Gene Expression Profiles of the Immuno-Transcriptome in Equine Asthma
Abstract
:Simple Summary
Abstract
1. Introduction
2. Material and Methods
2.1. Animals
2.2. Clinical Examination
2.3. Bronchoalveolar Lavage (BAL) Examination
2.4. Gene Selection and Microarray Platform Design
2.5. Microarray Data Acquisition
2.6. Statistical Analysis
3. Results
3.1. Clinical Examination
3.2. Microarray Data Analyses
3.3. Gene Set Enrichment Analysis (GSEA)
4. Discussion
4.1. MEA
4.2. SEA
4.3. Commonly Regulated Genes
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lavoie, J.P. Which is the most appropriate in 2017: “Mild to Severe Equine Asthma” or heaves, RAO, equine COPD, IAD, tracheal IAD, bronchial IAD, small airway disease, chronic bronchitis, SPACOPD, SPOPD, Summer Heaves or Summer RAO? In Proceedings of the World Equine Airway Symposium 2017, Copenhagen, Denmark, 13–15 July 2017; Volume 6. [Google Scholar]
- Kinnison, T.; McGilvray, T.A.; Couëtil, L.L.; Smith, K.C.; Wylie, C.E.; Bacigalupo, S.A.; Gomez-Grau, E.; Cardwell, J.M. Mild-moderate equine asthma: A scoping review of evidence supporting the consensus definition. Vet. J. 2022, 286, 105865. [Google Scholar] [CrossRef] [PubMed]
- Wood, J.L.N.; Newton, J.R.; Chanter, N.; Mumford, J.A. Association between respiratory disease and bacterial and viral infections in british racehorses. J. Clin. Microbiol. 2005, 43, 120–126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beeckman, L.; Tohver, T.; Léguillette, R. Comparison of cytokine mRNA expression in the bronchoalveolar lavage fluid of horses with inflammatory airway disease and bronchoalveolar lavage mastocytosis or neutrophilia using REST software analysis. J. Vet. Intern. Med. 2012, 26, 153–161. [Google Scholar] [CrossRef] [PubMed]
- Sweeney, C.R.; Humber, K.A.; Roby, K.A. Cytologic findings of tracheobronchial aspirates from 66 thoroughbred racehorses. Am. J. Vet. Res. 1992, 53, 1172–1175. [Google Scholar]
- Christley, R.M.; Hodgson, D.R.; Rose, R.J.; Hodgson, J.L.; Wood, J.L.; Reid, S.W. Coughing in thoroughbred racehorses: Risk factors and tracheal endoscopic and cytological findings. Vet. Rec. 2001, 148, 99–104. [Google Scholar] [CrossRef]
- Holcombe, S.J.; Jackson, C.; Gerber, V.; Jefcoat, A.; Berney, C.; Eberhardt, S.; Robinson, N.E. Stabling is associated with airway inflammation in young Arabian horses. Equine Vet. J. 2001, 33, 244–249. [Google Scholar] [CrossRef]
- Vrins, A.; Doucet, M.; Nunez-Ochoa, L. A retrospective study of bronchoalveolar lavage cytology in horses with clinical findings of small airway disease. Vet. Med. Ser. A 1991, 38, 472–479. [Google Scholar] [CrossRef]
- Bedenice, D.; Mazan, M.R.; Hoffman, A.M. Association between Cough and Cytology of Bronchoalveolar Lavage Fluid and Pulmonary Function in Horses Diagnosed with Inflammatory Airway Disease. J. Vet. Intern. Med. 2008, 22, 1022–1028. [Google Scholar] [CrossRef]
- Couëtil, L.L.; Rosenthal, F.S.; DeNicola, D.B.; Chilcoat, C.D. Clinical signs, evaluation of bronchoalveolar lavage fluid, and assessment of pulmonary function in horses with inflammatory respiratory disease. Am. J. Vet. Res. 2001, 62, 538–546. [Google Scholar] [CrossRef]
