Identifying Early Indicators of Tail Biting in Pigs by Variable Selection Using Partial Least Squares Regression
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Housing
2.2. Data Collection
2.3. Statistical Analysis
Data | Variable | Recoring Time | Value | Measured with | Stored in |
---|---|---|---|---|---|
Pen level | Water consumption [1] | 60 min | Per pig within t | Composite piston meter with pulse module (Lührs Gerätebau GmbH, Rehden, Germany) | Stable PC |
Activity time 1 | Per pen within t | Aqara Motion Sensor (Item number RTCGQ11LM, Lumi United Technology Co., Ltd., Shenzhen, China) | Single-board computer (Raspberry Pi 3 Model B+ [31]) with a RaspBee add-on board (dresden elektronik, Dresden, Germany) | ||
Environmental | Temperature [°C] 1 | Per pen within t | Aqara Temperature and Humidity Sensor (Item number WSDCGQ11LM, Lumi United Technology Co., Ltd., Shenzhen, China) | ||
Humidity [%] 1 | |||||
Temperature humidity index (THI) 1 | Calculation THI according to Vitt et al. [32] with THINOAA = 0.81T + 46.3 + H/100 (T−14.3) with T = temperature and H = humidity | ||||
NH3 concentration [ppm] | 15 min | Per compartment within t | Polytron C300 with DrägerSensor NH3 AL (Dräger, Lübeck, Germany) | ALMEMO 2590-4AS (Ahlborn Mess- und Regelungstechnik GmbH, Holzkirchen, Germany) | |
CO2 concentration [ppm] | VarioGard 2320 IR CO2 PL (Dräger, Lübeck, Germany) | ||||
Exhaust air rate [%] | 1 min | Rearing barren: KL-6002 (Stienen Bedrijfselektronica B.V., Nederweert, Niederlande) Rearing enriched: LC4-C (hdt Anlagenbau GmbH, Diepholz, Germany) Fattening barren: DR1-D (Möller GmbH, Diepholz, Germany) Fattening enriched: DOL 234 (SKOV A/S, Roslev, Denmark) | Stable PC | ||
Outdoor temperature [°C] |
3. Results
3.1. Rearing
3.2. Fattening
4. Discussion
4.1. Study Design and Statistics
4.2. PLS Regression—Variable Selection
4.2.1. Rearing
4.2.2. Fattening
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Schrøder-Petersen, D.L.; Simonsen, H.B. Tail biting in pigs. Vet. J. 2001, 162, 196–210. [Google Scholar] [CrossRef] [PubMed]
- D’Eath, R.B.; Arnott, G.; Turner, S.P.; Jensen, T.; Lahrmann, H.P.; Busch, M.E.; Niemi, J.K.; Lawrence, A.B.; Sandøe, P. Injurious tail biting in pigs: How can it be controlled in existing systems without tail docking? Animal 2014, 8, 1479–1497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boyle, L.A.; Edwards, S.A.; Bolhuis, J.E.; Pol, F.; Šemrov, M.Z.; Schütze, S.; Nordgreen, J.; Bozakova, N.; Sossidou, E.N.; Valros, A. The Evidence for a Causal Link Between Disease and Damaging Behavior in Pigs. Front. Vet. Sci. 2022, 8, 132. [Google Scholar] [CrossRef] [PubMed]
- Taylor, N.R.; Main, D.C.J.; Mendl, M.T.; Edwards, S.A. Tail-biting: A new perspective. Vet. J. 2010, 186, 137–147. [Google Scholar] [CrossRef] [PubMed]
