Alternative Culture Systems for Bovine Oocyte In Vitro Maturation: Liquid Marbles and Differentially Shaped 96-Well Plates
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.1.1. Experiment 1: Evaluation of Liquid Marbles as 3-D Model for In Vitro Maturation
2.1.2. Experiment 2: Evaluation of Different Surface Geometries for In Vitro Maturation
2.2. Media and Reagents
2.3. Source of Oocytes and In Vitro Maturation
2.4. In Vitro Fertilization and Embryo Culture
2.5. Evaluation of Oocyte Nuclear Stage (Maturation Assessment)
2.6. Embryo Quality Assessment
2.7. Statistical Analyses
3. Results
3.1. Experiment 1: Evaluation of Liquid Marbles as a 3D Model for In Vitro Maturation
3.1.1. Effect of Liquid Marbles on Oocyte Nuclear Maturation
3.1.2. Effect of Liquid Marbles on Embryo Development and Embryo Quality
3.2. Experiment 2: Evaluation of Different Surface Geometries for In Vitro Maturation
3.2.1. Effect of Volume of Medium and Oil Overlay on 96-Well Plates Culture
3.2.2. Effect of Surface Geometry on Oocyte Nuclear Maturation, Embryo Development, and Embryo Quality
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tšuiko, O.; Catteeuw, M.; Esteki, M.Z.; Destouni, A.; Pascottini, O.B.; Besenfelder, U.; Havlicek, V.; Smits, K.; Kurg, A.; Salumets, A.; et al. Genome Stability of Bovine in Vivo-Conceived Cleavage-Stage Embryos Is Higher Compared to in Vitro-Produced Embryos. Hum. Reprod. 2017, 32, 2348–2357. [Google Scholar] [CrossRef]
- Kim, D.-H.; Ko, D.-S.; Lee, H.-C.; Lee, H.-J.; Park, W.-I.; Kim, S.S.; Park, J.-K.; Yang, B.-C.; Park, S.-B.; Chang, W.-K.; et al. Comparison of Maturation, Fertilization, Development, and Gene Expression of Mouse Oocytes Grown In Vitro and In Vivo. J. Assist. Reprod. Genet. 2004, 21, 233–240. [Google Scholar] [CrossRef]
- Downs, S.M.; Mastropolo, A.M. Culture Conditions Affect Meiotic Regulation in Cumulus Cell-enclosed Mouse Oocytes. Available online: https://onlinelibrary.wiley.com/doi/epdf/10.1002/%28SICI%291098-2795%28199704%2946%3A4%3C551%3A%3AAID-MRD13%3E3.0.CO%3B2-Z (accessed on 5 July 2022).
- Edwards, J.L.; Saxton, A.M.; Lawrence, J.L.; Payton, R.R.; Dunlap, J.R. Exposure to a Physiologically Relevant Elevated Temperature Hastens In Vitro Maturation in Bovine Oocytes. J. Dairy Sci. 2005, 88, 4326–4333. [Google Scholar] [CrossRef] [PubMed]
- Whitty, A.; Kind, K.L.; Dunning, K.R.; Thompson, J.G. Effect of Oxygen and Glucose Availability during in Vitro Maturation of Bovine Oocytes on Development and Gene Expression. J. Assist Reprod. Genet. 2021, 38, 1349–1362. [Google Scholar] [CrossRef]
- Fesahat, F.; Firouzabadi, R.D.; Faramarzi, A.; Khalili, M.A. The Effects of Different Types of Media on in Vitro Maturation Outcomes of Human Germinal Vesicle Oocytes Retrieved in Intracytoplasmic Sperm Injection Cycles. Clin. Exp. Reprod. Med. 2017, 44, 79–84. [Google Scholar] [CrossRef]
- Doherty, E.M.O.; Wade, M.G.; Hill, J.L.; Boland, M.P. Effects of Culturing Bovine Oocytes Either Singly or in Groups on Development to Blastocysts. Theriogenology 1997, 48, 161–169. [Google Scholar] [CrossRef]
