Seasonal Variation and Factors Affecting Trypanosoma theileri Infection in Wild Sika Deer (Ezo Sika Deer Cervus nippon yesoensis) in Eastern Hokkaido
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Blood Sample Collection
2.2. Parasitological Examination
2.3. DNA Extraction and PCR
2.4. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lefebvre, M.F.; Semalulu, S.S.; Oatway, A.E.; Nolan, J.W. Trypanosomiasis in woodland caribou of northern Alberta. J. Wildl. Dis. 1997, 33, 271–277. [Google Scholar] [CrossRef] [PubMed]
- Morton, J.K.; Kingston, N. Further studies on trypanosomes in game animals in Wyoming. J. Wildl. Dis. 1976, 12, 233–236. [Google Scholar] [CrossRef] [PubMed]
- Kingston, N.; Morton, J.K.; Dieterich, R. Trypanosoma cervi from Alaskan Reindeer, Rangifer tarandus L. J. Protozool. 1982, 29, 588–591. [Google Scholar] [CrossRef]
- Clark, G.G. Trypanosomes from mule deer in New Mexico and Colorado. J. Wildl. Dis. 1972, 8, 325–326. [Google Scholar] [CrossRef] [PubMed]
- Kingston, N.; Morton, J.K.; Matthews, M. Trypanosomes from mule deer, Odocoileus hemionus, in Wyoming1 2. J. Wildl. Dis. 1975, 11, 519–521. [Google Scholar] [CrossRef]
- Matthews, M.J.; Kingston, N.; Morton, J.K. Trypanosoma cervi Kingston and Morton, 1975 from mule deer, Odocoileus hemionus, in Wyoming. J. Wildl. Dis. 1977, 13, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Fisher, A.C.; Schuster, G.; Cobb, W.J.; James, A.M.; Cooper, S.M.; Peréz de León, A.A.P.; Holman, P.J. Molecular characterization of Trypanosoma (Megatrypanum) spp. infecting cattle (Bos taurus), white-tailed deer (Odocoileus virginianus), and elk (Cervus elaphus canadensis) in the United States. Vet. Parasitol. 2013, 197, 29–42. [Google Scholar] [CrossRef]
- Garcia, H.A.; Blanco, P.A.; Rodrigues, A.C.; Rodrigues, C.M.; Takata, C.S.; Campaner, M.; Camargo, E.P.; Teixeira, M.M. Pan American Trypanosoma (Megatrypanum) trinaperronei n. sp. in the white-tailed deer Odocoileus virginianus Zimmermann and its deer ked Lipoptena mazamae Rondani, 1878: Morphological, developmental and phylogeographical characterisation. Parasit. Vectors. 2020, 13, 1. [Google Scholar] [CrossRef] [PubMed]
- Telford, S.R.; Forrester, D.J.; Wright, S.D.; Roelke, M.E.; Ferenc, S.A.; McCown, J.W. The identity and prevalence of trypanosomes in white-tailed deer (Odocoileus virginianus) from southern Florida. J. Helminthol. Soc. Wash. 1991, 58, 19–23. [Google Scholar]
- Kutz, S.J.; Ducrocq, J.; Verocai, G.G.; Hoar, B.M.; Colwell, D.D.; Beckmen, K.B.; Polley, L.; Elkin, B.T.; Hoberg, E.P. Parasites in ungulates of Arctic North America and Greenland: A view of contemporary diversity, ecology, and impact in a world under change. Adv. Parasitol. 2012, 79, 99–252. [Google Scholar]
