The Impact of Different Sources of Zinc, Manganese, and Copper on Broiler Performance and Excreta Output
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Birds and Housing
2.2. Experimental Treatments
2.3. Performance Parameters
2.4. Mineral Excretion Collection and Analysis
2.5. Experimental Design and Statistical Analysis
3. Results
3.1. Broiler Growth Performance
3.2. Trace Mineral Excretion
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mohanna, C.; Nys, Y. Changes in zinc and manganese availability in broiler chicks induced by vegetal and microbial phytases. Anim. Feed Sci. Technol. 1999, 77, 241–253. [Google Scholar] [CrossRef]
- Untea, A.E.; Olteanu, M.; Maros, I.; Criste, R.D. Decrease of Cu and Fe concentrations from broiler droppings using dietary organometallic compounds. Biotechnol. Anim. Husb. 2011, 27, 759–768. [Google Scholar] [CrossRef] [Green Version]
- Cobb-Vantress Inc. Cobb Broiler Performance and Nutrition Supplement. 2018. Available online: https://www.cobb-vantress.com/assets/5a88f2e793/Broiler-Performance-Nutrition-Supplement.pdf (accessed on 18 February 2022).
- National Research Council. Nutrient Requirements of Poultry, 9th ed.; National Academies Press: Washington, DC, USA, 1994. [Google Scholar]
- Manangi, M.K.; Vazquez-Añon, M.; Richards, J.D.; Carter, S.; Buresh, R.E.; Christensen, K.D. Impact of feeding lower levels of chelated trace minerals versus industry levels of inorganic trace minerals on broiler performance, yield, footpad health, and litter mineral concentration. J. Appl. Poult. Res. 2012, 21, 881–890. [Google Scholar] [CrossRef]
- Mohamed, M.A.; Hassan, H.M.A.; Amani, W.; Youssef, A.W.; Sawsan, M.G. Feeding broilers on a finisher diet of low trace mineral levels and its effect upon performance, carcass characteristics, mineral excretion, and net profit. Int. J. Poult. Sci. 2015, 14, 338–342. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, J.C.; Henriques, F.S. Biochemical, physiological, and structural effects of excess copper in plants. Bot. Rev. 1991, 57, 246–273. [Google Scholar] [CrossRef]
- He, Z.L.; Yang, X.E.; Stofella, P.J. Trace elements in agroecosystems and impacts on the environment. J. Trace Elem. Med. Biol. 2005, 19, 125–140. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, S. Acute copper toxicity in Garole sheep—A case study. World Appl. Sci. J. 2009, 7, 1547–1551. [Google Scholar]
- Berger, L.L. Salt and Trace Minerals for Livestock, Poultry and Other Animals, 8th ed.; Salt Institute: Alexandria, VA, USA, 2006. [Google Scholar]
- Richards, J.D.; Zhao, J.; Harrell, R.J.; Atwell, C.A.; Dibner, J.J. Trace mineral nutrition in poultry and swine. Asian-Australas. J. Anim. Sci. 2010, 23, 1527–1534. [Google Scholar] [CrossRef]
- Gheisari, A.A.; Rahimi-Fathkoohi, A.; Toghyani, M.; Gheisari, M.M. Effects of organic chelates of zinc, manganese, and copper in comparison to their inorganic sources on performance of broiler chickens. J Anim. Plant Sci. 2010, 6, 630–636. [Google Scholar]
- Nollet, L.; van der Klis, J.D.; Lensing, M.; Spring, P. The effect of replacing inorganic with organic trace minerals in broiler diets on productive performance and mineral excretion. J. Appl. Poult. Res. 2007, 16, 592–597. [Google Scholar] [CrossRef]
- Kampf, D. Optimal copper supply with the new innovative copper source, Intellibond® C. Feed. Compd. 2012, 32, 16–19. [Google Scholar]
- Cohen, J.; Steward, F.A. Hydroxy minerals—The newest development in mineral nutrition. AFMA Matrix. 2014, 23, 47–49. [Google Scholar]
