Use of Heating Methods and Xylose to Increase Rumen Undegradable Protein of Alternative Protein Sources: 2) Cottonseed Meal
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Location, Heating Processing Methods, and Chemical Analysis
2.2. In Situ Procedures and Calculations
2.3. Intestinal Digestibility Procedures
2.4. Statistical Analysis
- -
- Control versus processing treatments;
- -
- Effect of xylose;
- -
- Linear effect of heating time;
- -
- Quadratic effect of heating time;
- -
- Interaction between xylose and heating time.
3. Results
3.1. Autoclave
3.2. Conventional Oven
3.3. Microwave Oven
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pinto, A.C.J.; Millen, D.D. Nutritional Recommendations and Management Practices Adopted by Feedlot Cattle Nutritionists: The 2016 Brazilian Survey. Can. J. Anim. Sci. 2019, 99, 392–407. [Google Scholar] [CrossRef]
- National Academies of Sciences, Engineering, and Medicine. Nutrient Requirements of Dairy Cattle: Eighth Revised Edition; The National Academies Press: Washington, DC, USA, 2021. [Google Scholar] [CrossRef]
- Sadeghi, A.A.; Shawrang, P. Effects of Microwave Irradiation on Ruminal Protein Degradation and Intestinal Digestibility of Cottonseed Meal. Livest. Sci. 2007, 106, 176–181. [Google Scholar] [CrossRef]
- Broderick, G.A.; Craig, W.M. Effect of Heat Treatment on Ruminal Degradation and Escape, and Intestinal Digestibility of Cottonseed Meal Protein. J. Nutr. 1980, 110, 2381–2389. [Google Scholar] [CrossRef] [PubMed]
- Rotta, P.P.; Menezes, A.C.B.; Silva, L.F.C.; Valadares, S.C.; Prados, L.F.; Marcondes, M.I. Protein Requirements for Beef Cattle. In Nutrient Requirements of Beef Cattle—Corte: Nutrient Requirements of Zebu and Crossbred Catlle; Valadares, S.C., Silva, L.F.C., Eds.; UFV, DZO: Viçosa, Brazil, 2016; Volume xviii, 314p. [Google Scholar] [CrossRef]
- Church, D.C. The Ruminant Animal: Digestive Physiology and Nutrition; Prentice Hall: Englewood Cliffs, NJ, USA, 1988. [Google Scholar]
- Boisen, S.; Hvelplund, T.; Weisbjerg, M.R. Ideal amino acid profiles as a basis for feed protein evaluation. Livest. Prod. Sci. 2000, 64, 239–251. [Google Scholar] [CrossRef]
- Sacakli, P.; Tuncer, S.D. The Effects of Xylose Treatment on Rumen Degradability and Nutrient Digestibility of Soybean and Cottonseed Meals. Asian-Australas. J. Anim. Sci. 2006, 19, 655–660. [Google Scholar] [CrossRef]
- Petit, H.V.; Tremblay, G.F.; Marcotte, M.; Audy, R. Degradability and Digestibility of Full-Fat Soybeans Treated with Different Sugar and Heat Combinations. Can. J. Anim. Sci. 1999, 79, 213–220. [Google Scholar] [CrossRef]
- Marounek, M.; Brezina, P. Heat-induced Formation of Soluble Maillard Reaction Products and Its Influence on Utilization of Glucose by Rumen Bacteria. Archiv für Tierernaehrung 1993, 43, 45–51. [Google Scholar] [CrossRef]
- Kanzler, C.; Haase, P.T. Melanoidins Formed by Heterocyclic Maillard Reaction Intermediates via Aldol Reaction and Michael Addition. J. Agric. Food Chem. 2020, 68, 332–339. [Google Scholar] [CrossRef]
- Sarwar Gilani, G.; Wu Xiao, C.; Cockell, K.A. Impact of Antinutritional Factors in Food Proteins on the Digestibility of Protein and the Bioavailability of Amino Acids and on Protein Quality. Br. J. Nutr. 2012, 108, S315–S332. [Google Scholar] [CrossRef] [Green Version]