- Lavoie, J.P.; Cesarini, C.; Lavoie-Lamoureux, A.; Moran, K.; Lutz, S.; Picandet, V.; Jean, D.; Marcoux, M. Bronchoalveolar lavage fluid cytology and cytokine messenger ribonucleic Acid expression of racehorses with exercise intolerance and lower airway inflammation. J. Vet. Intern. Med. 2011, 25, 322–329. [Google Scholar] [CrossRef] [Green Version]
- Miskovic Feutz, M.; Coueti, L.L.; Riley, C.P.; Zhang, X.; Adamec, J.; Raskin, R.E. Secretoglobin and Transferrin Expression in Bronchoalveolar Lavage Fluid of Horses With Chronic Respiratory Disease. J. Vet. Intern. Med. 2015, 29, 1692–1699. [Google Scholar] [CrossRef] [PubMed]
- Ramseyer, A.; Gaillard, C.; Burger, D.; Straub, R.; Jost, U.; Boog, C.; Marti, E.; Gerber, V. Effects of genetic and environmental factors on Horse Owner Assessed Respiratory Signs Index (HOARSI). J. Vet. Intern. Med. 2007, 21, 149–156. [Google Scholar] [CrossRef]
- Abraham, G.; Shibeshi, W.; Ungemach, F.R. Identification and characterization of β-adrenergic receptors in isolated primary equine tracheal epithelial cells. Pulm. Pharmacol. Ther. 2011, 24, 174–181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moran, G.; Buechner-Maxwell, V.A.; Folch, H.; Henriquez, C.; Galecio, J.S.; Perez, B.; Carrasco, C.; Barria, M. Increased apoptosis of CD4 and CD8 T lymphocytes in the airways of horses with recurrent airway obstruction. Vet. Res. Commun. 2011, 35, 447–456. [Google Scholar] [CrossRef] [PubMed]
- Klukowska-Rötzler, J.; Swinburne, J.E.; Drögemüller, C.; Dolf, G.; Janda, J.; Leeb, T.; Gerber, V. The interleukin 4 receptor gene and its role in recurrent airway obstruction in Swiss Warmblood horses. Anim. Genet. 2012, 43, 450–453. [Google Scholar] [CrossRef]
- Ainsworth, D.M.; Grünig, G.; Matychak, M.B.; Young, J.; Wagner, B.; Erb, H.N.; Antczak, D.F. Recurrent airway obstruction (SEA) in horses is characterized by IFN-gamma and IL-8 production in bronchoalveolar lavage cells. Vet. Immunol. Immunopathol. 2003, 15, 83–91. [Google Scholar] [CrossRef] [PubMed]
- Horohov, D.W.; Beadle, R.E.; Mouch, S.; Pourciau, S.S. Temporal regulation of cytokine mRNA expression in equine recurrent airway obstruction. Vet. Immunol. Immunopathol. 2005, 18, 237–245. [Google Scholar] [CrossRef] [PubMed]
- MacNamara, B.; Bauer, S.; Iafe, J. Endoscopic evaluation of exercise-induced pulmonary hemorrhage and chronic obstructive pulmonary disease in association with poor performance in racing Standardbreds. J. Am. Vet. Med. Assoc. 1990, 196, 443–445. [Google Scholar]
- Padoan, E.; Ferraresso, S.; Pegolo, S.; Castagnaro, M.; Barnini, C.; Bargelloni, L. Real time RT-PCR analysis of inflammatory mediator expression in recurrent airway obstruction-affected horses. Vet. Immunol. Immunopathol. 2013, 156, 190–199. [Google Scholar] [CrossRef]
- Butte, A. The use and analysis of microarray data. Nat. Rev. Drug Discov. 2002, 1, 951–960. [Google Scholar] [CrossRef]
- Staudt, L.M. Gene expression physiology and pathophysiology of the immune system. Trends Immunol. 2001, 22, 35–40. [Google Scholar] [CrossRef] [PubMed]
