Chronic Heat Stress Part 2: Increased Stress and Fear Responses in F1 Pekin Ducks Raised from Parents That Experienced Heat Stress
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Experimental Design
2.3. Production and Welfare Assessment
2.4. ACTH Challenge
2.5. ELISA for Glucocorticoids
2.6. Novel Object Test (NOT)
2.7. Statistical Analyses
3. Results
3.1. Production and Welfare Assessment
3.2. ACTH Challenge
3.3. Novel Object Test
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nagarajan, G.; Tessaro, B.A.; Kang, S.W.; Kuenzel, W.J. Identification of Arginine Vasotocin (AVT) Neurons Activated by Acute and Chronic Restraint Stress in the Avian Septum and Anterior Diencephalon. Gen. Comp. Endocrinol. 2014, 202, 59–68. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.W.; Kuenzel, W.J. Regulation of Gene Expression of Vasotocin and Corticotropin-Releasing Hormone Receptors in the Avian Anterior Pituitary by Corticosterone. Gen. Comp. Endocrinol. 2014, 204, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Kuenzel, W.J.; Kang, S.W.; Jurkevich, A. Neuroendocrine Regulation of Stress in Birds with an Emphasis on Vasotocin Receptors (VTRs). Gen. Comp. Endocrinol. 2012, 190, 18–23. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.W.; Jayanthi, S.; Nagarajan, G.; Suresh Kumar, T.K.; Kuenzel, W.J. Identification of Avian Vasotocin Receptor Subtype-Specific Antagonists Involved in the Stress Response of the Chicken, Gallus gallus. J. Biomol. Struct. Dyn. 2018, 37, 1685–1699. [Google Scholar] [CrossRef]
- Harvey, S.; Merry, B.J.; Phillips, J.G. Influence of Stress on the Secretion of Corticosterone in the Duck (Anas platyrhynchos). J. Endocrinol. 1980, 87, 161–171. [Google Scholar] [CrossRef]
- Flament, A.; Delleur, V.; Poulipoulis, A.; Marlier, D. Corticosterone, Cortisol, Triglycerides, Aspartate Aminotransferase and Uric Acid Plasma Concentrations during Foie Gras Production in Male Mule Ducks (Anas platyrhynchos × Cairina moschata). Br. Poult. Sci. 2012, 53, 408–413. [Google Scholar] [CrossRef]
- Tetel, V.; van Wyk, B.; Fraley, G.S. Sex Differences in Glucocorticoid Responses to Shipping Stress in Pekin Ducks. Poult. Sci. 2022, 101, 101534. [Google Scholar] [CrossRef]
- Ma, X.; Lin, Y.; Zhang, H.; Chen, W.; Wang, S.; Ruan, D.; Jiang, Z. Heat Stress Impairs the Nutritional Metabolism and Reduces the Productivity of Egg-Laying Ducks. Anim. Reprod. Sci. 2014, 145, 182–190. [Google Scholar] [CrossRef]
- Tang, L.P.; Li, W.H.; Liu, Y.L.; Lun, J.C.; He, Y.M. Heat Stress Aggravates Intestinal Inflammation through TLR4-NF-ΚB Signaling Pathway in Ma Chickens Infected with Escherichia coli O157:H7. Poult. Sci. 2021, 100, 101030. [Google Scholar] [CrossRef]
- Kang, D.; Shim, K. Early Heat Exposure Effect on the Heat Shock Proteins in Broilers under Acute Heat Stress. Poult. Sci. 2021, 100, 100964. [Google Scholar] [CrossRef]