- Hoffmann, M.; Büscher, G.; Friedhoff, K.T. Stercorarian trypanosomes from deer (Cervidae) in Germany, 3. J. Protozool. 1984, 31, 581–584. [Google Scholar] [CrossRef] [PubMed]
- Dirie, M.; Bornstein, S.; Wallbanks, K.; Molyneux, D.; Steen, M. Comparative studies on Megatrypanum trypanosomes from cervids. Trop. Med. Parasitol. 1990, 41, 198–202. [Google Scholar] [PubMed]
- Kingston, N.; Drozdz, J.; Rutkowska, M. Trypanosoma sp. in red deer (Cervus elaphus) and elk (Alces alces) in Poland. Proc. Helminthol. Soc. Wash. 1985, 52, 144–145. [Google Scholar]
- Kingston, N.; Bobek, B.; Perzanowski, K.; Wita, I.; Maki, L. Description of Trypanosoma (Megatrypanum) stefanskii sp. n. from roe deer (Capreolus capreolus) in Poland. J. Helminthol. Soc. Wash. 1992, 59, 89–95. [Google Scholar]
- Kingston, N.; Bobek, B. A trypanosome in roe deer, Capreolus capreolus, in southern Poland. Proc.-Helminthol. Soc. Wash. 1985, 52, 143. [Google Scholar]
- Wita, I.; Kingston, N. Trypanosoma cervi in red deer, Cervus elaphus, in Poland. Acta Parasitol. 1999, 44, 93–98. [Google Scholar]
- Hatama, S.; Shibahara, T.; Suzuki, M.; Kadota, K.; Uchida, I.; Kanno, T. Isolation of a Megatrypanum trypanosome from sika deer (Cervus nippon yesoensis) in Japan. Vet. Parasitol. 2007, 149, 56–64. [Google Scholar] [CrossRef]
- Rosyadi, I.; Setsuda, A.; Eliakunda, M.; Takano, A.; Maeda, K.; Saito-Ito, A.; Suzuki, K.; Sato, H. Genetic diversity of cervid Trypanosoma theileri in Honshu sika deer (Cervus nippon) in Japan. Parasitology 2021, 148, 1636–1647. [Google Scholar] [CrossRef]
- Kizza, D.; Ocaido, M.; Mugisha, A.; Azuba, R.; Nalule, S.; Onyuth, H.; Musinguzi, S.P.; Okwasiimire, R.; Waiswa, C. Prevalence and risk factors for trypanosome infection in cattle from communities surrounding the Murchison Falls National Park, Uganda. Parasit. Vectors. 2021, 14, 513. [Google Scholar] [CrossRef]
- Mizushima, D.; Amgalanbaatar, T.; Davaasuren, B.; Kayano, M.; Naransatsral, S.; Myagmarsuren, P.; Otgonsuren, D.; Enkhtaivan, B.; Davkharbayar, B.; Mungun-Ochir, B.; et al. Nationwide serological surveillance of non-tsetse-transmitted horse trypanosomoses in Mongolia. Parasite Epidemiol. Control. 2020, 10, e00158. [Google Scholar] [CrossRef]
- Savage, V.L.; Christley, R.; Pinchbeck, G.; Morrison, L.J.; Hodgkinson, J.; Peachey, L.E. Co-infection with Trypanosoma congolense and Trypanosoma brucei is a significant risk factor for cerebral trypanosomosis in the equid population of the Gambia. Prev. Vet. Med. 2021, 197, 105507. [Google Scholar] [CrossRef] [PubMed]
- Jaimes-Dueñez, J.; Triana-Chávez, O.; Mejía-Jaramillo, A.M. Spatial-temporal and phylogeographic characterization of Trypanosoma spp. in cattle (Bos taurus) and buffaloes (Bubalus bubalis) reveals transmission dynamics of these parasites in Colombia. Vet. Parasitol. 2018, 249, 30–42. [Google Scholar] [CrossRef] [PubMed]
