Phytase Supplementation under Commercially Intensive Rearing Conditions: Impacts on Nile Tilapia Growth Performance and Nutrient Digestibility
Abstract
:Simple Summary
Abstract
1. Introduction
2. Material and Methods
2.1. Experimental Diets
2.2. Phase I-Growth Trial
2.3. Phase II-Digestibility Assessment
2.4. Chemical Analyses
2.5. Statistical Analysis
3. Results
3.1. Growth Performance
3.2. Digestibility Assessment
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lemos, D.; Tacon, A.G.J. Use of phytases in fish and shrimp feeds: A review. Rev. Aquac. 2017, 9, 266–282. [Google Scholar] [CrossRef]
- Kumar, V.; Sinha, A.K.; Makkar, H.P.; De Boeck, G.; Becker, K. Phytate and phytase in fish nutriton. J. Anim. Physiol. Anim. Nutr. 2012, 96, 335–364. [Google Scholar] [CrossRef] [PubMed]
- FAO. The State of World Fisheries and Aquaculture 2020. In Brief. Sustainability in Action; FAO: Rome, Italy, 2020. [Google Scholar] [CrossRef]
- IBGE, Instituto Brasileiro de Geografia e Estatística. Produtos de Origem Animal, Por Tipo de Produto. 2020. Available online: https://sidra.ibge.gov.br/tabela/3940 (accessed on 18 May 2021).
- Roriz, G.D.; Delphino, M.K.D.V.C.; Gardner, I.A.; Gonçalves, V.S.P. Characterization of tilapia farming in net cages at a tropical reservoir in Brazil. Aquac. Rep. 2017, 6, 43–48. [Google Scholar] [CrossRef]
- Gunkel, G.; Matta, E.; Selge, F.; Da Silva, G.M.N.; Sobral, M.D.C. Carrying capacity limits of net cage aquaculture in Brazilian reservoirs. Braz. J. Environ. Sci. 2015, 36, 128–144. [Google Scholar] [CrossRef]
- Kokou, F.; Fountoulaki, E. Aquaculture waste production associated with antinutrient presence in common fish feed plant ingredients. Aquaculture 2018, 495, 295–310. [Google Scholar] [CrossRef]
- Kumar, V.; Sinha, A.K.; Kajbaf, K. Phytic acid and phytase enzyme. In Whole Grains and Their Bioactives: Composition and Health, 1st ed.; Johnson, J., Wallace, T., Eds.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2019; Volume 1, pp. 467–483. [Google Scholar] [CrossRef]
- Goda, A.M.A.S. Effect of Dietary Soybean Meal and Phytase Levels on Growth, Feed Utilization and Phosphorus Discharge for Nile tilapia Oreochromis niloticus. J. Fish. Aquat. Sci. 2007, 2, 248–263. [Google Scholar] [CrossRef] [Green Version]
- Bock, C.L.; Pezzato, L.E.; Cantelmo, O.A.; Barros, M.M. Phytase in diets for Nile tilapia in the growth period. R. Bras. Zootec. 2007, 36, 1455–1461. [Google Scholar] [CrossRef] [Green Version]
- Morales, G.A.; Denstadli, V.; Collins, S.A.; Mydland, L.T.; Moyano, F.J.; Øverland, M. Phytase and sodium diformate supplementation in a plant-based diet improves protein and mineral utilization in rainbow trout (Oncorhynchus mykiss). Aquac. Nutr. 2016, 22, 1301–1311. [Google Scholar] [CrossRef]
- Verdegem, M.C.J. Nutrient discharge from aquaculture operations in function of system design and production environment. Rev. Aquac. 2013, 4, 158–171. [Google Scholar] [CrossRef]
- Sugiura, S.H. Phosphorus, aquaculture, and the environment. Rev. Fish. Sci. Aquac. 2018, 26, 515–521. [Google Scholar] [CrossRef]