- AOAC. Official Method of Analysis, 18th ed.; Association of Analytical Chemists: Washington, DC, USA, 2005. [Google Scholar]
- Luo, X.G.; Ji, F.; Lin, Y.X.; Steward, F.A.; Lu, L.; Liu, B.; Yu, S.X. Effects of dietary supplementation with copper sulfate, tribasic copper chloride on broiler performance, relative copper bioavailability, and oxidation stability of vitamin E in feed. Poult. Sci. 2005, 84, 888–893. [Google Scholar] [CrossRef] [PubMed]
- Miles, R.D.; O’Keefe, S.F.; Henry, P.R.; Ammerman, C.B.; Luo, X.G. The effect of dietary supplementation with copper sulfate or tribasic copper chloride on broiler performance, relative copper bioavailability, and dietary prooxidant activity. Poult. Sci. 1998, 77, 416–425. [Google Scholar] [CrossRef]
- Star, L.; van der Klis, J.D.; Rapp, C.; Ward, T.L. Bioavailability of organic and inorganic zinc sources in male broilers. Poult. Sci. 2012, 91, 3115–3120. [Google Scholar] [CrossRef]
- El-Husseiny, O.M.; Hashish, S.M.; Ali, R.A.; Arafa, S.A.; Abd El-Samee, L.D.; Olemy, A.A. Effects of feeding organic zinc, manganese, and copper on broiler growth, carcass characteristics, bone quality, and mineral content in bone, liver, and excreta. Int. J. Poult. Sci. 2012, 11, 368–377. [Google Scholar] [CrossRef] [Green Version]
- Conly, A.K.; Poureslami, R.; Koutsos, E.A.; Batal, A.B.; Jung, B.; Beckstead, R.; Peterson, D.G. Tolerance and efficacy of tribasic manganese chloride in growing broiler chickens. Poult. Sci. 2012, 91, 1633–1640. [Google Scholar] [CrossRef]
- Wang, Z.; Cerrate, S.; Yan, F.; Sacakli, P.; Waldroup, P.W. Comparison of different concentrations of inorganic trace minerals in broiler diets on live performance and mineral excretion. Int. J. Poult. Sci. 2008, 7, 625–629. [Google Scholar] [CrossRef] [Green Version]
- Echeverry, H.; Yitbarek, A.; Munyaka, P.; Alizadeh, M.; Cleaver, A.; Camelo-Jaimes, G.; Wang, P.; Rodriguez-Lecompte, J.C. Organic trace mineral supplementation enhances local and systemic innate immune responses and modulates oxidative stress in broiler chickens. Poult. Sci. 2016, 95, 518–527. [Google Scholar] [CrossRef]
- Dozier, W.A.; Davis, A.J.; Freeman, M.E.; Ward, T.L. Early growth and environmental implications of dietary zinc and copper concentrations and sources of broiler chicks. Br. Poult. Sci. 2003, 44, 726–731. [Google Scholar] [CrossRef]
- Burrell, A.L.; Dozier, W.A.; Davis, A.J.; Compton, M.M.; Freeman, M.E.; Vendrell, P.F.; Ward, T.L. Responses of broilers to dietary zinc concentrations and sources in relation to environmental implications. Br. Poult. Sci. 2004, 45, 255–263. [Google Scholar] [CrossRef]
Ingredient | Starter (0–12 Days) | Grower (13–24 Days) | Finisher (25–35 Days) | ||||
---|---|---|---|---|---|---|---|
* | # | * | # | * | # | ||
Yellow Maize | % | 53.7 | 53.5 | 56.6 | 56.5 | 58.5 | 58.3 |
Soya Oilcake (46%) | % | 33.9 | 33.9 | 31.6 | 31.6 | 29.9 | 30.0 |
Sunflower Oilcake | % | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 |
Sunflower Oil | % | 4.92 | 4.98 | 4.97 | 5.03 | 5.16 | 5.22 |
Limestone | % | 1.47 | 1.46 | 1.21 | 1.21 | 1.06 | 1.06 |
MCP | % | 0.53 | 0.53 | 0.23 | 0.23 | ||
Salt | % | 0.48 | 0.48 | 0.41 | 0.41 | 0.41 | 0.41 |
DL Methionine | % | 0.28 | 0.28 | 0.26 | 0.26 | 0.27 | 0.27 |
HCL Lysine | % | 0.26 | 0.26 | 0.26 | 0.26 | 0.25 | 0.25 |
Threonine | % | 0.07 | 0.07 | 0.06 | 0.06 | 0.06 | 0.06 |
Choline Chloride | % | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 |