- Karshima, S.N.; Ajogi, I.; Mohammed, G. Eco-epidemiology of porcine trypanosomosis in Karim Lamido, Nigeria: Prevalence, seasonal distribution, tsetse density and infection rates. Parasit. Vectors. 2016, 9, 1–9. [Google Scholar] [CrossRef]
- Simwango, M.; Ngonyoka, A.; Nnko, H.J.; Salekwa, L.P.; Ole-Neselle, M.; Kimera, S.I.; Gwakisa, P.S. Molecular prevalence of trypanosome infections in cattle and tsetse flies in the Maasai Steppe, northern Tanzania. Parasit. Vectors. 2017, 10, 507. [Google Scholar] [CrossRef] [PubMed]
- Woo, P.T. The haematocrit centrifuge for the detection of trypanosomes in blood. Can. J. Zool. 1969, 47, 921–923. [Google Scholar] [CrossRef]
- Rodrigues, A.C.; Garcia, H.A.; Ortiz, P.A.; Cortez, A.P.; Martinkovic, F.; Paiva, F.; Batista, J.S.; Minervino, A.H.; Campaner, M.; Pral, E.M.; et al. Cysteine proteases of Trypanosoma (Megatrypanum) theileri: Cathepsin L-like gene sequences as targets for phylogenetic analysis, genotyping diagnosis. Parasitol. Int. 2010, 59, 318–325. [Google Scholar] [CrossRef] [PubMed]
- Suganuma, K.; Kondoh, D.; Sivakumar, T.; Mizushima, D.; Elata, A.T.M.; Thekisoe, O.M.M.; Yokoyama, N.; Inoue, N. Molecular characterization of a new Trypanosoma (Megatrypanum) theileri isolate supports the two main phylogenetic lineages of this species in Japanese cattle. Parasitol. Res. 2019, 118, 1927–1935. [Google Scholar] [CrossRef]
- Abdel-Rady, A. Epidemiological studies (parasitological, serological and molecular techniques) of Trypanosoma evansi infection in camels (Camelus dromedarius) in Egypt. Vet. World. 2008, 1, 325. [Google Scholar]
- Clausen, P.H.; Wiemann, A.; Patzelt, R.; Kakaire, D.; Poetzsch, C.; Peregrine, A.; Mehlitz, D. Use of a PCR assay for the specific and sensitive detection of Trypanosoma spp. in naturally infected dairy cattle in peri-urban Kampala, Uganda. Ann. N. Y. Acad. Sci. 1998, 849, 21–31. [Google Scholar] [CrossRef]
- Kyambadde, J.W.; Enyaru, J.C.; Matovu, E.; Odiit, M.; Carasco, J.F. Detection of trypanosomes in suspected sleeping sickness patients in Uganda using the polymerase chain reaction. Bull. World Health Organ. 2000, 78, 119–124. [Google Scholar]
- Moti, Y.; Fikru, R.; Büscher, P.; Van Den Abbeele, J.; Duchateau, L.; Delespaux, V. Detection of African animal trypanosomes: The haematocrit centrifugation technique compared to PCR with samples stored on filter paper or in DNA protecting buffer. Vet. Parasitol. 2014, 203, 253–258. [Google Scholar] [CrossRef] [PubMed]
- Tejedor-Junco, M.T.; González, M.; Rodríguez, N.F.; Corbera, J.A.; Gutiérrez, C. Comparison between micro-hematocrit centrifugation technique and polymerase chain reaction (PCR) to detect Trypanosoma evansi in experimentally inoculated goats. Small Rumin. Res. 2011, 96, 70–72. [Google Scholar] [CrossRef]
