Licury Cake in Diets for Lactating Goats: Qualitative Aspects of Milk and Cheese
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics Committee and Experiment Location
2.2. Animals, Experimental Design and Management
2.3. Chemical Analysis
2.4. Chemical Composition of Milk
2.5. Fatty Acid Profile of Milk
2.6. Cheese Production and Yield
2.7. Sensorial Analysis
2.8. Statistical Analysis
3. Results
3.1. Nutritional Components Intake and Milk Chemical Composition
3.2. Fatty Acid Pofile of Milk
3.3. Quality of Minas Frescal Cheese
3.4. Sensorial Analysis
4. Discussion
4.1. Nutritional Components Intake and Milk Chemical Composition
4.2. Fatty Acid Pofile of Milk
4.3. Quality of Minas Frescal Cheese
4.4. Sensorial Analysis
4.5. Lipids and Human Health
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Clark, S.; García, M.B.M. A 100-year review: Advances in goat milk research. Int. J. Dairy Sci. 2017, 100, 10026–10044. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mcgrath, J.; Duval, S.M.; Tamassia, L.F.M.; Kindermann, M.; Stemmler, R.T.; Gouve, V.N.; Acedo, T.S.; Immig, I.; Williams, S.N.; Celi, P. Nutritional strategies in ruminants: A lifetime approach. Res. Vet. Sci. 2018, 116, 28–39. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, A.C.; Vieira, J.F.; Barbosa, A.M.; Silva, T.M.; Bezerra, L.R.; Nascimento, N.G., Jr.; Freitas, J.E., Jr.; Jaeger, S.M.P.L.; Oliveira, P.A.; Oliveira, R.L. Effect of replacing ground corn and soybean meal with licuri cake on the performance, digestibility, nitrogen metabolism and ingestive behavior in lactating dairy cows. Anim. Sci. J. 2017, 11, 1957–1965. [Google Scholar] [CrossRef] [PubMed]
- Rufino, M.U.L.; Costa, J.T.M.; Silva, V.A.; Andrade, L.H.C. Knowledge and use of ouricuri (Syagrus coronata) and babaçu (Orbignya phalerata) in Buíque, Pernambuco State, Brazil. Acta Bot. Bras. 2008, 22, 1141–1149. [Google Scholar] [CrossRef] [Green Version]
- Costa, J.B.; Oliveira, R.L.; Silva, T.M.; Ribeiro, O.L.; Ribeiro, R.D.X.; Pinto, L.F.B.; Nascimento, T.V.C. Economic analysis of the finishing of lambs under confinement conditions using licuri cake (Syagrus coronata Mart. Becc.). Rev. Bras. Saúde Prod. Anim. 2019, 20, e0252019. [Google Scholar] [CrossRef]
- Silva, W.P.; Santos, S.A.; Cirne, L.G.; Pina, D.S.; Alba, H.D.; Rodrigues, T.C.G.C.; Araújo, M.L.G.M.L.; Lima, V.G.O.; Galvão, J.M.; Nascimento, C.O.; et al. Carcass characteristics and meat quality of feedlot goat kids fed high-concentrate diets with licury cake. Livest Sci. 2021, 244, 104391. [Google Scholar] [CrossRef]
- Bagaldo, A.R.; Miranda, G.S.; Soares, M.S.F., Jr.; Araújo, F.L.; Matoso, R.V.M.; Chizzotti, M.L.; Bezerra, L.R.; Oliveira, R.L. Effect of Licuri cake supplementation on performance, digestibility, ingestive behavior, carcass traits and meat quality of grazing lambs. Small Rumin. Res. 2019, 177, 18–24. [Google Scholar] [CrossRef]