- Stoughton, R.B. Applications of DNA microarrays in biology. Annu. Rev. Biochem. 2005, 74, 53–82. [Google Scholar] [CrossRef] [PubMed]
- Woodruff, P.G.; Boushey, H.A.; Dolganov, G.M.; Barker, C.S.; Yang, Y.H.; Donnelly, S.; Ellwanger, A.; Sidhu, S.S.; Dao-Pick, T.P.; Pantoja, C.; et al. Genome-wide profiling identifies epithelial cell genes associated with asthma and with treatment response to corticosteroids. Proc. Natl. Acad. Sci. USA 2007, 104, 15858–15863. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, S.G.; Choi, J.W.; Kim, H.J.; Roh, G.S.; Bok, J.; Go, M.J.; Kwack, K.; Oh, B.; Kim, Y. Genome-wide profiling of antigen-induced time course expression using murine models for acute and chronic asthma. Arch. Allergy Immunol. 2008, 146, 44–56. [Google Scholar] [CrossRef] [PubMed]
- Ramery, E.; Closset, R.; Bureau, F.; Art, T.; Lekeux, P. Relevance of using a human microarray to study gene expression in heaves-affected horses. Vet. J. 2008, 177, 216–221. [Google Scholar] [CrossRef]
- Korn, A.; Miller, D.; Domg, L.; Buckles, E.L.; Wagner, B.; Ainsworth, D.M. Differential Gene Expression Profiles and Selected Cytokine Protein Analysis of Mediastinal Lymph Nodes of Horses with Chronic Recurrent Airway Obstruction (RAO) Support an Interleukin-17 Immune Response. PLoS ONE 2015, 10, e0142622. [Google Scholar] [CrossRef] [PubMed]
- Niedźwiedź, A. Equine recurrent airway obstruction. Maced. Vet. Rev. 2014, 37, 115–120. [Google Scholar] [CrossRef] [Green Version]
- Tilley, P.; Sales Luis, J.P.; Branco Ferreira, M. Correlation and discriminant analysis between clinical, endoscopic, thoracic X-ray and bronchoalveolar lavage fluid cytology scores, for staging horses with recurrent airway obstruction (RAO). Res. Vet. Sci. 2012, 93, 1006–1014. [Google Scholar] [CrossRef]
- Gerber, V.; Straub, R.; Marti, E.; Hauptman, J.; Herholz, C.; King, M.; Imhof, A.; Tahon, L.; Robinson, N.E. Endoscopic scoring of mucus quantity and quality: Observer and horse variance and relationship to inflammation, mucus viscoelasticity and volume. Equine Vet. J. 2004, 36, 576–582. [Google Scholar] [CrossRef]
- Vawda, S.; Mansour, R.; Takeda, A.; Funnell, P.; Kerry, S.; Mudway, I.; Jamaludin, J.; Shaheen, S.; Griffiths, C.; Walton, R. Associations between inflammatory and immune response genes and adverse respiratory outcomes following exposure to outdoor air pollution: A huge systematic review. Am. J. Epidemiol. 2013, 179, 432–442. [Google Scholar] [CrossRef]
- Holgate, S.T. Mechanisms of asthma and implications for its prevention and treatment: A personal journey. Allergy Asthma Immunol. Res. 2013, 5, 343–347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Li, H.; Xiao, T.; Lu, Q. Epigenetics in immune-mediated pulmonary diseases. Clin. Rev. Allergy Immunol. 2013, 45, 314–330. [Google Scholar] [CrossRef] [PubMed]
- Kimura, H.; Yoshizumi, M.; Ishii, H.; Oishi, K.; Ryo, A. Cytokine production and signaling pathways in respiratory virus infection. Front. Microbiol. 2013, 4, 276. [Google Scholar] [CrossRef] [Green Version]