- Yokoyama, M.; Onuma, M.; Suzuki, M.; Kaji, K. Seasonal fluctuations of body condition in northern sika deer on Hokkaido Island, Japan. Acta Theriol. 2001, 46, 419–428. [Google Scholar] [CrossRef]
- Hayakawa, H. Surveys on the occurrence of tabanid flies in Tokachi District Hokkaido (in Japanese). Med. Entomol. Zool. 1989, 40, 181–186. [Google Scholar] [CrossRef]
- Sasaki, H.; Ishikawa, Y.; Sukehiro, N. A survey of tabanid flies in the north-western part of Hokkaido, Japan. Med. Entomol. Zool. 2009, 60, 311–315. [Google Scholar] [CrossRef]
- Sasaki, H.; Goto, M. The blood source of Tabanus nipponicus in Hokkaido, Japan (Diptera: Tabanidae). J. Rakuno Gakuen Univ. Nat. Sci. 1996, 20, 147–150. [Google Scholar]
- Kostygov, A.Y.; Frolov, A.O.; Malysheva, M.N.; Ganyukova, A.I.; Drachko, D.; Yurchenko, V.; Agasoi, V.V. Development of two species of the Trypanosoma theileri complex in tabanids. Parasit. Vectors 2022, 15, 95. [Google Scholar] [CrossRef]
- Ganyukova, A.I.; Zolotarev, A.V.; Malysheva, M.N.; Frolov, A.O. First record of Trypanosoma theileri-like flagellates in horseflies from Northwest Russia. Protistology 2018, 12, 223–230. [Google Scholar] [CrossRef]
- Böse, R.; Friedhoff, K.T.; Olbrich, S.; Büscher, G.; Domeyer, I. Transmission of Trypanosoma theileri to cattle by Tabanidae. Parasitol. Res. 1987, 73, 421–424. [Google Scholar] [CrossRef]
- Kobayashi, D.; Faizah, A.N.; Amoa-Bosompem, M.; Watanabe, M.; Maekawa, Y.; Hayashi, T.; Higa, Y.; Sawabe, K.; Isawa, H. Analysis of Trypanosoma sequences from Haemaphysalis flava (Acari: Ixodidae) and Tabanus rufidens (Diptera: Tabanidae) collected in Ishikawa. Japan. Med. Entomol. Zool. 2020, 71, 279–288. [Google Scholar] [CrossRef]
- Inaoka, T. Daily and seasonal fluctuations of blood sucking activity of horse-flies in Sapporo, Hokkaido. Jour. Fac. Sci. Hokkaido Univ. Ser VI. Zool. 1971, 18, 155–172. [Google Scholar]
- Krcmar, S. Seasonal abundance of horse flies (Diptera: Tbanidae) from two locations in eastern Croatia. J. Vector. Ecol. 2005, 30, 316–321. [Google Scholar] [PubMed]
- Hoare, C.A. The Trypanosomes of Mammals. A Zoological Monograph; Blackwell Scientific Publications: Hoboken, NJ, USA, 1972. [Google Scholar]
- Suganuma, K.; Kayano, M.; Kida, K.; Gröhn, Y.T.; Miura, R.; Ohari, Y.; Mizushima, D.; Inoue, N. Genetic and seasonal variations of Trypanosoma theileri and the association of Trypanosoma theileri infection with dairy cattle productivity in Northern Japan. Parasitol. Int. 2022, 86, 102476. [Google Scholar] [CrossRef] [PubMed]
- Igota, H.; Sakuragi, M.; Uno, H.; Kaji, K.; Kaneko, M.; Akamatsu, R.; Maekawa, K. Seasonal migration patterns of female sika deer in eastern Hokkaido. Jpn. Ecol. Res. 2004, 19, 169–178. [Google Scholar] [CrossRef]
