
AS40 | 65.41 AB | 79.92 aA | 69.91 aAB | 60.22 AB | 47.43 abB | |||||
AS20 | 45.16 | 42.23 b | 46.74 b | 46.44 | 52.66 a | |||||
AA | AS60 | 11.13 | 9.69 | 10.99 a | 7.61 | 7.91 a | 1.33 | 0.126 | <0.001 | 0.044 |
AS40 | 6.17 AB | 7.78 A | 3.14 cBC | 2.34 BC | 1.49 bC | |||||
AS20 | 6.86 | 5.95 | 6.61 b | 7.55 | 8.37 a | |||||
PA | AS60 | 12.03 a | 10.78 | 13.18 a | 12.45 | 11.40 | 0.29 | 0.599 | <0.001 | 0.624 |
AS40 | 8.67 b | 9.43 | 8.09 b | 9.95 | 6.77 | |||||
AS20 | 9.35 ab | 7.65 | 8.4 b | 9.04 | 9.27 | |||||
BA | AS60 | ND | ND | ND | ND | ND | 0.22 | 0.777 | <0.001 | 0.885 |
AS40 | ND | ND | ND | ND | ND | |||||
AS20 | 10.3 | 7.96 | 8.73 | 10.08 | 9.61 | |||||
NH3-N | AS60 | 24.08 bB | 29.41 bB | 22.67 bB | 23.71 bB | 76.47 abA | 2.49 | <0.001 | 0.001 | <0.001 |
AS40 | 26.95 bB | 36.81 bB | 26.28 bB | 48.13 aB | 138.56 aA | |||||
AS20 | 63.98 aAB | 71.09 aA | 49.63 aB | 54.49 aAB | 61.58 bAB | |||||
V-score | AS60 | 90.00 aA | 90.00 aA | 90.00 bA | 90.00 aA | 85.54 aB | 0.78 | 0.001 | <0.001 | 0.014 |
AS40 | 91.65 aA | 90.00 aA | 92.90 aA | 91.29 aA | 68.83 abB | |||||
AS20 | 47.32 b | 47.84 b | 50.27 c | 50.46 b | 47.68 b | |||||
Chemical compositions | ||||||||||
DM | AS60 | 555.26 aC | 565.42 aAB | 573.25 aAB | 581.11 aA | 566.84 aAB | 1.33 | 0.003 | <0.001 | 0.035 |
AS40 | 520.35 b | 519.13 b | 529.59 b | 526.51 b | 514.82 b | |||||
AS20 | 459.81 cC | 469.16 cBC | 468.84 cBC | 479.78 cAB | 490.22 bA | |||||
CP | AS60 | 153.62 a | 151.99 a | 154.76 a | 153.11 a | 151.78 a | 0.52 | 0.247 | <0.001 | 0.066 |
AS40 | 135.83 bA | 138.59 bA | 139.67 bA | 138.57 bA | 129.43 bB | |||||
AS20 | 117.79 c | 114.71 c | 117.94 c | 117.50 c | 120.14 c | |||||
WSC | AS60 | 17.19 aAB | 20.00 aA | 18.68 aAB | 16.31 aAB | 10.38 aB | 0.43 | 0.043 | <0.001 | 0.204 |
AS40 | 7.06 bAB | 9.53 bA | 6.35 bB | 6.47 abB | 7.24 abAB | |||||
AS20 | 4.33 b | 4.88 c | 3.84 c | 3.66 b | 3.54 b |
Item 1 | Treatment 2 | Days of Air Exposure | SEM | p-Value 3 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 3 | 5 | 7 | D | T | D × T | |||
LAB (log10 cfu·g−1 FM) | AS60 | 7.26 bB | 6.88 bB | 6.83 cB | 6.96 bB | 7.87 bA | 0.04 | <0.001 | <0.001 | <0.001 |
AS40 | 6.87 cC | 6.78 bC | 7.11 bC | 8.02 aB | 9.87 aA | |||||
AS20 | 7.62 aC | 8.01 aB | 7.69 aC | 8.27 aA | 8.4 bA | |||||
Yeast (log10 cfu·g−1 FM) | AS60 | 4.60 aB | 3.41 C | 5.48 aB | 6.68 bA | 7.32 aA | 0.07 | <0.001 | <0.001 | <0.001 |
AS40 | 3.38 bC | 3.21 C | 6.21 aB | 7.74 aA | 7.93 aA | |||||
AS20 | 3.09 bBC | 2.22 C | 3.7 bAB | 4.2 cA | 4.1 bA | |||||
Mold (log10 cfu·g−1 FM) | AS60 | <2.00 D | <2.00 D | 2.90 aC | 4.06 aB | 4.58 aA | 0.03 | <0.001 | <0.001 | <0.001 |
AS40 | <2.00 B | <2.00 B | <2.00 bB | <2.00 bB | 4.96 aA | |||||
AS20 | <2.00 | <2.00 | <2.00 b | <2.00 b | <2.00 b | |||||
Coliform bacteria (log10 cfu·g−1 FM) | AS60 | 6.98 bA | 6.38 abB | 5.5 aC | 4.19 aD | 5.23 aC | 0.05 | <0.001 | 0.008 | <0.001 |
AS40 | 6.56 bA | 5.99 bAB | 5.32 aB | 3.70 C | 5.79 aB | |||||
AS20 | 7.61 aA | 6.77 aB | 4.62 bC | 3.22 cE | 3.9 bD |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, Y.; Wang, L.; Li, W.; Xu, S.; Bao, J.; Deng, J.; Wu, Z.; Yu, Z. Fermentation Quality, In Vitro Digestibility, and Aerobic Stability of Total Mixed Ration Silage in Response to Varying Proportion Alfalfa Silage. Animals 2022, 12, 1039. https://doi.org/10.3390/ani12081039
Xie Y, Wang L, Li W, Xu S, Bao J, Deng J, Wu Z, Yu Z. Fermentation Quality, In Vitro Digestibility, and Aerobic Stability of Total Mixed Ration Silage in Response to Varying Proportion Alfalfa Silage. Animals. 2022; 12(8):1039. https://doi.org/10.3390/ani12081039
Chicago/Turabian StyleXie, Yixiao, Lei Wang, Wenqi Li, Shengyang Xu, Jinze Bao, Jiajie Deng, Zhe Wu, and Zhu Yu. 2022. "Fermentation Quality, In Vitro Digestibility, and Aerobic Stability of Total Mixed Ration Silage in Response to Varying Proportion Alfalfa Silage" Animals 12, no. 8: 1039. https://doi.org/10.3390/ani12081039
APA StyleXie, Y., Wang, L., Li, W., Xu, S., Bao, J., Deng, J., Wu, Z., & Yu, Z. (2022). Fermentation Quality, In Vitro Digestibility, and Aerobic Stability of Total Mixed Ration Silage in Response to Varying Proportion Alfalfa Silage. Animals, 12(8), 1039. https://doi.org/10.3390/ani12081039