- Zihlif, M.; Mahafza, T.; Obeidat, N.M.; Froukh, T.; Shaban, M.; Al-Akhras, F.M.; Zihlif, N.; Naffa, R. Frequency of genetic polymorphisms of ADAM33 and their association with allergic rhinitis among Jordanians. Gene 2013, 531, 462–466. [Google Scholar] [CrossRef] [PubMed]
- Ferraresso, S.; Bonaldo, A.; Parma, L.; Cinotti, S.; Massi, P.; Bargelloni, L.; Gatta, P.P. Exploring the larval transcriptome of the common sole (Solea solea L.). BMC Genomics 2013, 14, 315. [Google Scholar] [CrossRef] [Green Version]
- Chowdhary, R.; Tan, S.L.; Pavesi, G.; Jin, J.; Dong, D.; Mathur, S.K.; Burkart, A.; Narang, V.; Glurich, I.; Raby, B.A.; et al. A database of annotated promoters of genes associated with common respiratory and related diseases. Am. J. Respir. Cell Mol. Biol. 2012, 47, 112–119. [Google Scholar] [CrossRef] [PubMed]
- Ainsworth, D.M.; Wagner, B.; Franchini, M.; Grünig, G.; Erb, H.N.; Tan, J.Y. Time-dependent alterations in gene expression of interleukin-8 in the bronchial epithelium of horses with recurrent airway obstruction. Am. J. Vet. Res. 2006, 67, 669–677. [Google Scholar] [CrossRef]
- Karagianni, A.E.; Kapetanovic, R.; McGorum, B.C.; Hume, D.A.; Pirie, S.R. The equine alveolar macrophage: Functional and phenotypic comparisons with peritoneal macrophages. Vet. Immunol. Immunopathol. 2013, 155, 219–228. [Google Scholar] [CrossRef] [Green Version]
- Perry, A.K.; Chen, G.; Zheng, D.; Tang, H.; Cheng, G. The host type I interferon response to viral and bacterial infections. Cell Res. 2005, 15, 407–422. [Google Scholar] [CrossRef] [Green Version]
- Tohme, Z.N.; Amar, S.; Van Dyke, T.E. Moesin Functions as a Lipopolysaccharide Receptor on Human Monocytes. Infect. Immun. 1999, 67, 3215–3220. [Google Scholar] [CrossRef] [Green Version]
- Smith, W.L.; Garavito, R.M.; DeWitt, D.L. Prostaglandin endoperoxide H synthases (cyclooxygenases)-1 and -2. J. Biol. Chem. 1996, 271, 33157–33160. [Google Scholar] [CrossRef] [Green Version]
- Schneider, P.; Thome, M.; Burns, K.; Bodmer, J.L.; Hofmann, K.; Kataoka, T.; Holler, N.; Tschopp, J. TRAIL receptors 1 (DR4) and 2 (DR5) signal FADD-dependent apoptosis and activate NF-κB. Immunity 1997, 7, 831–836. [Google Scholar] [CrossRef] [PubMed]
- Cassatella, M.A.; Huber, V.; Calzetti, F.; Margotto, D.; Tamassia, N.; Peri, G.; Mantovani, A.; Rivoltini, L.; Tecchio, C. Interferon-activated neutrophils store a TNF-related apoptosis-inducing ligand (TRAIL/Apo-2 ligand) intracellular pool that is readily mobilizable following exposure to proinflammatory mediators. J. Leukoc. Biol. 2006, 79, 123–132. [Google Scholar] [CrossRef] [PubMed]
- Heuze-Vourc’h, N.; Zhu, L.; Krysan, K.; Batra, R.K.; Sharma, S.; Dubinett, S.M. Abnormal interleukin 10R alpha expression contributes to the maintenance of elevated cyclooxygenase-2 in non-small cell lung cancer cells. Cancer Res. 2003, 63, 766–770. [Google Scholar] [PubMed]
- Staples, K.J.; Hinks, T.S.; Ward, J.A.; Gunn, V.; Smith, C.; Djukanović, R. Phenotypic characterization of lung macrophages in asthmatic patients: Overexpression of CCL17. J. Allergy Clin. Immunol. 2012, 130, 1404–1412. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.C.; Zhang, N.; Van Crombruggen, K.; Hu, G.H.; Hong, S.L.; Bachert, C. Transforming growth factor-beta1 in inflammatory airway disease: A key for understanding inflammation and remodeling. Allergy 2012, 67, 1193–1202. [Google Scholar] [CrossRef]