- Borja, M.S.; Oliveira, R.L.; Ribeiro, C.V.M.; Bagaldo, A.R.; Carvalho, G.G.P.; Silva, T.M.; Lima, L.S.; Barbosa, L.P. Effects of feeding licury (Syagrus coronate) cake to growing goats. Asian-Australas J. Anim. Sci. 2010, 23, 1436–1444. [Google Scholar] [CrossRef]
- Santos, M.C.; Silva, R.R.; Silva, F.F.; Oliveira, A.B.; Santos, L.V.; Paixão, T.R.; Silva, P.G.; Silva, J.W.; Barbosa, R.P.; Costa, G.D. Nutrient intake and ingestive behavior of feedlot steers fed with licuri cake. Trop. Anim. Health Prod. 2020, 52, 1803–1809. [Google Scholar] [CrossRef]
- Costa, J.B.; Oliveira, R.L.; Silva, T.M.; Ribeiro, R.D.X.; Silva, A.M.; Leão, A.G.; Bezerra, L.R.; Rocha, T.C. Intake, digestibility, nitrogen balance, performance, and carcass yield of lambs fed licuri cake. J. Anim. Sci. 2016, 94, 2973–2980. [Google Scholar] [CrossRef]
- Silva, M.L.F.; De Carvalho, G.G.P.; Da Silva, F.F.; Santos, L.V.; Santos, M.D.C.; Da Silva, A.P.G.; Danieleto, A.S.; Mandinga, T.C.S.; Paixão, T.R.; Lima, D.M., Jr.; et al. Effect of dietary inclusion of licuri cake on intake, feeding behavior, and performance of feedlot cull cows. Trop. Anim. Health Prod. 2022, 54, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Gouvêa, A.A.; Oliveira, R.L.; Leão, A.G.; Assis, D.Y.; Bezerra, L.R.; Nascimento, N.G., Jr.; Trajano, J.S.; Pereira, E.S. Color, sensory and physicochemical attributes of beef burger made using meat from young bulls fed levels of licuri cake. J. Sci. Food Agric. 2016, 96, 3668–3672. [Google Scholar] [CrossRef] [PubMed]
- Silva, L.F.; Barbosa, A.M.; Da Silva, J.M., Jr.; Oliveira, V.D.S.; Gouvêia, A.A.; Silva, T.M.; Lima, A.G.V.O.; Nascimento, T.V.C.; Bezerra, L.R.; Oliveira, R.L. Growth, physicochemical properties, fatty acid composition and sensorial attributes from longissumus lumborum of young bulls fed diets with containing licuri cake: Meat quality of bulls fed licuri cake. Livest. Sci. 2022, 255, 104775. [Google Scholar] [CrossRef]
- Costa, J.B.; Oliveira, R.L.; Silva, T.M.; Barbosa, A.M.; Borja, M.S.; De Pellegrini, C.B.; Oliveira, V.S.; Ribeiro, R.D.X.; Bezerra, L.R. Fatty acid, physicochemical composition and sensory attributes of meat from lambs fed diets containing licuri cake. PLoS ONE 2018, 13, e0206863. [Google Scholar] [CrossRef] [PubMed]
- National Research Council. Nutrient Requirements of Small Ruminants: Sheep, Goats, Cervids and New World Camelids; National Academy Press: Washington, DC, USA, 2007; p. 362. [Google Scholar]
- AOAC. Official Methods of Analysis of the Association of Official Analytical Chemists, 15th ed.; Association of Official Analytical Chemists Inc.: Washington, DC, USA, 1990. [Google Scholar]
- Van Soest, P.V.; Robertson, J.B.; Lewis, B.A.E. Methods for dietary fiber, neutral detergent fiber, and nonstarch poly-saccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef] [PubMed]
- Mertens, D.R. Gravimetric determination of amylase-treated neutral detergent fiber in feeds with refluxing in beaker or crucibles: Collaborative study. J. AOAC. 2002, 85, 1217–1240. [Google Scholar] [CrossRef]