- Maas, R.M.; Verdegem, M.C.J.; Stevens, T.L.; Schrama, J.W. Effects of exogenous enzymes (phytase and xylanase) supplementation on nutrient digestibility and growth performance of Nile tilapia (Oreochromis niloticus) fed different quality diets. Aquaculture 2020, 529, 735723. [Google Scholar] [CrossRef]
- Maas, R.M.; Verdegem, M.C.J.; Dersjant-Li, Y.; Schrama, J.W. The effect of phytase, xylanase and their combination on growth performance and nutrient utilization in Nile tilapia. Aquaculture 2018, 487, 7–14. [Google Scholar] [CrossRef]
- Pontes, T.C.; Brito, J.M.D.; Wernick, B.; Urbich, A.V.; Panaczevicz, P.A.P.; Miranda, J.A.G.; Furuya, V.R.B.; Furuya, W.M. Top-sprayed phytase enhances the digestibility of energy, protein, amino acids and minerals, and reduces phosphorus output in Nile tilapia fed all-vegetable diets. Aquac. Res. 2021, 52, 6562–6570. [Google Scholar] [CrossRef]
- Portz, L.; Liebert, F. Growth, nutrient utilization and parameters of mineral metabolism in Nile tilapia Oreochromis niloticus (Linnaeus, 1758) fed plant-based diets with graded levels of microbial phytase. J. Anim. Physiol. Anim. Nutr. 2004, 88, 311–320. [Google Scholar] [CrossRef]
- National Research Council (NRC). Nutrient Requirements of Fish; National Academy Press: Washington, DC, USA, 1993. [Google Scholar]
- Furuya, W.M. Tabelas Brasileiras para Nutrição de Tilápias; GMF Gráfica & Editora: Toledo, Brazil, 2010. [Google Scholar]
- Furuya, W.M.; Gonçalves, G.S.; Furuya, V.R.B.; Hayashi, C. Phytase as feeding for Nile tilapia (Oreochromis niloticus). Performance and digestibility. R. Bras. Zootec. 2001, 30, 924–929. [Google Scholar] [CrossRef] [Green Version]
- Engelen, A.J.; Van Der Heeft, F.C.; Randsdorp, P.H.G.; Smtt, E.L.C. Simple and rapid determination of phytase activity. J. AOAC Int. 1994, 77, 760–764. [Google Scholar] [CrossRef]
- Association of Official Agricultural Chemists (AOAC). Official Methods of Analysis; Association of Official Agricultural Chemists: Washington, DC, USA, 1995. [Google Scholar]
- Cho, C.Y. Digestibility of feedstuffs as a major factor in aquaculture waste management. In Fish Nutrition Practice; INRA: Paris, France, 1993; pp. 363–374. [Google Scholar]
- Liener, I.E. Implications of antinutritional components in soybean foods. Crit. Rev. Food. Sci. Nutr. 1994, 34, 31–67. [Google Scholar] [CrossRef]
- Adeshina, I.; Akpoilih, B.U.; Udom, B.F.; Adeniyi, O.V.; Abdel-Tawwab, M. Interactive effects of dietary phosphorus and microbial phytase on growth performance, intestinal morphometry, and welfare of Nile tilapia (Oreochromis niloticus) fed on low-fishmeal diets. Aquaculture 2023, 563, 738995. [Google Scholar] [CrossRef]
- Liebert, F.; Portz, L. Nutrient utilization of Nile tilapia Oreochromis niloticus fed plant based low phosphorus diets supplemented with graded levels of different sources of microbial phytase. Aquaculture 2005, 248, 111–119. [Google Scholar] [CrossRef]
- Pontes, T.C.; França, W.G.; Dutra, F.M.; Portz, L.; Ballester, E.L.C. Evaluation of the Phytase enzyme in granulated and liquid forms for Nile tilapia (Oreochromis niloticus). Arch. Zootec. 2019, 68, 158–163. [Google Scholar] [CrossRef] [Green Version]