- Camara, J.; Jarai, G. Epithelial-mesenchymal transition in primary human bronchial epithelial cells is Smad-dependent and enhanced by fibronectin and TNF-alpha. Fibrogenes. Tissue Repair 2010, 3, 2. [Google Scholar] [CrossRef] [Green Version]
- Hackett, T.L.; Warner, S.M.; Stefanowicz, D.; Shaheen, F.; Pechkovsky, D.V.; Murray, L.A.; Argentieri, R.; Kicic, A.; Stick, S.M.; Bai, T.R.; et al. Induction of epithelial-mesenchymal transition in primary airway epithelial cells from patients with asthma by transforming growth factor-beta1. Am. J. Respir. Crit. Care Med. 2009, 180, 122–133. [Google Scholar] [CrossRef]
- Crosby, L.M.; Waters, C.M. Epithelial repair mechanisms in the lung. Am. J. Physiol. Cell. Mol. Physiol. 2010, 298, 715–731. [Google Scholar] [CrossRef] [Green Version]
- Willis, B.C.; Borok, Z. TGF-beta-induced EMT: Mechanisms and implications for fibrotic lung disease. Am. J. Physiol. Cell. Mol. Physiol. 2007, 293, 525–534. [Google Scholar] [CrossRef] [Green Version]
- Watelet, J.B.; Bachert, C.; Claeys, C.; Van Cauwenberge, P. Matrix metalloproteinases MMP-7, MMP-9 and their tissue inhibitor TIMP-1: Expression in chronic sinusitis vs nasal polyposis. Allergy 2004, 59, 54–60. [Google Scholar] [CrossRef]
- Ohbayashi, H.; Shimokata, K. Matrix metalloproteinase- 9 and airway remodeling in asthma. Curr. Drug Targets Inflamm. Allergy 2005, 4, 177–181. [Google Scholar] [CrossRef]
- Rossi, H.S.; Koho, N.M.; Ilves, M.; Rajamäki, M.M.; Mykkänen, A.K. Expression of extracellular matrix metalloproteinase inducer and matrix metalloproteinase-2 and -9 in horses with chronic airway inflammation. Am. J. Vet. Res. 2017, 78, 1329–1337. [Google Scholar] [CrossRef] [PubMed]
- Barton, A.K.; Shety, T.; Bondzio, A.; Einspanier, R.; Gehlen, H. Metalloproteinases and Their Tissue Inhibitors in Comparison between Different Chronic Pneumopathies in the Horse. Mediat. Inflamm. 2015, 2015, 569512. [Google Scholar] [CrossRef] [Green Version]
- Barton, A.K.; Shety, T.; Bondzio, A.; Einspanier, R.; Gehlen, H. Metalloproteinases and their inhibitors are influenced by inhalative glucocorticoid therapy in combination with environmental dust reduction in equine recurrent airway obstruction. BMC Vet. Res. 2016, 12, 282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karagiannidis, C.; Hense, G.; Martin, C.; Epstein, M.; Ruckert, B.; Mantel, P.Y.; Menz, G.; Uhlig, S.; Blaser, K.; Schmidt-Weber, C.B. Activin A is an acute allergen-responsive cytokine and provides a link to TGF-beta-mediated airway remodeling in asthma. J. Allergy Clin. Immunol. 2006, 117, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Breuer, J.; Müller, U.; Locher, L.; Spallek, A.; Recknagel, S.; Uhlig, A.; Schusser, G.F. Differentiation of viable, apoptotic and necrotic cells in bronchoalveolar lavage fluid of normal horses and horses with recurrent airway obstruction. Berl. Munch Tierarztl. Wochenschr. 2011, 124, 154–160. [Google Scholar]