- Grümpel, A.; Krieter, J.; Veit, C.; Dippel, S. Factors influencing the risk for tail lesions in weaner pigs (Sus scrofa). Livest. Sci. 2018, 216, 219–226. [Google Scholar] [CrossRef]
- Moinard, C.; Mendl, M.T.; Nicol, C.J.; Green, L.E. A case control study of on-farm risk factors for tail biting in pigs. Appl. Anim. Behav. Sci. 2003, 81, 333–355. [Google Scholar] [CrossRef]
- Sonoda, L.T.; Fels, M.; Oczak, M.; Vranken, E.; Ismayilova, G.; Guarino, M.; Viazzi, S.; Bahr, C.; Berckmans, D.; Hartung, J. Tail biting in pigs—Causes and management intervention strategies to reduce the behavioural disorder. A review. Berl. Und Münchener Tierärztliche Wochenschr. 2013, 126, 104–112. [Google Scholar] [CrossRef]
- Valros, A.; Heinonen, M. Save the pig tail. Porc. Health Manag. 2015, 1, 1–7. [Google Scholar] [CrossRef]
- Taylor, N.R.; Parker, R.M.A.; Mendl, M.T.; Edwards, S.A.; Main, D.C.J. Prevalence of risk factors for tail biting on commercial farms and intervention strategies. Vet. J. 2012, 194, 77–83. [Google Scholar] [CrossRef]
- Valros, A.; Barber, C. Producer Perceptions of the Prevention of Tail Biting on UK Farms: Association to Bedding Use and Tail Removal Proportion. Animals 2019, 9, 628. [Google Scholar] [CrossRef]
- Munsterhjelm, C.; Nordgreen, J.; Aae, F.; Heinonen, M.; Valros, A.; Janczak, A.M. Sick and grumpy: Changes in social behaviour after a controlled immune stimulation in group-housed gilts. Physiol. Behav. 2019, 198, 76–83. [Google Scholar] [CrossRef] [PubMed]
- Andersen, H.M.-L.; Jørgensen, E.; Pedersen, L.J. Using evolutionary operation technique to evaluate different management initiatives at herd level. Livest. Sci. 2016, 187, 109–113. [Google Scholar] [CrossRef]
- D’Eath, R.B.; Jack, M.; Futro, A.; Talbot, D.; Zhu, Q.; Barclay, D.; Baxter, E.M. Automatic early warning of tail biting in pigs: 3D cameras can detect lowered tail posture before an outbreak. PLoS ONE 2018, 13, e0194524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marques, B.M.F.P.P.; Bernardi, M.L.; Coelho, C.F.; Almeida, M.; Morales, O.E.; Mores, T.J.; Borowski, S.M.; Barcellos, D.E.S.N. Influence of tail biting on weight gain, lesions and condemnations at slaughter of finishing pigs. Pesqui. Veterinária Bras. 2012, 32, 967–974. [Google Scholar] [CrossRef] [Green Version]
- Munsterhjelm, C.; Nordgreen, J.; Aae, F.; Heinonen, M.; Olstad, K.; Aasmundstad, T.; Janczak, A.M.; Valros, A. To be blamed or pitied? The effect of illness on social behavior, cytokine levels and feed intake in undocked boars. Physiol. Behav. 2017, 179, 298–307. [Google Scholar] [CrossRef]
- Domun, Y.; Pedersen, L.J.; White, D.; Adeyemi, O.; Norton, T. Learning patterns from time-series data to discriminate predictions of tail-biting, fouling and diarrhoea in pigs. Comput. Electron. Agric. 2019, 163, 104878. [Google Scholar] [CrossRef]
- Statham, P.; Green, L.E.; Bichard, M.; Mendl, M.T. Predicting tail-biting from behaviour of pigs prior to outbreaks. Appl. Anim. Behav. Sci. 2009, 121, 157–164. [Google Scholar] [CrossRef] [Green Version]