- Mahmoud, K.Z.; Edens, F.W.; Eisen, E.J.; Havenstein, G.B. Ascorbic Acid Decreases Heat Shock Protein 70 and Plasma Corticosterone Response in Broilers (Gallus gallus domesticus) Subjected to Cyclic Heat Stress. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2004, 137, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Malisch, J.L.; Satterlee, D.G.; Cockrem, J.F.; Wada, H.; Breuner, C.W. How Acute Is the Acute Stress Response? Baseline Corticosterone and Corticosteroid-Binding Globulin Levels Change 24 h after an Acute Stressor in Japanese Quail. Gen. Comp. Endocrinol. 2010, 165, 345–350. [Google Scholar] [CrossRef] [PubMed]
- Cockrem, J.F.; Candy, E.J.; Castille, S.A.; Satterlee, D.G. Plasma Corticosterone Responses to Handling in Japanese Quail Selected for Low or High Plasma Corticosterone Responses to Brief Restraint. Br. Poult. Sci. 2010, 51, 453–459. [Google Scholar] [CrossRef]
- Hull, K.L.; Cockrem, J.F.; Bridges, J.P.; Candy, E.J.; Davidson, C.M. Effects of Corticosterone Treatment on Growth, Development, and the Corticosterone Response to Handling in Young Japanese Quail (Coturnix coturnix japonica). Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2007, 148, 531–543. [Google Scholar] [CrossRef] [PubMed]
- Littin, K.E.; Cockrem, J.F. Individual Variation in Corticosterone Secretion in Laying Hens. Br. Poult. Sci. 2001, 42, 536–546. [Google Scholar] [CrossRef]
- Fraisse, F.; Cockrem, J.F. Corticosterone and Fear Behaviour in White and Brown Caged Laying Hens. Br. Poult. Sci. 2007, 47, 110–119. [Google Scholar] [CrossRef]
- Taves, M.D.; Losie, J.A.; Rahim, T.; Schmidt, K.L.; Sandkam, B.A.; Ma, C.; Silversides, F.G.; Soma, K.K. Locally Elevated Cortisol in Lymphoid Organs of the Developing Zebra Finch but Not Japanese Quail or Chicken. Dev. Comp. Immunol. 2016, 54, 116–125. [Google Scholar] [CrossRef]
- Oluwagbenga, E.M.; Tetel, V.; Schober, J.; Fraley, G.S. Chronic Heat Stress Part 1: Decrease in Egg Quality, Increase in Cortisol Levels in Egg Albumen, and Reduction in Fertility of Breeder Pekin Ducks. Front. Physiol. 2022, 13, 2392. [Google Scholar] [CrossRef]
- Caulfield, M.P.; Padula, M.P. HPLC MS-MS Analysis Shows Measurement of Corticosterone in Egg Albumen Is Not a Valid Indicator of Chicken Welfare. Animals 2020, 10, 821. [Google Scholar] [CrossRef]
- Groothuis, T.G.G.; Müller, W.; von Engelhardt, N.; Carere, C.; Eising, C. Maternal Hormones as a Tool to Adjust Offspring Phenotype in Avian Species. Neurosci. Biobehav. Rev. 2005, 29, 329–352. [Google Scholar] [CrossRef]
- von Engelhardt, N.; Groothuis, T.G.G. Maternal Hormones in Avian Eggs. In Hormones and Reproduction of Vertebrates; Academic Press: Cambridge, MA, USA, 2011; Volume 4, pp. 91–127. [Google Scholar] [CrossRef]
- Gil, D. Golden Eggs: Maternal Manipulation of Offspring Phenotype by Egg Androgen in Birds. Ardeola 2003, 50, 281–294. [Google Scholar]
- Hayward, L.S.; Wingfield, J.C. Maternal Corticosterone Is Transferred to Avian Yolk and May Alter Offspring Growth and Adult Phenotype. Gen. Comp. Endocrinol. 2004, 135, 365–371. [Google Scholar] [CrossRef] [PubMed]
- Peixoto, M.R.L.V.; Karrow, N.A.; Widowski, T.M. Effects of Prenatal Stress and Genetics on Embryonic Survival and Offspring Growth of Laying Hens. Poult. Sci. 2020, 99, 1618–1627. [Google Scholar] [CrossRef] [PubMed]