- Moran, G.; Folch, H. Recurrent airway obstruction in horses—An allergic inflammation: A review. Vet. Med. 2011, 56, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Niedzwiedz, A.; Jaworski, Z.; Tykalowski, B.; Smialek, M. Neutrophil and macrophage apoptosis in bronchoalveolar lavage fluid from healthy horses and horses with recurrent airway obstruction (RAO). BMC Vet. Res. 2014, 10, 29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turlej, R.K.; Fiévez, L.; Sandersen, C.F.; Dogné, S.; Kirschvink, N.; Lekeux, P.; Bureau, F. Enhanced survival of lung granulocytes in an animal model of asthma: Evidence for a role of GM-CSF activated STAT5 signalling pathway. Thorax 2001, 56, 696–702. [Google Scholar] [CrossRef]
- Imtiyaz, H.Z.; Simon, M.C. Hypoxia-inducible factors as essential regulators of inflammation. Curr. Top. Microbiol. Immunol. 2010, 345, 105–120. [Google Scholar] [PubMed] [Green Version]
- Fang, H.Y.; Hughes, R.; Murdoch, C.; Coffelt, S.B.; Biswas, S.K.; Harris, A.L.; Johnson, R.S.; Imityaz, H.Z.; Simon, M.C.; Fredlund, E.; et al. Hypoxia-inducible factors 1 and 2 are important transcriptional effectors in primary macrophages experiencing hypoxia. Blood 2009, 114, 844–859. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toussaint, M.; Fievez, L.; Desmet, C.J.; Pirottin, D.; Farnir, F.; Bureau, F.; Lekeux, P. Increased hypoxia-inducible factor 1α expression in lung cells of horses with recurrent airway obstruction. BMC Vet. Res. 2012, 8, 64. [Google Scholar] [CrossRef] [PubMed]
- Du, S.; Wang, S.; Wu, Q.; Hu, J.; Li, T. Decorin inhibits angiogenic potential of choroid-retinal endothelial cells by downregulating hypoxia-induced Met, Rac1, HIF-1α and VEGF expression in cocultured retinal pigment epithelial cells. Exp. Eye Res. 2013, 116, 151–160. [Google Scholar] [CrossRef]
- Sies, H.; Bruene, B. Methods in Enzymology; Oxygen Biology and Hypoxia; Academic Press: Cambridge, MA, USA, 2007; Volume 435. [Google Scholar]
- Koo, H.K.; Hong, Y.; Lim, M.N.; Yim, J.J.; Kim, W.J. Relationship between plasma matrix metalloproteinase levels, pulmonary function, bronchodilator response, and emphysema severity. Int. J. Chronic Obstr. Pulm. Dis. 2016, 11, 1129–1137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Churg, A.; Zhou, S.; Wright, J.L. Matrix metalloproteinases in COPD. Eur. Respir. J. 2012, 39, 197–209. [Google Scholar] [CrossRef]
- Naik, S.P.; Mahesh, P.A.; Jayaraj, B.S.; Madhunapantula, S.V.; Jahromi, S.R.; Yadav, M.K. Evaluation of inflammatory markers interleukin-6 (IL-6) and matrix metalloproteinase-9 (MMP-9) in asthma. J. Asthma 2017, 54, 584–593. [Google Scholar] [CrossRef]
- Ramery, E.; Fraipont, A.; Richard, E.A.; Art, T.; Pirottin, D.; van Delm, W.; Bureau, F.; Lekeux, P. Expression microarray as a tool to identify differentially expressed genes in horses suffering from inflammatory airway disease. Vet. Clin. Pathol. 2015, 44, 37–46. [Google Scholar] [CrossRef]
- Luo, X.; Yao, Z.W.; Qi, H.B.; Liu, D.D.; Chen, G.Q.; Huang, S.; Li, Q.S. Gadd45α as an upstream signaling molecule of p38 MAPK triggers oxidative stress-induced sFlt-1 and sEng upregulation in preeclampsia. Cell Tissue Res. 2011, 344, 551–565. [Google Scholar] [CrossRef]