- Ou, W.; Takekawa, S.; Yamada, T.; Terada, C.; Uno, H.; Nagata, J.; Masuda, R.; Kaji, K.; Saitoh, T. Temporal change in the spatial genetic structure of a sika deer population with an expanding distribution range over a 15-year period. Popul. Ecol. 2014, 56, 311–325. [Google Scholar] [CrossRef]
Factor | |||||||
---|---|---|---|---|---|---|---|
Methods | Year | No. of samples | No. of positive samples | Positive % | [95% CI] | chi-square value | p-value |
HCT | 2019 | 359 | 48 | 13.37 | [10.23–17.28] | <0.01 | 1 |
2020 | 401 | 54 | 13.47 | [10.47–17.16] | |||
PCR | 2019 | 365 | 125 | 34.25 | [29.56–39.26] | 35.53 | <0.01 * |
2020 | 400 | 224 | 56.00 | [51.10–60.78] | |||
Season | No. of samples | No. of positive samples | Positive % | [95% CI] | chi-square value | p-value | |
HCT | Spring | 153 | 18 | 11.76 | [7.57–17.83] | 14.98 | <0.01 * |
Summer | 165 | 9 | 5.45 | [2.90–10.04] | |||
Autumn | 170 | 32 | 18.82 | [13.66–25.36] | |||
Winter | 272 | 43 | 15.81 | [11.95–20.62] | |||
PCR | Spring | 150 | 54 | 36.00 | [28.76–43.94] | 15.75 | <0.01* |
Summer | 165 | 91 | 55.15 | [47.53–62.54] | |||
Autumn | 182 | 93 | 51.10 | [43.89–58.26] | |||
Winter | 268 | 111 | 41.42 | [35.68–47.40] | |||
Sex | No. of samples | No. of positive samples | Positive % | [95% CI] | chi-square value | p-value | |
HCT | Female | 439 | 62 | 14.12 | [11.18–17.69] | 0.31 | 0.58 |
Male | 321 | 40 | 12.46 | [9.29–16.52] | |||
PCR | Female | 444 | 218 | 49.10 | [44.48–53.74] | 4.83 | 0.03 * |
Male | 321 | 131 | 40.81 | [35.57–46.26] | |||
Age | No. of samples | No. of positive samples | Positive % | [95% CI] | chi-square value | p-value | |
HCT | 1 | 136 | 14 | 10.29 | [6.23–16.54] | 2.25 | 0.32 |
2 | 242 | 38 | 15.70 | [11.66–20.82] | |||
≥3 | 381 | 50 | 13.12 | [10.10–16.89] | |||
PCR | 1 | 140 | 38 | 27.14 | [20.46–35.05] | 24.7 | <0.01 * |
2 | 244 | 115 | 47.13 | [40.96–53.39] | |||
≥3 | 381 | 196 | 51.44 | [46.44–56.42] |
Method | Factor | Category | OR | [95% CI] | p-Value |
---|---|---|---|---|---|
HCT | Year | 2019 | 1 (Reference) | ||
2020 | 1.24 | [0.79–1.96] | 0.35 | ||
Season | Spring | Reference | |||
Summer | 0.42 | [0.17–0.95] | 0.04 * | ||
Autumn | 1.27 | [0.66–2.49] | 0.48 | ||
Winter | 0.95 | [0.52–1.80] | 0.88 | ||
Sex | Female | Reference | |||
Male | 0.69 | [0.43–1.10] | 0.12 | ||
Age | 1 | Reference | |||
2 | 1.71 | [0.89–3.46] | 0.12 | ||
≥3 | 1.2 | [0.64–2.39] | 0.58 | ||
PCR | Year | 2019 | Reference | ||
2020 | 2.34 | [1.71–3.21] | <0.01 * | ||
Season | Spring | Reference | |||
Summer | 1.98 | [1.23–3.2] | <0.01 * | ||
Autumn | 1.64 | [1.01–2.67] | 0.04 * | ||
Winter | 1.34 | [0.86–2.09] | 0.21 | ||
Sex | Female | Reference | |||
Male | 0.79 | [0.56–1.1] | 0.16 | ||
Age | 1 | Reference | |||
2 | 2.64 | [1.65–4.32] | <0.01 * | ||
≥3 | 2.78 | [1.77–4.43] | <0.01 * |
Sampling Year 2019 (October 2019–September 2020) | |||||
Method | Factor | Category | OR | [95% CI] | p-Value |