- Janczak, A.M.; Heikkilä, M.; Valros, A.; Torjesen, P.; Andersen, I.L.; Bakken, M. Effects of Embryonic Corticosterone Exposure and Post-Hatch Handling on Tonic Immobility and Willingness to Compete in Chicks. Appl. Anim. Behav. Sci. 2007, 107, 275–286. [Google Scholar] [CrossRef]
- Saino, N.; Romano, M.; Ferrari, R.P.; Martinelli, R.; Møller, A.P. Stressed Mothers Lay Eggs with High Corticosterone Levels Which Produce Low-Quality Offspring. J. Exp. Zool. A Comp. Exp. Biol. 2005, 303A, 998–1006. [Google Scholar] [CrossRef]
- Janczak, A.M.; Braastad, B.O.; Bakken, M. Behavioural Effects of Embryonic Exposure to Corticosterone in Chickens. Appl. Anim. Behav. Sci. 2006, 96, 69–82. [Google Scholar] [CrossRef]
- Eriksen, M.S.; Haug, A.; Torjesen, P.A.; Bakken, M. Prenatal Exposure to Corticosterone Impairs Embryonic Development and Increases Fluctuating Asymmetry in Chickens (Gallus gallus domesticus). Br. Poult. Sci. 2010, 44, 690–697. [Google Scholar] [CrossRef]
- Chen, X.; Shafer, D.; Sifri, M.; Lilburn, M.; Karcher, D.; Cherry, P.; Wakenell, P.; Fraley, S.; Turk, M.; Fraley, G.S. Centennial Review: History and Husbandry Recommendations for Raising Pekin Ducks in Research or Commercial Production. Poult. Sci. 2021, 100, 101241. [Google Scholar] [CrossRef]
- Dong, Y.; Karcher, D.M.; Erasmus, M.A. Self- and Conspecific-Directed Pecking Behavior of Commercial Pekin Ducks. Appl. Anim. Behav. Sci. 2021, 235, 105223. [Google Scholar] [CrossRef]
- Hoffman, H.S.; Boskoff, K.J.; Eiserer, L.A.; Klein, S.H. Isolation-Induced Aggression in Newly Hatched Ducklings. J. Comp. Physiol. Psychol. 1975, 89, 447–456. [Google Scholar] [CrossRef]
- Hoffman, H.S.; Ratner, A.M.; Eiserer, L.A.; Grossman, D.J. Aggressive Behavior in Immature Ducklings. J. Comp. Physiol. Psychol. 1974, 86, 569–580. [Google Scholar] [CrossRef] [PubMed]
- Klemm, R.; Pingel, H.; Reiter, K.; Bierschenk, F.; Rauch, W. Investigations on Feather Pecking in Muscovy Ducks. In Proceedings of the 19th World’s Poultry Congress, Amsterdam, The Netherlands, 19–24 September 1992; pp. 390–393. [Google Scholar]
- Karcher, D.M.; Makagon, M.M.; Fraley, G.S.; Fraley, S.M.; Lilburn, M.S. Influence of Raised Plastic Floors Compared with Pine Shaving Litter on Environment and Pekin Duck Condition. Poult. Sci. 2013, 92, 583–590. [Google Scholar] [CrossRef] [PubMed]
- Fraley, S.M.; Fraley, G.S.; Karcher, D.M.; Makagon, M.M.; Lilburn, M.S. Influence of Plastic Slatted Floors Compared with Pine Shaving Litter on Pekin Duck Condition during the Summer Months. Poult. Sci. 2013, 92, 1706–1711. [Google Scholar] [CrossRef] [PubMed]
- Colton, S.; Fraley, G.S. The Effects of Environmental Enrichment Devices on Feather Picking in Commercially Housed Pekin Ducks. Poult. Sci. 2014, 93, 2143–2150. [Google Scholar] [CrossRef]
- Tetel, V.; Tonissen, S.; Fraley, G.S. Sex Differences in Serum Glucocorticoid Levels and Heterophil:Lymphocyte Ratios in Adult Pekin Ducks (Anas platyrhynchos domesticus). Gen. Comp. Endocrinol. 2022, 317, 113975. [Google Scholar] [CrossRef]