- Weng, L. IVF-on-a-Chip: Recent Advances in Microfluidics Technology for In Vitro Fertilization. SLAS Technol. 2019, 24, 373–385. [Google Scholar] [CrossRef]
- Weng, L.; Lee, G.Y.; Liu, J.; Kapur, R.; Toth, T.L.; Toner, M. On-Chip Oocyte Denudation from Cumulus–Oocyte Complexes for Assisted Reproductive Therapy. Lab Chip 2018, 18, 3892–3902. [Google Scholar] [CrossRef] [PubMed]
- Iwasaki, W.; Yamanaka, K.; Sugiyama, D.; Teshima, Y.; Briones-Nagata, M.P.; Maeki, M.; Yamashita, K.; Takahashi, M.; Miyazaki, M. Simple Separation of Good Quality Bovine Oocytes Using a Microfluidic Device. Sci. Rep. 2018, 8, 14273. [Google Scholar] [CrossRef] [PubMed]
- Duval, K.; Grover, H.; Han, L.H.; Mou, Y.; Pegoraro, A.F.; Fredberg, J.; Chen, Z. Modeling Physiological Events in 2D vs. 3D Cell Culture. Physiology 2017, 32, 266–277. [Google Scholar] [CrossRef]
- Pampaloni, F.; Reynaud, E.G.; Stelzer, E.H.K. The Third Dimension Bridges the Gap between Cell Culture and Live Tissue. Nat. Rev. Mol. Cell Biol 2007, 8, 839–845. [Google Scholar] [CrossRef] [PubMed]
- Elsdale, T.; Bard, J. Collagen Substrata for Studies on Cell Behavior. J. Cell Biol. 1972, 54, 626–637. [Google Scholar] [CrossRef]
- Bates, R.C.; Buret, A.; van Helden, D.E.; Horton, M.A.; Burns, G.E. Apoptosis Induced by Inhibition of Intercellular Contact. J. Cell Biol. 1994, 125, 403–415. [Google Scholar] [CrossRef]
- Bell, S.E.; Mavila, A.; Salazar, R.; Bayless, K.J.; Kanagala, S.; Maxwell, S.A.; Davis, G.E. Differential Gene Expression during Capillary Morphogenesis in 3D Collagen Matrices: Regulated Expression of Genes Involved in Basement Membrane Matrix Assembly, Cell Cycle Progression, Cellular Differentiation and G-Protein Signaling. J. Cell Sci. 2001, 114, 2755–2773. [Google Scholar] [CrossRef]
- Ghosh, S.; Spagnoli, G.C.; Martin, I.; Ploegert, S.; Demougin, P.; Heberer, M.; Reschner, A. Three-Dimensional Culture of Melanoma Cells Profoundly Affects Gene Expression Profile: A High Density Oligonucleotide Array Study. J. Cell Physiol. 2005, 204, 522–531. [Google Scholar] [CrossRef]
- Kirshner, J.; Chen, C.J.; Liu, P.; Huang, J.; Shively, J.E. CEACAM1-4S, a Cell-Cell Adhesion Molecule, Mediates Apoptosis and Reverts Mammary Carcinoma Cells to a Normal Morphogenic Phenotype in a 3D Culture. Proc. Natl. Acad. Sci. USA 2003, 100, 521–526. [Google Scholar] [CrossRef]
- Kleinman, H.K.; Philp, D.; Hoffman, M.P. Role of the Extracellular Matrix in Morphogenesis. Curr. Opin. Biotechnol. 2003, 14, 526–532. [Google Scholar] [CrossRef] [PubMed]
- von der Mark, K.; Gauss, V.; von der Mark, H.; Müller, P. Relationship between Cell Shape and Type of Collagen Synthesised as Chondrocytes Lose Their Cartilage Phenotype in Culture. Nature 1977, 267, 531–532. [Google Scholar] [CrossRef]
- Kilian, K.A.; Bugarija, B.; Lahn, B.T.; Mrksich, M. Geometric Cues for Directing the Differentiation of Mesenchymal Stem Cells. Proc. Natl. Acad. Sci. USA 2010, 107, 4872–4877. [Google Scholar] [CrossRef] [PubMed]
- Anton, D.; Burckel, H.; Josset, E.; Noel, G. Three-Dimensional Cell Culture: A Breakthrough in Vivo. Int. J. Mol. Sci. 2015, 16, 5517–5527. [Google Scholar] [CrossRef] [PubMed]