- Can, A.; Yilmaz, A. Usage of Xylose or Glucose as Non-Enzymatic Browning Agent for Reducing Ruminal Protein Degradation of Soybean Meal. Small Rumin. Res. 2002, 46, 173–178. [Google Scholar] [CrossRef]
- Camire, M.E.; Camire, A.; Krumhar, K. Chemical and Nutritional Changes in Foods during Extrusion. Crit. Rev. Food Sci. Nutr. 1990, 29, 35–57. [Google Scholar] [CrossRef]
- Satter, L.D. Protein Supply from Undegraded Dietary Protein. J. Dairy Sci. 1986, 69, 2734–2749. [Google Scholar] [CrossRef]
- Samadi; Yu, P. Dry and Moist Heating-Induced Changes in Protein Molecular Structure, Protein Subfraction, and Nutrient Profiles in Soybeans. J. Dairy Sci. 2011, 94, 6092–6102. [Google Scholar] [CrossRef]
- Bachmann, M.; Kuhnitzsch, C.; Michel, S.; Thierbach, A.; Bochnia, M.; Greef, J.M.; Martens, S.D.; Steinhöfel, O.; Zeyner, A. Effect of Toasting Grain Silages from Field Peas (Pisum sativum) and Field Beans (Vicia faba) on In Vitro Gas Production, Methane Production, and Post-Ruminal Crude Protein Content. Anim. Nutr. 2020, 6, 342–352. [Google Scholar] [CrossRef]
- Sadeghi, A.A.; Shawrang, P. Effects of Microwave Irradiation on Ruminal Degradability and in Vitro Digestibility of Canola Meal. Anim. Feed Sci. Technol. 2006, 127, 45–54. [Google Scholar] [CrossRef]
- Sadeghi, A.A.; Shawrang, P. Effects of Microwave Irradiation on Ruminal Protein and Starch Degradation of Corn Grain. Anim. Feed Sci. Technol. 2006, 127, 113–123. [Google Scholar] [CrossRef]
- Xiang, S.; Zou, H.; Liu, Y.; Ruan, R. Effects of Microwave Heating on the Protein Structure, Digestion Properties and Maillard Products of Gluten. J. Food Sci. Technol. 2020, 57, 2139–2149. [Google Scholar] [CrossRef]
- Paya, H.; Taghizadeh, A.; Janmohammadi, H.; Moghaddam, G.A.; Khani, A.H.; Alijani, S. Effects of Microwave Irradiation on in Vitro Ruminal Fermentation and Ruminal and Post-Ruminal Disappearance of Safflower Seed. J. Biodivers. Environ. Sci. 2014, 5, 349–356. [Google Scholar]
- Rigon, F.; Pereira David, A.B.; Loregian, K.E.; Magnani, E.; Marcondes, M.I.; Branco, R.H.; Benedeti, P.D.B.; Paula, E.M. Use of Heating Methods and Xylose to Increase Rumen Undegradable Protein of Alternative Protein Sources: 1) Peanut Meal. Animals 2022, 13, 23. [Google Scholar] [CrossRef]
- Detmann, E.; Souza, M.S.; Valadares Filho, S.C.; Queiroz, A.; Berchielli, T.; Saliba, E.O.; Cabral, L.S.; Pina, D.S.; Ladeira, M.; Azevedo, J. Métodos Para Análise de Alimentos; Suprema: Visconde do Rio Branco, Brazil, 2012. [Google Scholar]
- van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Benedeti, P.D.B.; Valadares Filho, S.C.; Zanetti, D.; Fonseca e Silva, F.; Silva, B.C.; Alhadas, H.M.; Vieira Pereira, J.M.; Pacheco, M.V.C.; Pucetti, P.; Baião Menezes, A.C.; et al. Prediction of in Vivo Organic Matter Digestibility of Beef Cattle Diets from Degradation Parameters Estimated from in Situ and in Vitro Incubations. J. Agric. Sci. 2019, 157, 711–720. [Google Scholar] [CrossRef]
- Ørskov, E.R.; McDonald, I. The Estimation of Protein Degradability in the Rumen from Incubation Measurements Weighted According to Rate of Passage. J. Agric. Sci. 1979, 92, 499–503. [Google Scholar] [CrossRef] [Green Version]
- Denham, S.C.; Morantes, G.A.; Bates, D.B.; Moore, J.E. Comparison of Two Models Used to Estimate In Situ Nitrogen Disappearance. J. Dairy Sci. 1989, 72, 708–714. [Google Scholar] [CrossRef]