- Uitdehaag, K.A.; Rodenburg, T.B.; Komen, H.; Kemp, B.; van Arendonk, J.A.M. The Association of Response to a Novel Object with Subsequent Performance and Feather Damage in Adult, Cage-Housed, Pure-Bred Rhode Island Red Laying Hens. Poult. Sci. 2008, 87, 2486–2492. [Google Scholar] [CrossRef]
- Love, O.P.; Chin, E.H.; Wynne-Edwards, K.E.; Williams, T.D. Stress Hormones: A Link between Maternal Condition and Sex-Biased Reproductive Investment. Am. Nat. 2005, 166, 751–766. [Google Scholar] [CrossRef]
- Zhu, Y.W.; Li, W.X.; Lu, L.; Zhang, L.Y.; Ji, C.; Lin, X.; Liu, H.C.; Odle, J.; Luo, X.G. Impact of Maternal Heat Stress in Conjunction with Dietary Zinc Supplementation on Hatchability, Embryonic Development, and Growth Performance in Offspring Broilers. Poult. Sci. 2017, 96, 2351–2359. [Google Scholar] [CrossRef]
- Ayo, J.O.; Obidi, J.A.; Rekwot, P.I. Effects of Heat Stress on the Well-Being, Fertility, and Hatchability of Chickens in the Northern Guinea Savannah Zone of Nigeria: A Review. ISRN Vet. Sci. 2011, 2011, 838606. [Google Scholar] [CrossRef]
- della Costa, N.S.; Navarro, J.L.; Bernad, L.; Marin, R.H.; Martella, M.B. Effect of Maternal Environment on Yolk Immunoreactive Corticosterone and Its Influence on Adrenocortical and Behavioral Activity in Chicks of Greater Rhea (Rhea americana). Horm. Behav. 2019, 114, 104534. [Google Scholar] [CrossRef]
- Henriksen, R.; Groothuis, T.G.; Rettenbacher, S. Elevated Plasma Corticosterone Decreases Yolk Testosterone and Progesterone in Chickens: Linking Maternal Stress and Hormone-Mediated Maternal Effects. PLoS ONE 2011, 6, e23824. [Google Scholar] [CrossRef] [PubMed]
- Rozenboim, I.; Tako, E.; Gal-Garber, O.; Proudman, J.A.; Uni, Z. The Effect of Heat Stress on Ovarian Function of Laying Hens. Poult. Sci. 2007, 86, 1760–1765. [Google Scholar] [CrossRef] [PubMed]
- Abdelfattah, E.; Vezzoli, G.; Makagon, M.M. On-Farm Welfare Assessment of Commercial Pekin Ducks: A Comparison of Methods. Poult. Sci. 2020, 99, 689–697. [Google Scholar] [CrossRef]
- Makagon, M.M.; Riber, A.B. Setting Research Driven Duck-Welfare Standards: A Systematic Review of Pekin Duck Welfare Research. Poult. Sci. 2022, 101, 101614. [Google Scholar] [CrossRef]
- Bowers, E.K.; Bowden, R.M.; Thompson, C.F.; Sakaluk, S.K. Elevated Corticosterone during Egg Production Elicits Increased Maternal Investment and Promotes Nestling Growth in a Wild Songbird. Horm. Behav. 2016, 83, 6–13. [Google Scholar] [CrossRef] [PubMed]
- Dufty, A.M.; Clobert, J.; Møller, A.P. Hormones, Developmental Plasticity and Adaptation. Trends Ecol. Evol. 2002, 17, 190–196. [Google Scholar] [CrossRef]
- Moore, M.C.; Hewst, D.K.; Knappj, R. Hormonal Control and Evolution of Alternative Male Phenotypes: Generalizations of Models for Sexual Differentiation. Am. Zool. 1998, 38, 133–151. [Google Scholar] [CrossRef]
- Welberg, L.A.M.; Seckl, J.R. Prenatal Stress, Glucocorticoids and the Programming of the Brain. J. Neuroendocrinol. 2001, 13, 113–128. [Google Scholar] [CrossRef] [PubMed]