- Baker, B.M.; Chen, C.S. Deconstructing the Third Dimension—How 3D Culture Microenvironments Alter Cellular Cues. J. Cell Sci. 2012, 125, 3015. [Google Scholar] [CrossRef] [PubMed]
- Mastrorocco, A.; Cacopardo, L.; Martino, N.A.; Fanelli, D.; Camillo, F.; Ciani, E.; Roelen, B.A.J.; Ahluwalia, A.; Dell’Aquila, M.E. One-Step Automated Bioprinting-Based Method for Cumulus-Oocyte Complex Microencapsulation for 3D in Vitro Maturation. PLoS ONE 2020, 15, e0238812. [Google Scholar] [CrossRef] [PubMed]
- Gorczyca, G.; Wartalski, K.; Tabarowski, Z.; Duda, M. Proteolytically Degraded Alginate Hydrogels and Hydrophobic Microbioreactors for Porcine Oocyte Encapsulation. J. Vis. Exp. 2020, 2020, e61325. [Google Scholar] [CrossRef]
- Shen, P.; Xu, J.; Wang, P.; Zhao, X.; Huang, B.; Wu, F.; Wang, L.; Chen, W.; Feng, Y.; Guo, Z.; et al. A New Three-Dimensional Glass Scaffold Increases the in Vitro Maturation Efficiency of Buffalo (Bubalus Bubalis) Oocyte via Remodelling the Extracellular Matrix and Cell Connection of Cumulus Cells. Reprod. Domest. Anim. 2020, 55, 170–180. [Google Scholar] [CrossRef]
- Park, J.E.; Kim, M.S.; Lee, E.; Lee, S.T. In Vitro Maturation Using an Agarose Matrix with Incorporated Extracellular Matrix Proteins Improves Porcine Oocyte Developmental Competence by Enhancing Cytoplasmic Maturation. J. Tissue Eng. Regen. Med. 2021, 15, 807–817. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, S.; Machida, R.; Hiraga, K.; Hiradate, Y.; Suda, Y.; Tanemura, K. Hanging Drop Monoculture for Selection of Optimal Antioxidants During In Vitro Maturation of Porcine Oocytes. Reprod. Domest. Anim. 2014, 49, e26–e30. [Google Scholar] [CrossRef]
- Tian, J.; Arbatan, T.; Li, X.; Shen, W. Liquid Marble for Gas Sensing. Chem. Commun. 2010, 46, 4734–4736. [Google Scholar] [CrossRef]
- Tian, J.; Fu, N.; Chen, X.D.; Shen, W. Respirable Liquid Marble for the Cultivation of Microorganisms. Colloids Surf. B Biointerfaces 2013, 106, 187–190. [Google Scholar] [CrossRef]
- Sarvi, F.; Arbatan, T.; Chan, P.P.Y.; Shen, W. A Novel Technique for the Formation of Embryoid Bodies inside Liquid Marbles. RSC Adv. 2013, 3, 14501–14508. [Google Scholar] [CrossRef]
- Lin, K.; Chen, R.; Zhang, L.; Zang, D.; Geng, X.; Shen, W. Transparent Bioreactors Based on Nanoparticle-Coated Liquid Marbles for in Situ Observation of Suspending Embryonic Body Formation and Differentiation. ACS Appl. Mater. Interfaces 2019, 11, 8789–8796. [Google Scholar] [CrossRef]
- Vadivelu, R.K.; Ooi, C.H.; Yao, R.Q.; Tello Velasquez, J.; Pastrana, E.; Diaz-Nido, J.; Lim, F.; Ekberg, J.A.K.; Nguyen, N.T.; St John, J.A. Generation of Three-Dimensional Multiple Spheroid Model of Olfactory Ensheathing Cells Using Floating Liquid Marbles. Sci. Rep. 2015, 5, 15083. [Google Scholar] [CrossRef] [PubMed]
- Ledda, S.; Idda, A.; Kelly, J.; Ariu, F.; Bogliolo, L.; Bebbere, D. A Novel Technique for in Vitro Maturation of Sheep Oocytes in a Liquid Marble Microbioreactor. J. Assist. Reprod. Genet. 2016, 33, 513–518. [Google Scholar] [CrossRef] [PubMed]