- Rostagno, H.S. Tabelas Brasileiras Para Aves e Suínos: Composição de Alimentos e Exigências Nutricionais, 4th ed.; Universidade Federal de Viçosa, Departamento de Zootecnia: Viçosa, Brazil, 2017. [Google Scholar]
- Bock, C.L.; Pezzato, L.E.; Cantelmo, O.A.; Barros, M.M. Phytase and nutrient apparent digestibility of diets fed to Nile tilapia. R. Bras. Zootec. 2006, 35, 2197–2202. [Google Scholar] [CrossRef] [Green Version]
- Thompson, L.U.; Yoon, J.H. Starch digestibility as affected by polyphenols and phytic acid. J. Food Sci. 1984, 49, 12–28. [Google Scholar] [CrossRef]
- Champasri, C.; Phetlum, S.; Pornchoo, C. Diverse activities and biochemical properties of amylase and proteases from six freshwater fish species. Sci. Rep. 2021, 11, 5727. [Google Scholar] [CrossRef] [PubMed]
- Maas, R.M.; Verdegem, M.C.J.; Debnath, S.; Marchal, L.; Schrama, J.W. Effect of enzymes (phytase and xylanase), probiotics (B. amyloliquefaciens) and their combination on growth performance and nutrient utilization in Nile tilapia. Aquaculture 2021, 533, 736226. [Google Scholar] [CrossRef]
- Liu, L.W.; Su, J.M.; Zhang, T.; Liang, X.F.; Luo, Y.L. Apparent digestibility of nutrients in grass carp (Ctenopharyngodon idellus) diets supplemented with graded levels of neutral phytase using pretreatment and spraying methods. Aquac. Nutr. 2012, 19, 91–99. [Google Scholar] [CrossRef]
Ingredients (%) | Phytase Supplementation Levels | |||||
---|---|---|---|---|---|---|
PC 5 | NC 6 | 500 UF kg−1 | 1000 UF kg−1 | 1500 UF kg−1 | 2000 UF kg−1 | |
Soybean meal | 59.88 | 59.78 | 59.78 | 59.78 | 59.78 | 59.78 |
Corn | 23.5 | 24.03 | 24.03 | 24.03 | 24.03 | 24.03 |
Rice bran | 12.00 | 12.00 | 12.00 | 24.03 | 12.00 | 12.00 |
Soybean oil | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
DL-methionine | 0.28 | 0.28 | 0.28 | 0.28 | 0.28 | 0.28 |
Threonine | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 |
Dicalcium phosphate | 1.90 | 0.70 | 0.70 | 0.70 | 0.70 | 0.70 |
Limestone | - | 0.77 | 0.77 | 0.77 | 0.77 | 0.77 |
Mold-zap 1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
Banox 2 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 |
Vit/Min Premix 3 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |
NaCl | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |
Chromium oxide 4 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
Total (%) | 100 | 100 | 100 | 100 | 100 | 100 |
Proximate analysis | ||||||
Gross Energy (MJ) | 17.60 | 17.48 | 17.36 | 17.15 | 17.33 | 17.44 |
Crude Protein (%) | 35.12 | 34.69 | 34.79 | 35.69 | 34.75 | 34.25 |
Dry Matter (%) | 91.43 | 90.36 | 89.64 | 89.52 | 90.87 | 90.25 |
Ash (%) | 8.60 | 9.10 | 9.43 | 9.35 | 9.37 | 9.20 |
Fish Weight Interval (g) | Daily Feed as Biomass Weight (%) | |
---|---|---|
80 | 150 | 5 |
150 | 300 | 4 |
300 | 400 | 3.5 |
400 | 600 | 3 |
Parameters | Phytase Supplementation Levels | ||||||
---|---|---|---|---|---|---|---|
NC | PC | 500 UF kg−1 | 1000 UF kg−1 | 1500 UF kg−1 | 2000 UF kg−1 | p Value | |