- Videla, E.A.; Giayetto, O.; Fernández, M.E.; Chacana, P.A.; Marín, R.H.; Nazar, F.N. Immediate and Transgenerational Effects of Thymol Supplementation, Inactivated Salmonella and Chronic Heat Stress on Representative Immune Variables of Japanese Quail. Sci. Rep. 2020, 10, 18152. [Google Scholar] [CrossRef]
- de Fraipont, M.; Clobert, J.; John-Alder, H.; Meylan, S. Increased Pre-Natal Maternal Corticosterone Promotes Philopatry of Offspring in Common Lizards Lacerta Vivipara. J. Anim. Ecol. 2000, 69, 404–413. [Google Scholar] [CrossRef]
- Rettenbacher, S.; Möstl, E.; Groothuis, T.G.G. Gestagens and Glucocorticoids in Chicken Eggs. Gen. Comp. Endocrinol. 2009, 164, 125–129. [Google Scholar] [CrossRef] [PubMed]
- Rettenbacher, S.; Möstl, E.; Hackl, R.; Palme, R. Corticosterone in Chicken Eggs. Ann. N. Y. Acad. Sci. 2005, 1046, 193–203. [Google Scholar] [CrossRef] [PubMed]
- Heiblum, R.; Arnon, E.; Chazan, G.; Robinzon, B.; Gvaryahu, G.; Snapir, N. Glucocorticoid Administration During Incubation: Embryo Mortality and Posthatch Growth in Chickens. Poult. Sci. 2001, 80, 1357–1363. [Google Scholar] [CrossRef] [PubMed]
- Chin, E.H.; Love, O.P.; Verspoor, J.J.; Williams, T.D.; Rowley, K.; Burness, G. Juveniles Exposed to Embryonic Corticosterone Have Enhanced Flight Performance. Proc. R. Soc. B Biol. Sci. 2009, 276, 499–505. [Google Scholar] [CrossRef] [PubMed]
- Vallée, M.; Maccari, S.; Dellu, F.; Simon, H.; le Moal, M.; Mayo, W. Long-Term Effects of Prenatal Stress and Postnatal Handling on Age-Related Glucocorticoid Secretion and Cognitive Performance: A Longitudinal Study in the Rat. Eur. J. Neurosci. 1999, 11, 2906–2916. [Google Scholar] [CrossRef] [PubMed]
- Henry, C.; Kabbaj, M.; Simon, H.; le Moal, M.; Maccari, S. Prenatal Stress Increases the Hypothalamo-Pituitary-Adrenal Axis Response in Young and Adult Rats. J. Neuroendocrinol. 1994, 6, 341–345. [Google Scholar] [CrossRef]
- Prange, A.J.; Wilson, C.; Knox, A.; Mc-Clane, T.K.; Lipton, M.A.; Wilson, I.C.; McClane, T.K.; Rabon, A.M.; Tomich, E.G.; Wollett, E.A.; et al. Prenatal Stress Feminizes and Demasculinizes the Behavior of Males. Science 1972, 175, 82–84. [Google Scholar] [CrossRef]
- Herrenkohl, L.R. Prenatal Stress Reduces Fertility and Fecundity in Female Offspring. Science 1979, 206, 1097–1099. [Google Scholar] [CrossRef]
- Brambell, F.W.R. The Transmission of Passive Immunity from Mother to Young. In North Holland Research Monographs Frontiers of Biology; North Holland Publishing Co.: Amsterdam, The Netherlands, 1970; Volume 18. [Google Scholar]
- Keyburn, A.L.; Portela, R.W.; Ford, M.E.; Bannam, T.L.; Yan, X.X.; Rood, J.I.; Moore, R.J. Maternal Immunization with Vaccines Containing Recombinant NetB Toxin Partially Protects Progeny Chickens from Necrotic Enteritis. Vet. Res. 2013, 44, 108. [Google Scholar] [CrossRef]
- Methner, U.; Steinbach, G. Efficacy of Maternal Salmonella Antibodies and Experimental Oral Infection of Chicks with Salmonella Enteritidis. Berl. Munch. Tierarztl. Wochenschr. 1997, 110, 373–377. [Google Scholar]
- Sahin, O.; Luo, N.; Huang, S.; Zhang, Q. Effect of Campylobacter-Specific Maternal Antibodies on Campylobacter jejuni Colonization in Young Chickens. Appl. Environ. Microbiol. 2003, 69, 5372–5379. [Google Scholar] [CrossRef]