- Bebbere, D.; Nieddu, S.M.; Ariu, F.; Piras, D.; Ledda, S. 3d Liquid Marble Microbioreactors Support in Vitro Maturation of Prepubertal Ovine Oocytes and Affect Expression of Oocyte-Specific Factors. Biology 2021, 10, 1101. [Google Scholar] [CrossRef]
- Kim, M.H.; Sawada, Y.; Taya, M.; Kino-oka, M. Influence of Surface Topography on the Human Epithelial Cell Response to Micropatterned Substrates with Convex and Concave Architectures. J. Biol. Eng. 2014, 8, 13. [Google Scholar] [CrossRef]
- Graziano, A.; D’Aquino, R.; Cusella-De Angelis, M.G.; de Francesco, F.; Giordano, A.; Laino, G.; Piattelli, A.; Traini, T.; de Rosa, A.; Papaccio, G. Scaffold’s Surface Geometry Significantly Affects Human Stem Cell Bone Tissue Engineering. J. Cell Physiol. 2008, 214, 166–172. [Google Scholar] [CrossRef] [PubMed]
- Chou, L.; Firth, J.D.; Uitto, V.J.; Brunette, D.M. Substratum Surface Topography Alters Cell Shape and Regulates Fibronectin MRNA Level, MRNA Stability, Secretion and Assembly in Human Fibroblasts. J. Cell Sci. 1995, 108, 1563–1573. [Google Scholar] [CrossRef]
- Chou, L.; Firth, J.D.; Uitto, V.J.; Brunette, D.M. Effects of Titanium Substratum and Grooved Surface Topography on Metalloproteinase-2 Expression in Human Fibroblasts. Available online: https://onlinelibrary.wiley.com/doi/epdf/10.1002/%28SICI%291097-4636%2819980305%2939%3A3%3C437%3A%3AAID-JBM13%3E3.0.CO%3B2-7 (accessed on 18 March 2022).
- Matsuzaka, K.; Yoshinari, M.; Shimono, M.; Inoue, T. Effects of Multigrooved Surfaces on Osteoblast-like Cells in Vitro: Scanning Electron Microscopic Observation and MRNA Expression of Osteopontin and Osteocalcin. J. Biomed. Mater. Res. A 2004, 68, 227–234. [Google Scholar] [CrossRef]
- Walters, K.A.; Binnie, J.P.; Campbell, B.K.; Armstrong, D.G.; Telfer, E.E. The Effects of IGF-I on Bovine Follicle Development and IGFBP-2 Expression Are Dose and Stage Dependent. Reproduction 2006, 131, 515–523. [Google Scholar] [CrossRef]
- Telfer, E.E.; McLaughlin, M.; Ding, C.; Thong, K.J. A Two-Step Serum-Free Culture System Supports Development of Human Oocytes from Primordial Follicles in the Presence of Activin. Hum. Reprod. 2008, 23, 1151–1158. [Google Scholar] [CrossRef]
- Sánchez, F.; Romero, S.; Albuz, F.K.; Smitz, J. In Vitro Follicle Growth under Non-Attachment Conditions and Decreased FSH Levels Reduces Lhcgr Expression in Cumulus Cells and Promotes Oocyte Developmental Competence. J. Assist. Reprod. Genet. 2012, 29, 141–152. [Google Scholar] [CrossRef]
- Shafaie, S.; Hutter, V.; Brown, M.B.; Cook, M.T.; Chau, D.Y.S. Influence of Surface Geometry on the Culture of Human Cell Lines: A Comparative Study Using Flat, Round-Bottom and v-Shaped 96 Well Plates. PLoS ONE 2017, 12, e0186799. [Google Scholar] [CrossRef]
- Wydooghe, E.; Vandaele, L.; Heras, S.; de Sutter, P.; Deforce, D.; Peelman, L.; de Schauwer, C.; van Soom, A. Autocrine Embryotropins Revisited: How Do Embryos Communicate with Each Other in Vitro When Cultured in Groups? Biol. Rev. 2017, 92, 505–520. [Google Scholar] [CrossRef]