- Licitra, G.; Hernandez, T.M.; Van Soest, P.J. Standardization of procedures for nitrogen fractionation of ruminants feeds. Anim. Feed Sci. Technol. 1996, 57, 347–358. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of the Association of Official Analytical Chemists, 18th ed.; Association of Official Analytical Chemists Inc.: Washington, DC, USA, 2005. [Google Scholar]
- Hall, M.B. Challenges with nonfiber carbohydrate methods. J. Anim. Sci. 2003, 81, 3226–3232. [Google Scholar] [CrossRef]
- Detmann, E.; Valadares Filho, S.C. On the estimation of non-fibrous carbohydrates in feeds and diets. Arq. Bras. Med. Vet. Zootec. 2010, 62, 980–984. [Google Scholar] [CrossRef]
- Reis, M.J.; Santos, S.A.; Prates, L.L.; Detmann, E.; Carvalho, G.G.P.; Santos, A.C.S.; Rufino, L.M.; Mariz, L.D.; Neri, F.; Costa, E. Comparing sheep and cattle to quantify internal markers in tropical feeds using in situ ruminal incubation. Anim. Feed Sci. Technol. 2017, 232, 139–147. [Google Scholar] [CrossRef]
- Kramer, J.K.G.; Vivek, F.V.; Dugana, M.E.R.; Frank, D.; Sauera, F.D.; Mossobab, M.M.; Martin, P.; Yuraweczb, M.P. Evaluating acid and base catalysts in the methylation of milk and rumen fatty acids with special emphasis on conjugated dienes and total trans fatty acids. Lipids 1997, 32, 1219–1228. [Google Scholar] [CrossRef] [PubMed]
- Ulbricht, T.L.V.; Southgate, D.A.T. Coronary heart disease: Seven dietary factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef] [PubMed]
- Bessa, R.J.B. Revalorização nutricional das gorduras dos ruminantes. In Symposium Europeo—Alimentación en el Siglo XXI; Calcro, R., Gómez-Nieves, J.M., Eds.; Colégio Oficial de Veterinários de Badajoz: Badajoz, Spain, 1999; pp. 283–313. [Google Scholar]
- Santos-Silva, J.; Bessa, R.J.B.; Santos-Silva, F. Effect of genotype, feeding system and slaughter weight on the quality of light lambs: Fatty and composition of meat. Livest. Prod. Sci. 2002, 77, 187–194. [Google Scholar] [CrossRef]
- Brazil—Ministry of Health; National Health Surveillance Agency—ANVISA. Technical Regulation on Sanitary Hygiene Conditions and Good Manufacturing Practices for Food Producing/Industrializing Establishments; Ordinance SVS/MS No. 326 of July 30, 1997; Federal Official Gazette: Brasília, Brazil, 1997. [Google Scholar]
- Malheiros, P.S.; Sant’anna, V.; Barbosa, M.S.; Brandelli, A.; De Melo Franco, B.D.G.M. Effect of liposome-encapsulated nisin and bacteriocin-like substance P34 on Listeria monocytogenes growth in Minas frescal cheese. Int. J. Food Microbiol. 2012, 156, 272–277. [Google Scholar] [CrossRef]
- El-Gawad, M.A.A.; Ahmed, N.S. Cheese yield as affected by some parameters review. Acta Sci. Pol. Technol. Aliment. 2011, 10, 131–153. [Google Scholar]
- Ferreira, F.G.; Leite, L.C.; Alba, H.D.; Mesquita, B.M.D.C.; Santos, S.A.; Tosto, M.S.; Costa, M.P.; Pina, D.S.; Gordiano, L.A.; Garcia, A.O.; et al. Palm Kernel Cake in Diets for Lactating Goats: Qualitative Aspects of Milk and Cheese. Animals 2021, 11, 3501. [Google Scholar] [CrossRef]