- NRC. Nutrient Requirements of Dairy Cattle; National Academies Press: Washington, DC, USA, 2001; ISBN 978-0-309-06997-7. [Google Scholar]
- Calsamiglia, S.; Stern, M.D. A Three-Step in Vitro Procedure for Estimating Intestinal Digestion of Protein in Ruminants. J. Anim. Sci. 1995, 73, 1459–1465. [Google Scholar] [CrossRef] [Green Version]
- Gargallo, S.; Calsamiglia, S.; Ferret, A. Technical Note: A Modified Three-Step in Vitro Procedure to Determine Intestinal Digestion of Proteins. J. Anim. Sci. 2006, 84, 2163–2167. [Google Scholar] [CrossRef] [Green Version]
- Haryanto, B. Manipulating Protein Degradability in the Rumen to Support Higher Ruminant Production. Am. J. Anim. Vet. Sci. 2014, 24, 131–138. [Google Scholar] [CrossRef] [Green Version]
- Higgs, R.J.; Chase, L.E.; Ross, D.A.; van Amburgh, M.E. Updating the Cornell Net Carbohydrate and Protein System Feed Library and Analyzing Model Sensitivity to Feed Inputs. J. Dairy Sci. 2015, 98, 6340–6360. [Google Scholar] [CrossRef] [Green Version]
- Voragen, A.G.J.; Gruppen, H.; Marsman, G.J.P.; Mul, A.J. Effect of Some Manufacturing Technologies on Chemical, Physical and Nutritional Properties of Feed. In Recent Advances in Animal Nutrition; Garnsworthy, P.C., Cole, D.J.A., Eds.; Departament Food Chemistry and Microbiology VLGA: Wageningen, The Netherlands, 1995; pp. 93–126. [Google Scholar]
- Bjarnson, J.; Carpenter, K.J. Mechanisms of Heat Damage in Proteins. Br. J. Nutr. 1969, 23, 859–868. [Google Scholar] [CrossRef] [Green Version]
- Englard, S.; Seifter, S. Precipitation techniques. Methods Enzymol. 1990, 182, 285–300. [Google Scholar] [CrossRef] [PubMed]
- McKinnon, J.J.; Olubobokun, J.A.; Mustafa, A.; Cohen, R.D.H.; Christensen, D.A. Influence of Dry Heat Treatment of Canola Meal on Site and Extent of Nutrient Disappearance in Ruminants. Anim. Feed Sci. Technol. 1995, 56, 243–252. [Google Scholar] [CrossRef]
- Ahmad Khan, N.; Booker, H.; Yu, P. Effect of Heating Method on Alteration of Protein Molecular Structure in Flaxseed: Relationship with Changes in Protein Subfraction Profile and Digestion in Dairy Cows. J. Agric. Food Chem. 2015, 63, 1057–1066. [Google Scholar] [CrossRef] [PubMed]
- Demjanec, B.; Merchen, N.R.; Cremin, J.D.; Aldrich, C.G.; Berger, L.L. Effect of Roasting on Site and Extent of Digestion of Soybean Meal by Sheep: I. Digestion of Nitrogen and Amino Acids. J. Anim. Sci. 1995, 73, 824–834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Broderick, G.A. Review: Optimizing Ruminant Conversion of Feed Protein to Human Food Protein. Animal 2018, 12, 1722–1734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karlsson, L.; Ruiz-Moreno, M.; Stern, M.D.; Martinsson, K. Effects of Temperature during Moist Heat Treatment on Ruminal Degradability and Intestinal Digestibility of Protein and Amino Acids in Hempseed Cake. Asian-Australas. J. Anim. Sci. 2012, 25, 1559–1567. [Google Scholar] [CrossRef] [Green Version]
- Shimelis, E.A.; Rakshit, S. Effect of Microwave Heating on Solubility and Digestibility of Proteins and Reduction of Antinutrients of Selected Common Bean (Phaseolus vulgaris L.) Varieties Grown in Ethiopia. Ital. J. Food Sci. 2005, 17, 407–418. [Google Scholar]
- Reiser, R.; Fu, H.C. The Mechanism of Gossypol Detoxification by Ruminant Animals. J. Nutr. 1962, 76, 215–218. [Google Scholar] [CrossRef]