- Leclere, M.; Lavoie-Lamoureux, A.; Lavoie, J.P. Heaves, an asthma-like disease of horses. Respirology 2011, 16, 1027–1046. [Google Scholar] [CrossRef]
- Balaci, L.; Spada, M.C.; Olla, N.; Sole, G.; Loddo, L.; Anedda, F.; Naitza, S.; Zuncheddu, M.A.; Maschio, A.; Altea, D.; et al. IRAK-M is involved in the pathogenesis of early-onset persistent asthma. Am. J. Hum. Genet. 2007, 80, 1103–1114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tak, P.P.; Firestein, G.S.J. NF-kappaB: A key role in inflammatory diseases. Clin. Investig. 2001, 107, 7–11. [Google Scholar] [CrossRef] [PubMed]
- Quarmby, L.M.; Mahjoub, M.R. Caught Nek-ing: Cilia and centrioles. J. Cell. Sci. 2005, 118, 5161–5169. [Google Scholar] [CrossRef] [PubMed]
- Ansley, S.J.; Badano, J.L.; Blacque, O.E.; Hill, J.; Hoskins, B.E.; Leitch, C.C.; Kim, J.C.; Ross, A.J.; Eichers, E.R.; Teslovich, T.M.; et al. Basal body dysfunction is a likely cause of pleiotropic Bardet-Biedl syndrome. Nature 2003, 425, 628–633. [Google Scholar] [CrossRef] [PubMed]
- Sabater, J.R.; Otero, R.; Abraham, W.M.; Wanner, A.; O’Riordan, T.G. Endothelin-1 depresses tracheal mucus velocity in ovine airways via ET-A receptors. Am. J. Respir. Crit. Care Med. 1996, 154, 341–345. [Google Scholar] [CrossRef]
- Coombs, S.L.; Webbon, P.M. Observations on tracheal mucociliary clearance in horses. Tierarztliche Praxis. Suppl. 1987, 2, 5–9. [Google Scholar]
- Willoughby, R.A.; Ecker, G.L.; McKee, S.L.; Riddolls, L.J. Use of scintigraphy for the determination of mucociliary clearance rates in normal, sedated, diseased and exercised horses. Can. J. Vet. Res. Rev. Can. Rech. Veter. 1991, 55, 315–320. [Google Scholar]
- Rose, R.M.; Nickola, T.J.; Voynow, J.A. Airway mucus obstruction: Mucin glycoproteins, MUC gene regulation and goblet cell hyperplasia. Am. J. Respir. Cell Mol. Biol. 2001, 25, 533–537. [Google Scholar] [CrossRef] [Green Version]
- Grumelli, S.; Lu, B.; Peterson, L.; Maeno, T.; Gerard, C. CD46 protects against chronic obstructive pulmonary disease. PLoS ONE 2011, 6, e18785. [Google Scholar] [CrossRef]
- Kilty, S.J.; Bossé, Y.; Cormier, C.; Endam, L.M.; Desrosiers, M.Y. Polymorphisms in the SERPINA1 (Alpha-1-Antitrypsin) gene are associated with severe chronic rhinosinusitis unresponsive to medical therapy. Am. J. Rhinol. Allergy 2010, 24, 4–9. [Google Scholar] [CrossRef]
- Papatheodorou, A.; Makrythanasis, P.; Kaliakatsos, M.; Dimakou, A.; Orfanidou, D.; Roussos, C.; Kanavakis, E.; Tzetis, M. Development of novel microarray methodology for the study of mutations in the SERPINA1 and ADRB2 genes--their association with Obstructive Pulmonary Disease and Disseminated Bronchiectasis in Greek patients. Clin. Biochem. 2010, 43, 43–50. [Google Scholar] [CrossRef] [PubMed]
Sex | Neutrophils (%) | Macrophages (%) | Eosinophils (%) | Lymphocytes (%) | Epithelial (%) | Mast Cells (%) | ||
---|---|---|---|---|---|---|---|---|
Controls | C1 | F | 0 | 98.6 | 0 | 1.4 | 0 | 0 |
C2 | F | 1.5 | 96.8 | 0.7 | 1 | 0 | 0 | |
C3 | M | 0 | 99 | 0.3 | 0.7 | 2 | 0 | |
C4 | M | 0.2 | 99.6 | 0 | 0.2 | 2 | 0 | |
C5 | F | 2 | 97.1 | 0.6 | 0.3 | 1.3 | 0 | |