- Pinheiro, R.S.B.; Jorge, A.M.; Francisco, C.L. Chemical composition and yield of in natura and roast sheep meat. Ciênc. Tecnol. Aliment. 2008, 28, 154–157. [Google Scholar] [CrossRef] [Green Version]
- SAS Institute. SAS System for Windows, version 9.2; SAS Institute: Cary, NC, USA, 2009. [Google Scholar]
- Dado, R.G.; Allen, M.S. Variation in and relationships among feeding. Chewing and drinking variables for lactating dairy cows. J. Dairy Sci. 1994, 77, 132–144. [Google Scholar] [CrossRef]
- Palmquist, D.L.; Beaulieu, A.D.; Barbano, D.M. Feed and animal factors influencing milk fat composition. J. Dairy Sci. 1993, 76, 753–771. [Google Scholar] [CrossRef]
- Queiroga, R.C.R.E.; Maia, M.O.; Medeiros, A.N.; Costa, R.G.; Pereira, R.A.G.; Bomfim, M.A.D. Production and chemical composition of the milk from crossbred Moxotó goats supplemented with licuri or castor oil. Rev. Bras. Zootec. 2010, 39, 204–208. [Google Scholar] [CrossRef]
- Porto, A.F., Jr.; Silva, F.F.D.; Silva, R.R.; Souza, D.D.D.; Costa, E.N.; Costa, E.G.L.; Santiago, B.M.; Gonçalves, G.D.S. Milk fatty acid profile of crossbred Holstein x Zebu cows fed on cake licuri. Rev. Mex. Cienc. Pecu. 2021, 12, 72–86. [Google Scholar] [CrossRef]
- Lima, R.R.; Gomes, E.R.; Stephani, R.; Perrone, Í.T.; Carvalho, A.F.; Oliveira, L.F.C. Nutritional and technological aspects of vegetable oils that stand out for the prevalence of medium-chain triacylglycerides: A review. Res. Soc. Dev. 2021, 10, e43710716667. [Google Scholar] [CrossRef]
- Griinari, J.M.; Corl, B.A.; Lacy, S.H.; Chouinard, P.Y.; Nurmela, K.V.V.; Bauman, D.E. Conjugated linoleic acid is synthesized endogenously in lactating dairy cows by Δ9-desaturase. J. Nutr. 2000, 130, 2285–2291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, P.B.; Park, Y. Conjugated Linoleic Acid in Human Health: Effects on Weight Control. In Nutrition in the Prevention and Treatment of Abdominal Obesity (2nd Edition); Elsevier Academic Press: London, UK, 2019; pp. 355–382. [Google Scholar] [CrossRef]
- Thierry, A.; Collins, Y.F.; Mukdsi, M.A.; Mcsweeney, P.L.; Wilkinson, M.G.; Spinnler, H.E. Lipolysis and metabolism of fatty acids in cheese. In Cheese; Academic Press: Cambridge, MA, USA, 2017; pp. 423–444. [Google Scholar] [CrossRef]
- Villamil, R.A.; Guzmán, M.P.; Ojeda-Arredondo, M.; Cortés, L.Y.; Archila, E.G.; Giraldo, A.; Mondragón, A.I. Cheese fortification through the incorporation of UFA-rich sources: A review of recent (2010–2020) evidence. Heliyon 2021, 7, e05785. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Mustafa, A.F.; Zhao, X. Effects of flaxseed supplementation to lactating ewes on milk composition, cheese yield, and fatty acid composition of milk and cheese. Small Rumin. Res. 2006, 63, 233–241. [Google Scholar] [CrossRef]