- Larsen, M.L.V.; Andersen, H.M.-L.; Pedersen, L.J. Changes in activity and object manipulation before tail damage in finisher pigs as an early detector of tail biting. Animal 2019, 13, 1037–1044. [Google Scholar] [CrossRef]
- Bracke, M.B.M.; de Lauwere, C.C.; Wind, S.M.M.; Zonderland, J.J. Attitudes of Dutch Pig Farmers Towards Tail Biting and Tail Docking. J. Agric. Environ. Ethics 2013, 26, 847–868. [Google Scholar] [CrossRef] [Green Version]
- De Briyne, N.; Berg, C.; Blaha, T.; Palzer, A.; Temple, D. Phasing out pig tail docking in the EU-present state, challenges and possibilities. Porc. Health Manag. 2018, 4, 1–9. [Google Scholar] [CrossRef]
- Scollo, A.; Contiero, B.; Gottardo, F. Frequency of tail lesions and risk factors for tail biting in heavy pig production from weaning to 170 kg live weight. Vet. J. 2016, 207, 92–98. [Google Scholar] [CrossRef] [PubMed]
- Scollo, A.; Gottardo, F.; Contiero, B.; Edwards, S.A. A cross-sectional study for predicting tail biting risk in pig farms using classification and regression tree analysis. Prev. Vet. Med. 2017, 146, 114–120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holling, C.; grosse Beilage, E.; Vidondo, B.; Nathues, C. Provision of straw by a foraging tower –effect on tail biting in weaners and fattening pigs. Porc. Health Manag. 2017, 3, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costa, A.; Ismayilova, G.; Borgonovo, F.; Viazzi, S.; Berckmans, D.; Guarino, M. Image-processing technique to measure pig activity in response to climatic variation in a pig barn. Anim. Prod. Sci. 2014, 54, 1075–1083. [Google Scholar] [CrossRef]
- Norton, T.; Chen, C.; Larsen, M.L.V.; Berckmans, D. Review: Precision livestock farming: Building ‘digital representations’ to bring the animals closer to the farmer. Animal 2019, 13, 3009–3017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kleinbeck, S.; McGlone, J.J. Pig tail posture: A measure of stress. Tex. Tech. Univ. Agric. Sci. Tech. Rep. T-5-327 1993, 327, 47–48. [Google Scholar]
- Anonymus. Deutscher Schweine-Boniturschlüssel (DSBS). Available online: https://www.fli.de/fileadmin/FLI/ITT/Deutscher_Schweine_Boniturschluessel_2017-06-30_de.pdf (accessed on 20 May 2022).
- Mehmood, T.; Sæbø, S.; Liland, K.H. Comparison of variable selection methods in partial least squares regression. J. Chemom. 2020, 34, 100. [Google Scholar] [CrossRef] [Green Version]
- Abdi, H. Partial least squares regression and projection on latent structure regression (PLS Regression). WIREs Comp Stat 2010, 2, 97–106. [Google Scholar] [CrossRef]
- SAS Institute Inc. Base SAS® 9.4 Procedures Guide; Statistical Analysis System Institute Inc.: Cary, NC, USA, 2017. [Google Scholar]
- Raspberry, Pi. Available online: https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/ (accessed on 14 September 2021).