Vitamin and Mineral Premix | % | 0.30 | 0.40 | 0.30 | 0.40 | 0.30 | 0.40 |
Total | 100 | 100 | 100 | 100 | 100 | 100 | |
Nutrient Composition (Analysed) | |||||||
Moisture | % | 11.1 | 11.1 | 11.2 | 11.2 | 11.4 | 11.4 |
Protein | % | 21.5 | 21.5 | 20.6 | 20.6 | 19.9 | 19.9 |
Total Lysine | % | 1.33 | 1.33 | 1.27 | 1.27 | 1.22 | 1.22 |
Total Methionine | % | 0.61 | 0.61 | 0.58 | 0.58 | 0.58 | 0.58 |
Energy | MJ/kg | 12.2 | 12.2 | 12.4 | 12.4 | 12.6 | 12.6 |
Fat | % | 6.68 | 6.74 | 6.78 | 6.83 | 7.15 | 7.20 |
Starch | % | 35.3 | 35.2 | 37.0 | 36.9 | 37.7 | 37.6 |
Fibre | % | 3.80 | 3.79 | 3.80 | 3.80 | 3.62 | 3.62 |
Ash | % | 5.69 | 5.68 | 4.95 | 4.95 | 4.44 | 4.44 |
Calcium | % | 0.74 | 0.74 | 0.59 | 0.59 | 0.49 | 0.49 |
Phosphorus | % | 0.52 | 0.52 | 0.45 | 0.45 | 0.41 | 0.41 |
Sodium | % | 0.21 | 0.21 | 0.18 | 0.18 | 0.18 | 0.18 |
Potassium | % | 0.96 | 0.96 | 0.92 | 0.92 | 0.89 | 0.89 |
Chloride | % | 0.40 | 0.40 | 0.36 | 0.36 | 0.36 | 0.36 |
Treatment | Source of Trace Minerals | Standard | Zn | Mn (mg/kg) | Cu (mg/kg) |
---|---|---|---|---|---|
(mg/kg) | |||||
1 (PC) | inorganic | Cobb | 100 | 100 | 15 |
2 | inorganic | NRC | 40 | 60 | 8 |
3 | organic | NRC | 40 | 60 | 8 |
4 | hydroxy | NRC | 40 | 60 | 8 |
Treatments | n | BW (g) | ADG (g) | FI (g) | FCR |
---|---|---|---|---|---|
7 days | |||||
PC | 12 | 162 | 17.7 | 158 | 0.98 |
ITM | 12 | 162 | 17.7 | 154 | 0.95 |
OTM | 12 | 163 | 17.8 | 154 | 0.95 |
HTM | 12 | 165 | 18.1 | 159 | 0.97 |
p Value | 0.47 | 0.59 | 0.13 | 0.55 | |
LSD | 6.55 | 0.97 | 6.61 | 0.06 | |
14 days | |||||
PC | 12 | 484 | 31.9 | 536 | 1.11 |
ITM | 12 | 482 | 31.7 | 533 | 1.11 |
OTM | 12 | 488 | 32.2 | 535 | 1.10 |
HTM | 12 | 489 | 32.2 | 539 | 1.10 |
p Value | 0.35 | 0.38 | 0.64 | 0.62 | |
LSD | 11.47 | 0.83 | 12.26 | 0.02 | |
21 days | |||||
PC | 12 | 1043 | 47.9 | 1245 | 1.19 |
ITM | 12 | 1033 | 47.4 | 1234 | 1.19 |
OTM | 12 | 1039 | 47.7 | 1233 | 1.19 |
HTM | 12 | 1045 | 48.0 | 1249 | 1.2 |
p Value | 0.50 | 0.50 | 0.35 | 0.65 | |
LSD | 22.7 | 1.09 | 28.4 | 0.02 | |
28 days | |||||
PC | 12 | 1770 ab | 61.9 ab | 2297 | 1.30 |
ITM | 12 | 1747 a | 61.0 a | 2279 | 1.31 |
OTM | 12 | 1756 ab | 61.4 ab | 2291 | 1.31 |
HTM | 12 | 1787 b | 62.5 b | 2299 | 1.29 |
p Value | 0.02 | 0.02 | 0.72 | 0.14 | |
LSD | 33.8 | 1.21 | 51.1 | 0.02 | |
35 days | |||||
PC | 12 | 2503 ab | 70.4 ab | 3593 | 1.44 |
ITM | 12 | 2453 a | 69.0 a | 3536 | 1.44 |
OTM | 12 | 2487 ab | 70.0 ab | 3542 | 1.43 |
HTM | 12 | 2508 b | 70.6 b | 3559 | 1.42 |
p Value | 0.04 | 0.04 | 0.32 | 0.28 | |
LSD | 54.3 | 1.55 | 88.2 | 0.03 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Franklin, S.B.; Young, M.B.; Ciacciariello, M. The Impact of Different Sources of Zinc, Manganese, and Copper on Broiler Performance and Excreta Output. Animals 2022, 12, 1067. https://doi.org/10.3390/ani12091067
Franklin SB, Young MB, Ciacciariello M. The Impact of Different Sources of Zinc, Manganese, and Copper on Broiler Performance and Excreta Output. Animals. 2022; 12(9):1067. https://doi.org/10.3390/ani12091067
Chicago/Turabian StyleFranklin, Steven Bryan, Marion Belinda Young, and Mariana Ciacciariello. 2022. "The Impact of Different Sources of Zinc, Manganese, and Copper on Broiler Performance and Excreta Output" Animals 12, no. 9: 1067. https://doi.org/10.3390/ani12091067
APA StyleFranklin, S. B., Young, M. B., & Ciacciariello, M. (2022). The Impact of Different Sources of Zinc, Manganese, and Copper on Broiler Performance and Excreta Output. Animals, 12(9), 1067. https://doi.org/10.3390/ani12091067