- Childs, J.L.; Drake, M. Consumer perception of fat reduction in cheese. J. Sens. Stud. 2009, 24, 902–921. [Google Scholar] [CrossRef]
- Ianni, A.; Bennato, F.; Martino, C.; Grotta, L.; Martino, G. Volatile flavor compounds in cheese as affected by ruminant diet. Molecules 2020, 25, 461. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Lei, H.; Jiang, H.; Fan, Y.; Shi, J.; Li, C.; Chen, F.; Mi, B.; Ma, M.; Lin, J.; et al. Saturated fatty acid biomarkers and risk of cardiometabolic diseases: A meta-analysis of prospective studies. Front. Nutr. 2022, 9, 963471. [Google Scholar] [CrossRef]
- Sacks, F.M.; Lichtenstein, A.H.; Wu, J.H.; Appel, L.J.; Creager, M.A.; Kris-Etherton, P.M.; Miller, M.; Rimm, E.B.; Rudel, L.L.; Robinson, J.G.; et al. Dietary fats and cardiovascular disease: A presidential advisory from the American Heart Association. Circulation 2017, 136, e1–e23. [Google Scholar] [CrossRef]
- Seyyedsalehi, M.S.; Collatuzzo, G.; Rashidian, H.; Hadji, M.; Gholipour, M.; Mohebbi, E.; Kamangar, F.; Pukkala, E.; Huybrechts, I.; Gunter, M.J.; et al. Dietary ruminant and industrial trans-fatty acids intake and colorectal cancer risk. Nutrients 2022, 14, 4912. [Google Scholar] [CrossRef]
- Astrup, A.; Magkos, F.; Bier, D.M.; Brenna, J.T.; De Oliveira Otto, M.C.; Hill, J.O.; King, J.C.; Mente, A.; Ordovas, J.M.; Volek, J.S.; et al. Saturated fats and health: A reassessment and proposal for food-based recommendations: JACC state-of-the-art review. J. Am. Coll. Cardiol. 2020, 76, 844–857. [Google Scholar] [CrossRef] [PubMed]
Variable | Licury Cake (g/kg) | Licury Cake | |||
---|---|---|---|---|---|
0 | 67 | 133 | 200 | ||
Ingredient (g/kg) | |||||
Maize silage | 500.0 | 500.0 | 500.0 | 500.0 | - |
Licury cake | 0.0 | 67.0 | 133.0 | 200.0 | - |
Ground corn | 225.0 | 183.0 | 146.0 | 108.0 | - |
Cottonseed meal | 200.0 | 175.0 | 146.0 | 117.0 | - |
Corn germ | 17.0 | 17.0 | 17.0 | 17.0 | - |
Soybean meal 1 | 42.0 | 42.0 | 42.0 | 42.0 | - |
Urea | 8.0 | 8.0 | 8.0 | 8.0 | |
Mineral supplement 2 | 8.0 | 8.0 | 8.0 | 8.0 | - |
Chemical composition (g/kg DM) | |||||
Dry matter (g/kg as-fed) | 620.0 | 620.7 | 621.3 | 621.8 | 913.2 |
Mineral matter | 34.0 | 33.0 | 30.5 | 35.1 | 32.1 |
Crude protein | 184.6 | 184.2 | 182.8 | 178.0 | 176.6 |
Neutral detergent Fiber ap 3 | 382.6 | 411.8 | 440.0 | 468.3 | 637.2 |
Acid detergent Fiber ap 3 | 258.8 | 279.4 | 299.1 | 318.8 | 487.4 |
pdNDF 4 | 223.2 | 240.1 | 256.4 | 272.7 | 368.8 |
Neutral detergent insoluble nitrogen | - | - | - | - | 13.7 |
Acid detergent insoluble nitrogen | - | - | - | - | 3.1 |
Lignin | 81.5 | 90.2 | 98.7 | 107.1 | 218.2 |
Ether extract | 40.6 | 39.4 | 38.0 | 36.6 | 33.9 |
Non-fibrous carbohydrates | 374.5 | 323.3 | 299.6 | 273.0 | 120.2 |
Total digestible nutrients | 768.7 | 735.6 | 725.9 | 710.7 | 610.6 |
Variable | Licury Cake (g/kg) | Mean | SEM 1 | p-Value | ||||
---|---|---|---|---|---|---|---|---|
0 | 67 | 133 | 200 | Linear | Quadratic | |||
Nutritional component intake (kg/day) | ||||||||