- Vitt, R.; Weber, L.; Zollitsch, W.; Hörtenhuber, S.J.; Baumgartner, J.; Niebuhr, K.; Piringer, M.; Anders, I.; Andre, K.; Hennig-Pauka, I.; et al. Modelled performance of energy saving air treatment devices to mitigate heat stress for confined livestock buildings in Central Europe. Biosyst. Eng. 2017, 164, 85–97. [Google Scholar] [CrossRef]
- Larsen, M.L.V.; Pedersen, L.J.; Jensen, D.B. Prediction of Tail Biting Events in Finisher Pigs from Automatically Recorded Sensor Data. Animals 2019, 9, 458. [Google Scholar] [CrossRef] [Green Version]
- Ni, J.-Q.; Liu, S.; Radcliffe, J.S.; Vonderohe, C. Evaluation and characterisation of Passive Infrared Detectors to monitor pig activities in an environmental research building. Biosyst. Eng. 2017, 158, 86–94. [Google Scholar] [CrossRef]
- Hostiou, N.; Fagon, J.; Chauvat, S.; Turlot, A.; Kling-Eveillard, F.; Boivin, X.; Allain, C. Impact of precision livestock farming on work and human-animal interactions on dairy farms. A review. Biotechnol. Agron. Soc. Environ. 2017, 21, 268–275. [Google Scholar] [CrossRef]
- Benjamin, M.; Yik, S. Precision Livestock Farming in Swine Welfare: A Review for Swine Practitioners. Animals 2019, 9, 133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mehmood, T.; Liland, K.H.; Snipen, L.; Sæbø, S. A review of variable selection methods in Partial Least Squares Regression. Chemom. Intell. Lab. Syst. 2012, 118, 62–69. [Google Scholar] [CrossRef]
- Andersen, C.M.; Bro, R. Variable selection in regression-a tutorial. J. Chemom. 2010, 24, 728–737. [Google Scholar] [CrossRef]
- Andersen, H.M.-L.; Dybkjær, L.; Herskin, M.S. Growing pigs’ drinking behaviour: Number of visits, duration, water intake and diurnal variation. Animal 2014, 8, 1881–1888. [Google Scholar] [CrossRef] [Green Version]
- Ursinus, W.W.; van Reenen, C.G.; Kemp, B.; Bolhuis, J.E. Tail biting behaviour and tail damage in pigs and the relationship with general behaviour: Predicting the inevitable? Appl. Anim. Behav. Sci. 2014, 156, 22–36. [Google Scholar] [CrossRef]
- Larsen, M.L.V.; Andersen, H.M.-L.; Pedersen, L.J. Can tail damage outbreaks in the pig be predicted by behavioural change? Vet. J. 2016, 209, 50–56. [Google Scholar] [CrossRef]
- Matthews, S.G.; Miller, A.L.; Clapp, J.; Plötz, T.; Kyriazakis, I. Early detection of health and welfare compromises through automated detection of behavioural changes in pigs. Vet. J. 2016, 217, 43–51. [Google Scholar] [CrossRef] [Green Version]
- Eisermann, J.; Schomburg, H.; Knöll, J.; Schrader, L.; Patt, A. Bite-o-Mat: A device to assess the individual manipulative behaviour of group housed pigs. Comput. Electron. Agric. 2022, 193, 106708. [Google Scholar] [CrossRef]
- Maselyne, J.; Adriaens, I.; Huybrechts, T.; de Ketelaere, B.; Millet, S.; Vangeyte, J.; van Nuffel, A.; Saeys, W. Measuring the drinking behaviour of individual pigs housed in group using radio frequency identification (RFID). Animal 2016, 10, 1557–1566. [Google Scholar] [CrossRef] [PubMed]
- Werkheiser, I. Precision Livestock Farming and Farmers’ Duties to Livestock. J. Agric. Environ. Ethics 2018, 31, 181–195. [Google Scholar] [CrossRef]