HCT | Season | Spring | 1 (Reference) | ||
Summer | 0.52 | [0.10–2.23] | 0.39 | ||
Autumn | 4.97 | [1.70–16.80] | <0.01 * | ||
Winter | 2.35 | [0.91–7.27] | 0.1 | ||
Sex | Female | Reference | |||
Male | 0.65 | [0.31–1.3] | 0.23 | ||
Age | 1 | Reference | |||
2 | 4.02 | [1.26–17.9] | 0.03 * | ||
≥3 | 2.86 | [0.92–12.6] | 0.1 | ||
PCR | Season | Spring | Reference | ||
Summer | 1.52 | [0.74–3.19] | 0.26 | ||
Autumn | 2.61 | [1.19–5.82] | 0.02 * | ||
Winter | 1.21 | [0.65–2.32] | 0.55 | ||
Sex | Female | Reference | |||
Male | 0.85 | [0.52–1.38] | 0.51 | ||
Age | 1 | Reference | |||
2 | 2.21 | [1.07–4.83] | 0.04 * | ||
≥3 | 2.91 | [1.47–6.16] | 0.01 * | ||
Sampling Year 2020 (October 2020–September 2021) | |||||
Method | Factor | Category | OR | [95% CI] | p-Value |
HCT | Season | Spring | Reference | ||
Summer | 0.32 | [0.11–0.86] | 0.03 * | ||
Autumn | 0.85 | [0.39–1.93] | 0.7 | ||
Winter | 0.92 | [0.42–2.06] | 0.84 | ||
Sex | Female | Reference | |||
Male | 0.68 | [0.35–1.28] | 0.24 | ||
Age | 1 | Reference | |||
2 | 0.92 | [0.41–2.19] | 0.85 | ||
≥3 | 0.64 | [0.29–1.48] | 0.28 | ||
PCR | Season | Spring | Reference | ||
Summer | 2.49 | [1.31–4.8] | <0.01 * | ||
Autumn | 1.28 | [0.71–2.34] | 0.41 | ||
Winter | 1.33 | [0.73–2.42] | 0.35 | ||
Sex | Female | Reference | |||
Male | 0.70 | [0.44–1.1] | 0.12 | ||
Age | 1 | Reference | |||
2 | 3.30 | [1.76–6.33] | <0.01 * | ||
≥3 | 2.72 | [1.51–5.02] | <0.01 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hong, Y.; Suganuma, K.; Ohari, Y.; Kayano, M.; Nakazaki, K.; Fukumoto, S.; Kawazu, S.-i.; Inoue, N. Seasonal Variation and Factors Affecting Trypanosoma theileri Infection in Wild Sika Deer (Ezo Sika Deer Cervus nippon yesoensis) in Eastern Hokkaido. Animals 2023, 13, 1707. https://doi.org/10.3390/ani13101707
Hong Y, Suganuma K, Ohari Y, Kayano M, Nakazaki K, Fukumoto S, Kawazu S-i, Inoue N. Seasonal Variation and Factors Affecting Trypanosoma theileri Infection in Wild Sika Deer (Ezo Sika Deer Cervus nippon yesoensis) in Eastern Hokkaido. Animals. 2023; 13(10):1707. https://doi.org/10.3390/ani13101707
Chicago/Turabian StyleHong, Yujon, Keisuke Suganuma, Yuma Ohari, Mitsunori Kayano, Kenji Nakazaki, Shinya Fukumoto, Shin-ichiro Kawazu, and Noboru Inoue. 2023. "Seasonal Variation and Factors Affecting Trypanosoma theileri Infection in Wild Sika Deer (Ezo Sika Deer Cervus nippon yesoensis) in Eastern Hokkaido" Animals 13, no. 10: 1707. https://doi.org/10.3390/ani13101707
APA StyleHong, Y., Suganuma, K., Ohari, Y., Kayano, M., Nakazaki, K., Fukumoto, S., Kawazu, S. -i., & Inoue, N. (2023). Seasonal Variation and Factors Affecting Trypanosoma theileri Infection in Wild Sika Deer (Ezo Sika Deer Cervus nippon yesoensis) in Eastern Hokkaido. Animals, 13(10), 1707. https://doi.org/10.3390/ani13101707