- Morgan, S.E. Gossypol as a Toxicant in Livestock. Vet. Clin. N. Am. Food Anim. Pract. 1989, 5, 251–262. [Google Scholar] [CrossRef]
- Zhang, W.-J.; Xu, Z.-R.; Zhao, S.-H.; Sun, J.-Y.; Yang, X. Development of a Microbial Fermentation Process for Detoxification of Gossypol in Cottonseed Meal. Anim. Feed Sci. Technol. 2007, 135, 176–186. [Google Scholar] [CrossRef]
- Murray, R.K.; Granner, D.K.; Mayes, P.A.; Rodwell, V.W. Harper’s Biochemistry, 26th ed.; McGraw-Hill: New York, NY, USA, 2003. [Google Scholar]
- Pena, F.; Tagari, H.; Satter, L.D. The Effect of Heat Treatment of Whole Cottonseed on Site and Extent of Protein Digestion in Dairy Cows. J. Anim. Sci. 1986, 62, 1423–1433. [Google Scholar] [CrossRef]
- Pires, A.V.; Eastridge, M.L.; Firkins, J.L.; Lin, Y.C. Effects of Heat Treatment and Physical Processing of Cottonseed on Nutrient Digestibility and Production Performance by Lactating Cows. J. Dairy Sci. 1997, 80, 1685–1694. [Google Scholar] [CrossRef]
- Peng, Q.; Khan, N.A.; Wang, Z.; Yu, P. Moist and Dry Heating-Induced Changes in Protein Molecular Structure, Protein Subfractions, and Nutrient Profiles in Camelina Seeds. J. Dairy Sci. 2014, 97, 446–457. [Google Scholar] [CrossRef] [Green Version]
- Banik, S.; Bandyopadhyay, S.; Ganguly, S. Bioeffects of Microwave––A Brief Review. Bioresour. Technol. 2003, 87, 155–159. [Google Scholar] [CrossRef]
Item | Control | Xylose-Treated | Xylose-Untreated | ||||
---|---|---|---|---|---|---|---|
8 | 16 | 24 | 8 | 16 | 24 | ||
Dry matter, g/kg | 910 | 899 | 899 | 900 | 904 | 902 | 902 |
Organic matter, g/kg DM | 937 | 94.3 | 943 | 943 | 936 | 938 | 948 |
Crude protein, g/kg DM | 543 | 449 | 474 | 471 | 501 | 490 | 482 |
Neutral detergent fiber, g/kg DM | 169 | 351 | 360 | 358 | 276 | 305 | 289 |
Item | Control | Xylose-Treated | Xylose-Untreated | ||||
---|---|---|---|---|---|---|---|
30 | 60 | 90 | 30 | 60 | 90 | ||
Dry matter, g/kg | 910 | 920 | 923 | 923 | 920 | 921 | 932 |
Organic matter, g/kg DM | 937 | 923 | 935 | 941 | 939 | 936 | 937 |
Crude protein, g/kg DM | 543 | 524 | 508 | 472 | 535 | 558 | 509 |
Neutral detergent fiber, g/kg DM | 169 | 304 | 446 | 471 | 341 | 374 | 386 |
Item | Control | Xylose-Treated | Xylose-Untreated | ||||
---|---|---|---|---|---|---|---|
2 | 4 | 6 | 2 | 4 | 6 | ||
Dry matter, g/kg | 910 | 905 | 921 | 920 | 909 | 912 | 918 |
Organic matter, g/kg DM | 937 | 938 | 935 | 929 | 932 | 926 | 939 |
Crude protein, g/kg DM | 543 | 462 | 534 | 581 | 534 | 549 | 533 |
Neutral detergent fiber, g/kg DM | 169 | 394 | 376 | 323 | 367 | 238 | 326 |
Item 1 | Control | Xylose-Treated 2 | Xylose-Untreated 2 | SEM | p-Value | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
8 | 16 | 24 | 8 | 16 | 24 | Control × Processed | Xyl.-Treated × -Untreated | Time, Lin. | Time, Quad. | Interaction Xyl. × Time | |||
Dry Matter | |||||||||||||
A, g/kg | 319 | 246 | 230 | 235 | 261 | 250 | 240 | 12.9 | <0.01 | 0.24 | 0.24 | 0.61 | 0.86 |
B, g/kg | 475 | 459 | 605 | 500 | 505 | 494 | 478 | 34.5 | 0.41 | 0.32 | 0.84 | 0.05 | 0.04 |
kd, h−1 | 0.051 | 0.072 | 0.060 | 0.053 | 0.065 | 0.065 | 0.073 | 0.01 | 0.33 | 0.56 | 0.66 | 0.76 | 0.64 |
Crude Protein | |||||||||||||
A, g/kg | 552 | 104 | 198 | 217 | 396 | 287 | 164 | 45.8 | <0.01 | 0.01 | 0.22 | 0.58 | <0.01 |
B, g/kg | 380 | 636 | 686 | 597 | 486 | 602 | 679 | 55.6 | <0.01 | 0.29 | 0.19 | 0.38 | 0.06 |