- Niloofar, P.; Francis, D.P.; Lazarova-Molnar, S.; Vulpe, A.; Vochin, M.-C.; Suciu, G.; Balanescu, M.; Anestis, V.; Bartzanas, T. Data-driven decision support in livestock farming for improved animal health, welfare and greenhouse gas emissions: Overview and challenges. Comput. Electron. Agric. 2021, 190, 106406. [Google Scholar] [CrossRef]
- Lange, A.; Hahne, M.; Lambertz, C.; Gauly, M.; Wendt, M.; Janssen, H.; Traulsen, I. Effects of Different Housing Systems during Suckling and Rearing Period on Skin and Tail Lesions, Tail Losses and Performance of Growing and Finishing Pigs. Animals 2021, 11, 2184. [Google Scholar] [CrossRef] [PubMed]
- Honeck, A.; Ahlhorn, J.; Burfeind, O.; Gertz, M.; Grosse Beilage, E.; Hasler, M.; Tölle, K.-H.; Visscher, C.; Krieter, J. Influence on tail-biting in weaning pigs of crude fibre content and different crude fibre components in pigs’ rations. J. Agric. Sci. 2020, 158, 233–240. [Google Scholar] [CrossRef]
- Veit, C.; Büttner, K.; Traulsen, I.; Gertz, M.; Hasler, M.; Burfeind, O.; Beilage, E.g.; Krieter, J. The effect of mixing piglets after weaning on the occurrence of tail-biting during rearing. Livest. Sci. 2017, 201, 70–73. [Google Scholar] [CrossRef]
- Gentz, M.; Lange, A.; Zeidler, S.; Lambertz, C.; Gauly, M.; Burfeind, O.; Traulsen, I. Tail Lesions and Losses of Docked and Undocked Pigs in Different Farrowing and Rearing Systems. Agriculture 2020, 10, 130. [Google Scholar] [CrossRef] [Green Version]
- Lahrmann, H.P.; Hansen, C.F.; D’Eath, R.B.; Busch, M.E.; Forkman, B. Tail posture predicts tail biting outbreaks at pen level in weaner pigs. Appl. Anim. Behav. Sci. 2018, 200, 29–35. [Google Scholar] [CrossRef]
- Wedin, M.; Baxter, E.M.; Jack, M.; Futro, A.; D’Eath, R.B. Early indicators of tail biting outbreaks in pigs. Appl. Anim. Behav. Sci. 2018, 208, 7–13. [Google Scholar] [CrossRef]
- Wilder, T.; Krieter, J.; Kemper, N.; Honeck, A.; Büttner, K. Tail-directed behaviour in pigs–relation to tail posture and tail lesion. Appl. Anim. Behav. Sci. 2020, 233, 105151. [Google Scholar] [CrossRef]
- Czycholl, I.; Kniese, C.; Schrader, L.; Krieter, J. Assessment of the multi-criteria evaluation system of the Welfare Quality® protocol for growing pigs. Animal 2017, 11, 1573–1580. [Google Scholar] [CrossRef] [PubMed]
- Prunier, A.; Averos, X.; Dimitrov, I.; Edwards, S.A.; Hillmann, E.; Holinger, M.; Ilieski, V.; Leming, R.; Tallet, C.; Turner, S.P.; et al. Review: Early life predisposing factors for biting in pigs. Animal 2020, 14, 570–587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beattie, V.E.; Breuer, K.; O’Connell, N.E.; Sneddon, I.A.; Mercer, J.T.; Rance, K.A.; Sutcliffe, M.E.M.; Edwards, S.A. Factors identifying pigs predisposed to tail biting. Anim. Sci. 2005, 80, 307–312. [Google Scholar] [CrossRef] [Green Version]
- Bünger, B.; Schrader, L.; Schrade, H.; Zacharias, B. Agonistic behaviour, skin lesions and activity pattern of entire male, female and castrated male finishing pigs. Appl. Anim. Behav. Sci. 2015, 171, 64–68. [Google Scholar] [CrossRef]
- Holinger, M.; Früh, B.; Hillmann, E. Group composition for fattening entire male pigs under enriched housing conditions—Influences on behaviour, injuries and boar taint compounds. Appl. Anim. Behav. Sci. 2015, 165, 47–56. [Google Scholar] [CrossRef]