- Wydooghe, E.; Vandaele, L.; Beek, J.; Favoreel, H.; Heindryckx, B.; de Sutter, P.; van Soom, A. Differential Apoptotic Staining of Mammalian Blastocysts Based on Double Immunofluorescent CDX2 and Active Caspase-3 Staining. Anal. Biochem. 2011, 416, 228–230. [Google Scholar] [CrossRef] [PubMed]
- Brum, D.S.; Leivas, F.G.; Silva, C.A.M.; Rubin, M.I.B.; Rauber, L.P.; Fialho, S.S.; Pilla, L.F.C.; Bernardi, M.L.; Brum, D.S.; Leivas, F.G.; et al. The Effects of the Number of Oocytes and the Volume of Maturation Medium in Bovine in Vitro Embryo Production. Anim. Reprod. 2018, 2, 70–73. [Google Scholar]
- Celá, P.; Veselá, B.; Matalová, E.; Večeřa, Z.; Buchtová, M. Embryonic Toxicity of Nanoparticles. Cells Tissues Organs 2014, 199, 1–23. [Google Scholar] [CrossRef]
- Ferraz, M.D.A.M.M.; Henning, H.H.W.; da Costa, P.F.; Malda, J.; Le Gac, S.; Bray, F.; van Duursen, M.B.M.; Brouwers, J.F.; van de Lest, C.H.A.; Bertijn, I.; et al. Potential Health and Environmental Risks of Three-Dimensional Engineered Polymers. Environ. Sci. Technol. Lett. 2018, 5, 80–85. [Google Scholar] [CrossRef]
- Ferré, L.B.; Kjelland, M.E.; Strøbech, L.B.; Hyttel, P.; Mermillod, P.; Ross, P.J. Review: Recent Advances in Bovine in Vitro Embryo Production: Reproductive Biotechnology History and Methods. Animal 2020, 14, 991–1004. [Google Scholar] [CrossRef]
- Biswas, D.; Hyun, S.H. Supplementation of Fetal Bovine Serum Increased the Quality of in Vitro Fertilized Porcine Embryo. J. Adv. Vet Anim. Res. 2021, 8, 589. [Google Scholar] [CrossRef] [PubMed]
- Hsiao, I.L.; Huang, Y.J. Effects of Serum on Cytotoxicity of Nano- and Micro-Sized ZnO Particles. J. Nanoparticle Res. 2013, 15, 1829. [Google Scholar] [CrossRef]
- Pavani, K.C.; Hendrix, A.; van den Broeck, W.; Couck, L.; Szymanska, K.; Lin, X.; de Koster, J.; van Soom, A.; Leemans, B. Isolation and Characterization of Functionally Active Extracellular Vesicles from Culture Medium Conditioned by Bovine Embryos In Vitro. Int. J. Mol. Sci. 2018, 20, 38. [Google Scholar] [CrossRef]
- van Soom, A.; Ysebaert, M.T.; de Kruif, A. Relationship between timing of development, morula morphology, and cell allocation to inner cell mass and trophectoderm in in vitro-produced bovine embryos. Mol. Reprod. Dev. 2017, 47, 47–56. [Google Scholar] [CrossRef]
Treatment | No. Oocytes | GV | GVBD | MI | MII | Degenerated |
---|---|---|---|---|---|---|
Control Group | 69 | 0 ± 0 | 0 ± 0 | 13 ± 6.9 | 87 ± 4.1 | 0 ± 0 |
2D Droplets | 53 | 0 ± 0 | 0 ± 0 | 13.2 ± 6.4 | 84.9 ± 4.9 | 1.8 ± 0.2 |
LM | 60 | 0 ± 0 | 5 ± 2.8 | 3.3 ± 0.8 | 88.3 ± 4.1 | 3.3 ± 0.2 |
Treatment | No. Blastocyst | Cell Numbers | ICM/TCN Ratio | AC/TCN Ratio | |||
---|---|---|---|---|---|---|---|
TCN | ICM | TE | AC | ||||
Control Group | 52 | 117.8 ± 8.6 a | 36.1 ± 2.2 a | 81.6 ± 4.0 a | 1.9 ± 3.7 | 30.9 ± 1.3 | 2.0 ± 0.5 a |
2D Droplets | 51 | 82.3 ± 5.1 b | 26.2 ± 2.2 b | 56.3 ± 4.0 b | 2.8 ± 3.7 | 32.6 ± 1.4 | 3.9 ± 0.5 b |
LM | 53 | 91.3 ± 5.1 b | 31.6 ± 2.2 ab | 59.8 ± 4.0 b | 3.0 ± 3.6 | 33.7 ± 1.3 | 3.5 ± 0.5 ab |
Treatment | No. Oocytes | GV | GVBD | MI | MII | Degenerated |
---|---|---|---|---|---|---|