kd, h−1 | 0.077 | 0.189 | 0.080 | 0.107 | 0.102 | 0.107 | 0.179 | 0.03 | 0.15 | 0.87 | 0.94 | 0.08 | 0.02 |
Item 1 | Control | Xylose-Treated 2 | Xylose-Untreated 2 | SEM | p-Value | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
30 | 60 | 90 | 30 | 60 | 90 | Control × Processed | Xyl.-Treated × -Untreated | Time, Lin. | Time, Quad. | Interaction Xyl. × Time | |||
Dry Matter | |||||||||||||
A, g/kg | 292 | 196 | 183 | 178 | 246 | 184 | 182 | 7.30 | < 0.01 | 0.02 | < 0.01 | 0.03 | 0.01 |
B, g/kg | 517 | 611 | 466 | 632 | 486 | 831 | 818 | 294 | 0.71 | 0.57 | 0.57 | 0.97 | 0.43 |
kd, h−1 | 0.057 | 0.031 | 0.030 | 0.016 | 0.044 | 0.014 | 0.017 | 0.015 | 0.08 | 0.92 | 0.19 | 0.69 | 0.36 |
Crude Protein | |||||||||||||
A, g/kg | 475 | 341 | 291 | 233 | 476 | 372 | 342 | 45.3 | 0.03 | 0.02 | 0.03 | 0.68 | 0.57 |
B, g/kg | 485 | 537 | 579 | 252 | 443 | 693 | 691 | 213 | 0.84 | 0.41 | 0.94 | 0.43 | 0.64 |
kd, h−1 | 0.074 | 0.051 | 0.026 | 0.049 | 0.048 | 0.015 | 0.016 | 0.019 | 0.10 | 0.35 | 0.41 | 0.27 | 0.85 |
Item 1 | Control | Xylose-Treated 2 | Xylose-Untreated 2 | SEM | p-Value | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2 | 4 | 6 | 2 | 4 | 6 | Control × Processed | Xyl.-Treated × -Untreated | Time, Lin. | Time, Quad. | Interaction Xyl. × Time | |||
Dry Matter | |||||||||||||
A, g/kg | 199 | 185 | 153 | 134 | 195 | 173 | 153 | 14.1 | 0.04 | 0.17 | < 0.01 | 0.77 | 0.74 |
B, g/kg | 553 | 597 | 606 | 632 | 621 | 620 | 660 | 25.9 | 0.03 | 0.31 | 0.17 | 0.53 | 0.94 |
kd, h−1 | 0.060 | 0.052 | 0.050 | 0.041 | 0.051 | 0.045 | 0.043 | 0.008 | 0.15 | 0.88 | 0.24 | 0.87 | 0.86 |
Crude Protein | |||||||||||||
A, g/kg | 365 | 223 | 302 | 355 | 309 | 345 | 269 | 36.7 | 0.13 | 0.64 | 0.23 | 0.30 | 0.04 |
B, g/kg | 582 | 729 | 637 | 613 | 647 | 616 | 685 | 37.1 | 0.09 | 0.74 | 0.31 | 0.21 | 0.06 |
kd, h−1 | 0.067 | 0.062 | 0.060 | 0.042 | 0.085 | 0.057 | 0.065 | 0.015 | 0.78 | 0.23 | 0.20 | 0.70 | 0.97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Molosse, V.L.; Pereira, D.A.B.; Rigon, F.; Loregian, K.E.; Magnani, E.; Marcondes, M.I.; Branco, R.H.; Benedeti, P.D.B.; Paula, E.M. Use of Heating Methods and Xylose to Increase Rumen Undegradable Protein of Alternative Protein Sources: 2) Cottonseed Meal. Animals 2023, 13, 41. https://doi.org/10.3390/ani13010041
Molosse VL, Pereira DAB, Rigon F, Loregian KE, Magnani E, Marcondes MI, Branco RH, Benedeti PDB, Paula EM. Use of Heating Methods and Xylose to Increase Rumen Undegradable Protein of Alternative Protein Sources: 2) Cottonseed Meal. Animals. 2023; 13(1):41. https://doi.org/10.3390/ani13010041
Chicago/Turabian StyleMolosse, Vitor L., David A. B. Pereira, Fernanda Rigon, Kalista E. Loregian, Elaine Magnani, Marcos I. Marcondes, Renata H. Branco, Pedro D. B. Benedeti, and Eduardo M. Paula. 2023. "Use of Heating Methods and Xylose to Increase Rumen Undegradable Protein of Alternative Protein Sources: 2) Cottonseed Meal" Animals 13, no. 1: 41. https://doi.org/10.3390/ani13010041
APA StyleMolosse, V. L., Pereira, D. A. B., Rigon, F., Loregian, K. E., Magnani, E., Marcondes, M. I., Branco, R. H., Benedeti, P. D. B., & Paula, E. M. (2023). Use of Heating Methods and Xylose to Increase Rumen Undegradable Protein of Alternative Protein Sources: 2) Cottonseed Meal. Animals, 13(1), 41. https://doi.org/10.3390/ani13010041