IW(g) | 57.20 ± 1.08 | 57.05 ± 1.13 | 57.94 ± 1.28 | 57.33 ± 0.83 | 57.75 ± 1.08 | 57.05 ± 1.13 | 0.548 |
FW(g) | 491.35 ± 9.27 d | 530.59 ± 5.54 c | 531.56 ± 9.29 bc | 544.18 ± 10.95 abc | 557.93 ± 9.01 a | 546.07 ± 10.36 ab | 0.000 |
IB(g) | 8580 ± 162 | 8597 ± 158 | 8691 ± 192 | 8600 ± 125 | 8663 ± 161 | 8597 ± 158 | 0.676 |
FB(g) | 69,013 ± 829 c | 75,791 ± 1226 b | 75,237 ± 1233 b | 77,429 ± 2 052 ab | 79,700 ± 1522 a | 79,011 ± 1395 a | 0.000 |
WG(%) | 750.08 ± 25.38 d | 830.37 c ± 16.80 c | 829.46 ± 17.17 c | 839.45 ± 23.41 bc | 873.17 ± 11.76 a | 845.69 ± 19.15 ab | 0.000 |
DWG(g) | 4.43 ± 0.08 d | 4.85 ± 0.05 c | 4.85 ± 0.08 c | 4.98 ± 0.11 bc | 5.13 ± 0.08 a | 5.01 ± 0.10 ab | 0.000 |
FCR(g) | 1.52 ± 0.02 a | 1.37 ± 0.03 bc | 1.38 ± 0.02 b | 1.34 ± 0.03 cd | 1.29 ± 0.03 d | 1.31 ± 0.03 d | 0.000 |
Survival(%) | 95.24 ± 1.86 | 93.90 ± 2.09 | 94.38 ± 2.07 | 94.86 ± 1.71 | 95.24 ± 1.41 | 96.48 ± 1.71 | 0.146 |
ADC (%) | Phytase Supplementation Levels | ||||||
---|---|---|---|---|---|---|---|
PC | NC | 500 UF kg−1 | 1000 UF kg−1 | 1500 UF kg−1 | 2000 UF kg−1 | p Value | |
DM | 76.82 ± 0.58 b | 74.82 ± 1.85 b | 77.04 ± 2.71 b | 74.17 ± 2.25 b | 76.24 ± 0.61 b | 89.06 ± 1.45 a | 0.000 |
CE | 83.97 ± 0.49 b | 82.5 ± 1.81 bc | 83.36 ± 2.34 bc | 79.46 ± 1.82 c | 80.98 ± 0.76 bc | 92.35 ± 0.87 a | 0.000 |
CP | 94.46 ±0.11 b | 92.66 ± 0.89 c | 93.61 ± 0.44 bc | 92.78 ± 0.74 c | 92.16 ± 0.25 c | 97.26 ± 0.35 a | 0.000 |
ASH | 29.49 ± 3.54 d | 27.97 ± 7.52 cd | 42.25 ± 2.79 bc | 46.17 ± 5.61 b | 46.65 ± 2.15 b | 69.71 ± 6.04 a | 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodrigues, E.J.D.; Ito, P.I.; Ribeiro, L.F.M.; de Carvalho, P.L.P.F.; Xavier, W.d.S.; Guimarães, M.G.; Junior, A.C.F.; Pezzato, L.E.; Barros, M.M. Phytase Supplementation under Commercially Intensive Rearing Conditions: Impacts on Nile Tilapia Growth Performance and Nutrient Digestibility. Animals 2023, 13, 136. https://doi.org/10.3390/ani13010136
Rodrigues EJD, Ito PI, Ribeiro LFM, de Carvalho PLPF, Xavier WdS, Guimarães MG, Junior ACF, Pezzato LE, Barros MM. Phytase Supplementation under Commercially Intensive Rearing Conditions: Impacts on Nile Tilapia Growth Performance and Nutrient Digestibility. Animals. 2023; 13(1):136. https://doi.org/10.3390/ani13010136
Chicago/Turabian StyleRodrigues, Edgar Junio Damasceno, Paulo Incane Ito, Lucas Franco Miranda Ribeiro, Pedro Luiz Pucci Figueiredo de Carvalho, William dos Santos Xavier, Matheus Gardim Guimarães, Ademir Calvo Fernandes Junior, Luiz Edivaldo Pezzato, and Margarida Maria Barros. 2023. "Phytase Supplementation under Commercially Intensive Rearing Conditions: Impacts on Nile Tilapia Growth Performance and Nutrient Digestibility" Animals 13, no. 1: 136. https://doi.org/10.3390/ani13010136
APA StyleRodrigues, E. J. D., Ito, P. I., Ribeiro, L. F. M., de Carvalho, P. L. P. F., Xavier, W. d. S., Guimarães, M. G., Junior, A. C. F., Pezzato, L. E., & Barros, M. M. (2023). Phytase Supplementation under Commercially Intensive Rearing Conditions: Impacts on Nile Tilapia Growth Performance and Nutrient Digestibility. Animals, 13(1), 136. https://doi.org/10.3390/ani13010136