- vom Brocke, A.L.; Karnholz, C.; Madey-Rindermann, D.; Gauly, M.; Leeb, C.; Winckler, C.; Schrader, L.; Dippel, S. Tail lesions in fattening pigs: Relationships with postmortem meat inspection and influence of a tail biting management tool. Animal 2019, 13, 835–844. [Google Scholar] [CrossRef]
- Heinonen, M.; Välimäki, E.; Laakkonen, A.-M.; Toppari, I.; Vugts, J.; Fàbrega, E.; Valros, A. Evaluation of Tail Lesions of Finishing Pigs at the Slaughterhouse: Associations With Herd-Level Observations. Front. Vet. Sci. 2021, 8, 462. [Google Scholar] [CrossRef]
- Stygar, A.H.; Chantziaras, I.; Toppari, I.; Maes, D.; Niemi, J.K. High biosecurity and welfare standards in fattening pig farms are associated with reduced antimicrobial use. Animal 2020, 14, 2178–2186. [Google Scholar] [CrossRef]
Variable | Recording Time | Value | Recorded |
---|---|---|---|
Scoring day | Twice a week in the morning over entire rearing and fattening | ||
Tail lesions | Scoring day | Prevalence per pen 2 | Scoring according to ‘German Pig Scoring Key’ [27]: 0 = No visible lesions or superficial lesions (points or lines of the skin), 1 = Small lesions (deeper skin lesions, smaller than tail diameter) and large lesions (deeper skin lesions, larger than tail diameter) |
Tail posture | Scoring day | Prevalence per pen 2 | Scoring modified after Kleinbeck and McGlone [26]: 0 = Curled (tail forms a loop) and raised (tail lifted, but not curled); 1 = Wagging (tail wagging in motion), and hanging (tail hanging relaxed down) and jammed (tail tucked between the hind legs) |
Daily control | Monday–Friday | Prevalence per pen 2/mean within t | Proportion of pigs with skin lesions: 0 = No visible skin lesions, 1 = Skin lesions (several, clearly visible scratches) |
Proportion of pigs with respiratory tract issues: 0 = No cough detectable, 1 = Cough (audible or visual) | |||
Proportion of pigs with gastrointestinal tract issues: 0 = No visible diarrhoea/dirty anal area, 1 = Diarrhoea/dirty anal area (liquid faeces) | |||
Proportion of pigs with musculoskeletal system issues: 0 = No lameness visible, 1 = Lameness (altered gait) | |||
Treatment index 1 | Suckling | Entire suckling phase | |
Rearing | All treatments within rearing until the respective scoring day in rearing model, entire rearing phase in fattening model | ||
Fattening | All treatments within fattening until the respective scoring day | ||
Weight [kg] | Weaning | Mean per pen | On weaning day after 28 days of suckling |
End of rearing | On the last day of rearing after 47 days of rearing |
(a) | ||||||
All Variables | without Environmental Variables | |||||
R2 = 0.61 | R2 = 0.55 | |||||
β = 0.0123 1 | β = 0.0032 1 | |||||
Recorded | Variable | Feature | VIP | β | VIP | β |
Direct observations— Pen | Tail posture | 3.698 | 0.6338 | 3.190 | 0.6436 | |
Skin lesions | 1.385 | 0.0736 | 1.258 | 0.0864 | ||
Respiratory tract | 0.382 | −0.0308 | 0.363 | −0.0509 | ||
Gastrointestinal tract | 0.469 | −0.0667 | 0.436 | −0.0764 | ||
Musculoskeletal system | 0.374 | 0.0362 | 0.263 | 0.0223 | ||
Treatment index suckling | 1.655 | 0.1694 | 1.143 | 0.1291 | ||
Treatment index rearing | 1.033 | −0.0013 | 0.825 | 0.0005 | ||
Weight weaning | 0.827 | 0.0511 | 0.741 | 0.0327 | ||
Sensor data—Pen | Water consumption | Mean | 1.566 | 0.0364 | 1.427 | 0.0613 |