Dry matter | 1.60 | 1.65 | 1.59 | 1.61 | 1.61 | 0.05 | 0.876 | 0.591 |
Crude protein | 0.30 | 0.31 | 0.29 | 0.29 | 0.30 | 0.01 | 0.392 | 0.714 |
Milk chemical composition (g/day) | ||||||||
Fat | 38.01 | 40.50 | 40.65 | 38.40 | 39.39 | 2.27 | 0.670 | 0.185 |
Protein | 34.62 | 33.52 | 34.73 | 32.79 | 33.92 | 2.16 | 0.617 | 0.710 |
Lactose | 46.27 | 44.63 | 47.16 | 43.92 | 45.50 | 3.18 | 0.738 | 0.614 |
Total solids | 126.82 | 126.61 | 130.36 | 122.29 | 126.52 | 8.04 | 0.854 | 0.377 |
Casein | 2.61 | 2.52 | 2.54 | 2.51 | 2.55 | 0.29 | 0.129 | 0.437 |
Variable | Licury Cake (g/kg) | SEM 1 | p-Value | ||||
---|---|---|---|---|---|---|---|
0 | 67 | 133 | 200 | Linear | Quadratic | ||
Fatty acid (mg/100 mg) | |||||||
Butyric acid (C4:0) | 1.22 | 1.36 | 1.33 | 1.40 | 0.11 | 0.540 | 0.850 |
Caproic acid (C6:0) | 1.86 | 1.83 | 1.82 | 1.71 | 0.10 | 0.567 | 0.823 |
Caprylic acid (C8:0) | 2.00 | 2.12 | 2.01 | 1.90 | 0.12 | 0.747 | 0.676 |
Capric acid (C10:0) | 6.55 | 7.26 | 6.38 | 6.17 | 0.42 | 0.627 | 0.620 |
Lauric acid (C12:0) 2 | 2.78 | 3.70 | 4.00 | 4.47 | 0.21 | 0.002 | 0.459 |
Myristic acid (C14:0) 3 | 7.53 | 9.30 | 8.77 | 9.53 | 0.57 | 0.001 | <0.001 |
Myristoleic acid (C14:1) 4 | 0.07 | 0.09 | 0.10 | 0.16 | 0.02 | 0.002 | 0.177 |
Pentadecanoic acid (C15:0) | 0.77 | 0.85 | 0.80 | 0.83 | 0.06 | 0.673 | 0.731 |
Palmitic acid (C16:0) | 25.60 | 26.97 | 25.69 | 27.02 | 0.44 | 0.481 | 0.987 |
Palmitoleic acid (C16:1) | 0.64 | 0.73 | 0.89 | 1.10 | 0.11 | 0.134 | 0.776 |
Heptadecanoic acid (C17:0) | 0.78 | 0.51 | 0.14 | 0.17 | 0.09 | 0.005 | 0.326 |
Stearic acid (C18:0) | 15.17 | 12.03 | 14.25 | 12.03 | 0.54 | 0.105 | 0.624 |
Vaccenic acid (C18:1 t11) | 1.18 | 0.98 | 1.07 | 1.18 | 0.06 | 0.870 | 0.242 |
Oleic acid (C18:1 n9) | 23.36 | 21.55 | 21.58 | 21.95 | 0.63 | 0.407 | 0.431 |
Linoleic acid (C18:2 n6) | 3.86 | 3.65 | 3.46 | 2.93 | 0.20 | 0.130 | 0.708 |
Arachidic acid (C20:0) | 0.27 | 0.25 | 0.27 | 0.26 | 0.01 | 0.888 | 0.761 |
Linolenic acid (C18:3 n3) | 0.22 | 0.08 | 0.13 | 0.17 | 0.10 | 0.662 | 0.176 |
Rumenic acid (C18:2 c9t11) 5 | 0.36 | 0.32 | 0.30 | 0.37 | 0.03 | 0.913 | 0.018 |
Arachidonic acid (C20:4 n6) | 0.19 | 0.28 | 0.18 | 0.23 | 0.26 | 0.936 | 0.756 |
Eicosapentaenoic acid (C20:5 n3) | 0.03 | 0.04 | 0.05 | 0.02 | 0.01 | 0.653 | 0.371 |
Variable | Licury Cake (g/kg) | Mean | SEM 1 | p-Value | ||||
---|---|---|---|---|---|---|---|---|
0 | 67 | 133 | 200 | Linear | Quadratic | |||
Fatty acid profile (mg/100 mg) | ||||||||
Polyunsaturated fatty acids (PUFA) | 4.45 | 4.67 | 4.07 | 3.57 | 4.19 | 0.26 | 0.189 | 0.502 |
Monounsaturated fatty acids | 26.26 | 24.25 | 24.51 | 25.23 | 25.06 | 0.70 | 0.678 | 0.376 |
Saturated fatty acids (SFA) | 64.17 | 66.11 | 65.89 | 63.03 | 64.80 | 0.83 | 0.517 | 0.631 |
PUFA:SFA | 0.07 | 0.07 | 0.06 | 0.05 | 0.06 | 0.00 | 0.189 | 0.581 |
Total | 94.88 | 95.04 | 94.43 | 94.84 | 94.80 | 0.20 | 0.701 | 0.769 |
Omega-6 (ω-6) | 3.86 | 3.65 | 3.46 | 2.93 | 3.48 | 0.20 | 0.130 | 0.708 |