C6 | F | 0.2 | 99.6 | 0 | 0.2 | 0.8 | 0 | |
C7 | M | 0.8 | 91.7 | 6.6 | 0 | 1.3 | 0 | |
Mean ± DS | 0.7 ± 0.80 | 97.5 ± 2.78 | 1.2 ± 2.41 | 0.5 ± 0.51 | 1.0 ± 0.84 | 0 | ||
MEA | I1 | M | 12.2 | 86.3 | 1 | 3.2 | 3.1 | 0 |
I2 | M | 11.6 | 85.5 | 0 | 2.9 | 2.5 | 0 | |
I3 | M | 6.1 | 89.8 | 0 | 4.1 | 3.9 | 0 | |
I4 | F | 5.3 | 89.7 | 0 | 5 | 2 | 0 | |
I5 | F | 5.9 | 91.3 | 0 | 2.8 | 2.5 | 0 | |
I6 | M | 10.2 | 83.9 | 1 | 3.9 | 1.3 | 0 | |
I7 | M | 6.8 | 88.9 | 0 | 4.3 | 3.5 | 0 | |
I8 | F | 8.2 | 89.7 | 0 | 2.1 | 3.5 | 0 | |
I9 | F | 6.8 | 91.3 | 0 | 1.9 | 1.2 | 0 | |
I10 | F | 5.6 | 88.8 | 1.2 | 3.6 | 1 | 0 | |
Mean ± DS | 7.9 ± 2.57 | 88.3 ± 2.48 | 0.3 ± 0.52 | 3.4 ± 0.98 | 2.4 ± 1.05 | 0 | ||
SEA | R1 | F | 81 | 15 | 1 | 1 | 2 | 0 |
R2 | M | 78.5 | 21.5 | 0 | 0 | 3.7 | 0 | |
R3 | F | 97.4 | 1.7 | 0 | 0.9 | 0 | 0 | |
R4 | M | 92.8 | 7.2 | 0 | 0 | 2 | 0 | |
R5 | M | 86.9 | 12.8 | 0 | 0.3 | 3 | 0 | |
R6 | M | 56.2 | 38.2 | 3.2 | 3.4 | 0.4 | 0 | |
R7 | F | 82.6 | 17.2 | 0 | 0.2 | 1 | 0 | |
R8 | F | 98.5 | 1.2 | 0 | 0.3 | 1 | 0 | |
Mean ± DS | 84.2 ± 13.57 | 14.3 ± 12.04 | 0.5 ± 1.14 | 0.8 ± 1.13 | 1.6 ± 1.28 | 0 |
Gene Set Name | Size | NOM p-Value | FDR q-Value |
---|---|---|---|
Biocarta _P53_ pathway | 11 | 0.00 | 0.25 |
Biocarta_stress_pathway | 21 | 0.00 | 0.15 |
Reactome_MAPK_Targets_Nuclear_Events_Mediated_By_MAP_Kinases | 22 | 0.010 | 0.10 |
Reactome_Toll_Like_Receptor_3_Cascade | 43 | 0.012 | 0.13 |
Biocarta _IL12_ pathway | 15 | 0.013 | 0.12 |
Reactome _Toll_Receptor_Cascades | 56 | 0.016 | 0.10 |
Reactome _Signaling_In_Immune_System | 187 | 0.019 | 0.10 |
Reactome _CD28_Co_Stimulation | 21 | 0.020 | 0.11 |
Biocarta _CD40_ pathway | 14 | 0.024 | 0.10 |
Kegg _Cytokine_Cytokine_Receptor_Interaction | 125 | 0.027 | 0.09 |
Kegg_MAPK_Signaling_ pathway | 138 | 0.028 | 0.10 |
Kegg _Chemokine_Signaling_ pathway | 107 | 0.029 | 0.10 |
Reactome _Innate_Immunity_Signaling | 69 | 0.031 | 0.11 |
Kegg _Leukocyte_Transendothelial_Migration | 69 | 0.032 | 0.12 |
Biocarta _Toll_ pathway | 25 | 0.034 | 0.10 |
Biocarta _IL7_ pathway | 15 | 0.041 | 0.11 |
Biocarta _TNFR2_ pathway | 15 | 0.045 | 0.10 |
Asthma (Chowdhary et al. [27]) | 174 | 0.048 | 0.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Padoan, E.; Ferraresso, S.; Pegolo, S.; Barnini, C.; Castagnaro, M.; Bargelloni, L. Gene Expression Profiles of the Immuno-Transcriptome in Equine Asthma. Animals 2023, 13, 4. https://doi.org/10.3390/ani13010004
Padoan E, Ferraresso S, Pegolo S, Barnini C, Castagnaro M, Bargelloni L. Gene Expression Profiles of the Immuno-Transcriptome in Equine Asthma. Animals. 2023; 13(1):4. https://doi.org/10.3390/ani13010004
Chicago/Turabian StylePadoan, Elisa, Serena Ferraresso, Sara Pegolo, Carlo Barnini, Massimo Castagnaro, and Luca Bargelloni. 2023. "Gene Expression Profiles of the Immuno-Transcriptome in Equine Asthma" Animals 13, no. 1: 4. https://doi.org/10.3390/ani13010004
APA StylePadoan, E., Ferraresso, S., Pegolo, S., Barnini, C., Castagnaro, M., & Bargelloni, L. (2023). Gene Expression Profiles of the Immuno-Transcriptome in Equine Asthma. Animals, 13(1), 4. https://doi.org/10.3390/ani13010004