Control Group | 38 | 2.6 ± 0 | 7.9 ± 4.4 | 2.6 ± 0.1 | 86.8 ± 5.5 | 0 ± 0 |
F60 | 53 | 3.8 ± 0 | 11.3 ± 4.4 | 0 ± 0 | 84.9 ± 4.9 | 0 ± 0 |
V60 | 51 | 0 ± 0 | 5.9 ± 3.3 | 3.9 ± 0.1 | 90.2 ± 4.2 | 0 ± 0 |
R60 | 45 | 4.4 ± 0 | 4.4 ± 3.1 | 0 ± 0 | 91.1 ± 4.2 | 0 ± 0 |
Treatment | No. Blastocyst | Cell Numbers | ICM/TCN Ratio | AC/TCN Ratio | |||
---|---|---|---|---|---|---|---|
TCN | ICM | TE | AC | ||||
Control Group | 80 | 134.6 ± 5.2 a | 51.0 ± 2.5 a | 83.6 ± 3.6 a | 1.8 ± 2.6 | 38.6 ± 3.9 | 1.7 ± 0.3 |
F60 | 83 | 112.4 ± 5.1 b | 44.8 ± 2.4 ab | 67.5 ± 3.5 b | 2.0 ± 2.5 | 34.5 ± 3.9 | 2.2 ± 0.3 |
V60 | 84 | 112.2 ± 5.1 b | 44.1 ± 2.4 ab | 68.0 ± 3.5 b | 1.7 ± 2.5 | 39.4 ± 3.8 | 1.7 ± 0.3 |
R60 | 70 | 97.6 ± 5.6 b | 39.8 ± 2.7 b | 57.8 ± 3.8 b | 1.61 ± 2.5 | 41.9 ± 4.2 | 1.7 ± 0.3 |
Maturation Technique | Description | Hands-on-Time (min) | Complexity | Cost (€) | |
---|---|---|---|---|---|
Preparation | Recovery | ||||
Four well dish without oil (control) | Sixty COCs in 500 μL of maturation medium in flat-bottom 4-well dishes without oil covering | 1 | 0.5 | + | 1.3 |
Droplets on Petri dish under oil (2-D Droplets) | Five COCs in droplets of 30 μL of maturation medium in a Petri dish (60 × 15 mm) and covered with 7.5 mL paraffin oil | 4 | 3 | ++ | 3.2 |
Liquid marbles | Five COCs in 30 μL of maturation medium are placed on top of a layer of treated fumed silica powder to form a LM, which is transferred to a well of a 24-well plate with a cut 1000 μL pipette tip | 15 | 7 | ++++ | 3.3 |
96-well plates differently shaped | Five COCs in 60 μL of maturation medium covered by 30 μL of paraffin oil overlay in flat, ultra-low attachment round-bottom, and v-shaped 96-well plates | 4 | 5 | +++ | Flat: 3.8 V-shaped: 3.9Round-bottom: 22.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernández-Montoro, A.; Angel-Velez, D.; Benedetti, C.; Azari-Dolatabad, N.; Pascottini, O.B.; Van Soom, A.; Pavani, K.C. Alternative Culture Systems for Bovine Oocyte In Vitro Maturation: Liquid Marbles and Differentially Shaped 96-Well Plates. Animals 2023, 13, 1635. https://doi.org/10.3390/ani13101635
Fernández-Montoro A, Angel-Velez D, Benedetti C, Azari-Dolatabad N, Pascottini OB, Van Soom A, Pavani KC. Alternative Culture Systems for Bovine Oocyte In Vitro Maturation: Liquid Marbles and Differentially Shaped 96-Well Plates. Animals. 2023; 13(10):1635. https://doi.org/10.3390/ani13101635
Chicago/Turabian StyleFernández-Montoro, Andrea, Daniel Angel-Velez, Camilla Benedetti, Nima Azari-Dolatabad, Osvaldo Bogado Pascottini, Ann Van Soom, and Krishna Chaitanya Pavani. 2023. "Alternative Culture Systems for Bovine Oocyte In Vitro Maturation: Liquid Marbles and Differentially Shaped 96-Well Plates" Animals 13, no. 10: 1635. https://doi.org/10.3390/ani13101635
APA StyleFernández-Montoro, A., Angel-Velez, D., Benedetti, C., Azari-Dolatabad, N., Pascottini, O. B., Van Soom, A., & Pavani, K. C. (2023). Alternative Culture Systems for Bovine Oocyte In Vitro Maturation: Liquid Marbles and Differentially Shaped 96-Well Plates. Animals, 13(10), 1635. https://doi.org/10.3390/ani13101635