CV | 1.315 | 0.0095 | 1.241 | −0.0309 | ||
Activity time | Mean | 1.279 | 0.0584 | 1.314 | 0.0590 | |
CV | 1.324 | −0.0379 | 1.359 | −0.0335 | ||
Sensor data— Environmental | Temperature | Mean | 0.657 | 0.0322 | ||
CV | 0.634 | −0.0031 | ||||
Humidity | Mean | 0.861 | 0.0084 | |||
CV | 0.403 | −0.0100 | ||||
Temperature humidity index | Mean | 0.572 | 0.0283 | |||
CV | 0.731 | −0.0175 | ||||
NH3 concentration | Mean | 0.800 | 0.0125 | |||
CV | 0.476 | −0.0038 | ||||
CO2 concentration | Mean | 1.118 | −0.0105 | |||
CV | 0.264 | −0.0349 | ||||
Exhaust air rate | Mean | 0.745 | −0.0978 | |||
CV | 1.097 | −0.0355 | ||||
Outdoor temperature | Mean | 0.666 | 0.0243 | |||
CV | 0.395 | 0.0212 | ||||
(b) | ||||||
All Variables | without Environmental Variables | |||||
R2 = 0.62 | R2 = 0.65 | |||||
β = 0.0526 1 | β = 0.2102 1 | |||||
Recorded | Variable | Feature | VIP | β | VIP | β |
Direct observations— Pen | Tail posture | 3.927 | 0.7055 | 4.113 | 0.7423 | |
Skin lesions | 1.062 | 0.0033 | 0.907 | 0.0329 | ||
Respiratory tract | 1.095 | −0.0201 | 1.090 | −0.0384 | ||
Gastrointestinal tract | 0.288 | 0.0272 | 0.331 | 0.0650 | ||
Musculoskeletal system | 1.264 | 0.0992 | 1.436 | 0.1247 | ||
Treatment index rearing | 0.242 | −0.0277 | 0.413 | −0.0644 | ||
Treatment index fattening | 0.600 | −0.0402 | 0.828 | 0.0126 | ||
Weight end of rearing | 1.019 | 0.0322 | 1.212 | 0.0626 | ||
Sensor data— Pen | Water consumption | Mean | 1.450 | 0.0096 | 1.033 | 0.0148 |
CV | 0.472 | 0.0113 | 0.887 | 0.0108 | ||
Activity time | Mean | 1.697 | −0.0826 | 1.521 | −0.0376 | |
CV | 1.855 | 0.0690 | 1.690 | 0.0444 | ||
Sensor data— Environmental | Temperature | Mean | 0.881 | −0.0054 | ||
CV | 1.095 | 0.0130 | ||||
Humidity | Mean | 0.763 | 0.0384 | |||
CV | 0.889 | 0.0821 | ||||
Temperature humidity index | Mean | 0.908 | −0.0045 | |||
CV | 1.115 | 0.0004 | ||||
NH3 concentration | Mean | 0.975 | −0.1544 | |||
CV | 0.870 | 0.0111 | ||||
CO2 concentration | Mean | 1.026 | 0.0279 | |||
CV | 0.858 | −0.0084 | ||||
Exhaust air rate | Mean | 1.300 | −0.0673 | |||
CV | 1.113 | 0.0973 | ||||
Outdoor temperature | Mean | 1.119 | 0.0014 | |||
CV | 1.069 | −0.0275 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Drexl, V.; Dittrich, I.; Wilder, T.; Diers, S.; Krieter, J. Identifying Early Indicators of Tail Biting in Pigs by Variable Selection Using Partial Least Squares Regression. Animals 2023, 13, 56. https://doi.org/10.3390/ani13010056
Drexl V, Dittrich I, Wilder T, Diers S, Krieter J. Identifying Early Indicators of Tail Biting in Pigs by Variable Selection Using Partial Least Squares Regression. Animals. 2023; 13(1):56. https://doi.org/10.3390/ani13010056
Chicago/Turabian StyleDrexl, Veronika, Imme Dittrich, Thore Wilder, Sophie Diers, and Joachim Krieter. 2023. "Identifying Early Indicators of Tail Biting in Pigs by Variable Selection Using Partial Least Squares Regression" Animals 13, no. 1: 56. https://doi.org/10.3390/ani13010056
APA StyleDrexl, V., Dittrich, I., Wilder, T., Diers, S., & Krieter, J. (2023). Identifying Early Indicators of Tail Biting in Pigs by Variable Selection Using Partial Least Squares Regression. Animals, 13(1), 56. https://doi.org/10.3390/ani13010056