Omega-3 (ω-3) | 0.23 | 0.08 | 0.25 | 0.17 | 0.18 | 0.10 | 0.983 | 0.747 |
ω-6:ω-3 | 25.88 | 22.84 | 29.16 | 18.57 | 24.11 | 4.73 | 0.741 | 0.721 |
Conjugated linoleic acid | 0.36 | 0.37 | 0.36 | 0.37 | 0.37 | 0.03 | 0.815 | 0.073 |
Atherogenicity index | 2.16 | 2.53 | 2.59 | 2.37 | 2.41 | 0.12 | 0.562 | 0.304 |
Thrombogenicity index | 3.09 | 3.11 | 3.34 | 3.16 | 3.18 | 0.13 | 0.321 | 0.628 |
hypocholesterolemic:hypercholesterolemic ratio | 0.75 | 0.76 | 0.64 | 0.63 | 0.70 | 0.02 | 0.449 | 0.420 |
Variable | Licury Cake (g/kg) | SEM 1 | p-Value | ||||
---|---|---|---|---|---|---|---|
0 | 67 | 133 | 200 | Linear | Quadratic | ||
Chemical composition (% DM) | |||||||
Moisture 2 | 60.66 | 56.32 | 53.31 | 57.74 | 1.13 | 0.009 | 0.001 |
Crude protein | 44.55 | 45.14 | 43.56 | 43.58 | 0.42 | 0.104 | 0.263 |
Ether extract 3 | 40.33 | 44.53 | 46.69 | 45.66 | 0.74 | 0.002 | 0.021 |
Ash 4 | 7.64 | 6.32 | 6.28 | 5.57 | 0.21 | <0.001 | 0.300 |
Kg of cheese/100 kg of Milk | |||||||
Yield | 16.66 | 16.44 | 15.18 | 16.13 | 0.19 | 0.052 | 0.068 |
Principal Component | Eigenvalues | Variance Ratio (%) | Cumulative Ratio (%) | Color | Odor | Flavor | Texture | Global Acceptance |
---|---|---|---|---|---|---|---|---|
CP1 | 0.476 | 77.800 | 77.800 | 0.151 | 0.192 | −0.292 | 0.9221 | 0.069 |
CP2 | 0.130 | 21.330 | 99.130 | −0.003 | 0.237 | 0.764 | 0.1497 | 0.580 |
CP3 | 0.005 | 0.870 | 100.000 | −0.377 | 0.851 | 0.020 | −0.0827 | −0.354 |
CP4 | 0.000 | 0.000 | 100.000 | 0.914 | 0.321 | 0.059 | −0.1863 | −0.156 |
CP5 | 0.000 | 0.000 | 100.000 | 0.000 | 0.282 | −0.573 | −0.293 | 0.713 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferreira, F.G.; Leite, L.C.; Alba, H.D.R.; Pina, D.d.S.; Santos, S.A.; Tosto, M.S.L.; de Freitas Júnior, J.E.; Rodrigues, C.S.; Mesquita, B.M.A.d.C.; Carvalho, G.G.P.d. Licury Cake in Diets for Lactating Goats: Qualitative Aspects of Milk and Cheese. Animals 2023, 13, 35. https://doi.org/10.3390/ani13010035
Ferreira FG, Leite LC, Alba HDR, Pina DdS, Santos SA, Tosto MSL, de Freitas Júnior JE, Rodrigues CS, Mesquita BMAdC, Carvalho GGPd. Licury Cake in Diets for Lactating Goats: Qualitative Aspects of Milk and Cheese. Animals. 2023; 13(1):35. https://doi.org/10.3390/ani13010035
Chicago/Turabian StyleFerreira, Fernanda G., Laudí C. Leite, Henry D. R. Alba, Douglas dos S. Pina, Stefanie A. Santos, Manuela S. L. Tosto, José E. de Freitas Júnior, Carlindo S. Rodrigues, Bruna M. A. de C. Mesquita, and Gleidson G. P. de Carvalho. 2023. "Licury Cake in Diets for Lactating Goats: Qualitative Aspects of Milk and Cheese" Animals 13, no. 1: 35. https://doi.org/10.3390/ani13010035
APA StyleFerreira, F. G., Leite, L. C., Alba, H. D. R., Pina, D. d. S., Santos, S. A., Tosto, M. S. L., de Freitas Júnior, J. E., Rodrigues, C. S., Mesquita, B. M. A. d. C., & Carvalho, G. G. P. d. (2023). Licury Cake in Diets for Lactating Goats: Qualitative Aspects of Milk and Cheese. Animals, 13(1), 35. https://doi.org/10.3390/ani13010035