- Liu, S.S.; Higgins, D.A. Yolk-Sac Transmission and Post-Hatching Ontogeny of Serum Immunoglobulins in the Duck (Anas platyrhynchos). Biochem. Physiol. 1990, 97, 637–644. [Google Scholar] [CrossRef] [PubMed]
- Graczyk, T.K.; Cranfield, M.R.; Shaw, M.L.; Craig, L.E. Maternal Antibodies against Plasmodium spp. in African Black-Footed Penguin (Spheniscus demersus) Chicks. J. Wildl. Dis. 1994, 30, 365–371. [Google Scholar] [CrossRef] [PubMed]
- Buechler, K.; Fitze, P.S.; Gottstein, B.; Jacot, A.; Richner, H. Parasite-Induced Maternal Response in a Natural Bird Population. J. Anim. Ecol. 2002, 71, 247–252. [Google Scholar] [CrossRef]
- Pearce-Duvet, J.M.C.; Gauthier-Clerc, M.; Jourdain, E.; Boulinier, T. Maternal Antibody Transfer in Yellow-Legged Gulls. Emerg. Infect. Dis. 2009, 15, 1147. [Google Scholar] [CrossRef] [PubMed]
Score Level | Description | |
---|---|---|
Eyes | 0 | Best: eyes clear, clean, and bright. |
1 | Moderate: Dirt and/or staining around the eye area. Any evidence of wet eye ring or inflamed eye lid. | |
2 | Worst: eyes sealed shut with or without conjunctivitis. | |
Nostrils | 0 | Best: nostrils with clean and clear air passageways. |
1 | Dirty: nostril air passageways blocked with dust or mucus. | |
Feather Cleanliness | 0 | Best: clean and unstained breast, back feathers, or down depending on age. |
1 | Dirty: adhering manure or staining on down or feathers. | |
Feather Quality | 0 | Best: good feather coverage for age—down in younger and feathers in developing and older birds |
1 | Moderate: some evidence of feather picking; down and/or feather damage less than 2 cm2. | |
2 | Worst: Feathers/down damaged, short, and stubbly. Large patchy feathers/down over back greater than 2 cm2 and/or evidence of severe feather picking (presence of blood on back, tail, neck, or wings). | |
Foot Pad | 0 | Best: heel and toe pads free of any lesions or ingrained dirt. |
1 | Moderate: Dirt pervades the heel or toe pads, and skin papillae raised, typically dark brown on heel or toe pads. Lesions covering less than 50% of heel or toe pad. Free of any bloody lesions. | |
2 | Worst: lesions or callouses cover 50% or more of heel or toe pad; any bleeding lesions. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oluwagbenga, E.M.; Tetel, V.; Schober, J.; Fraley, G.S. Chronic Heat Stress Part 2: Increased Stress and Fear Responses in F1 Pekin Ducks Raised from Parents That Experienced Heat Stress. Animals 2023, 13, 1748. https://doi.org/10.3390/ani13111748
Oluwagbenga EM, Tetel V, Schober J, Fraley GS. Chronic Heat Stress Part 2: Increased Stress and Fear Responses in F1 Pekin Ducks Raised from Parents That Experienced Heat Stress. Animals. 2023; 13(11):1748. https://doi.org/10.3390/ani13111748
Chicago/Turabian StyleOluwagbenga, Esther Mary, Victoria Tetel, Jenna Schober, and Gregory S. Fraley. 2023. "Chronic Heat Stress Part 2: Increased Stress and Fear Responses in F1 Pekin Ducks Raised from Parents That Experienced Heat Stress" Animals 13, no. 11: 1748. https://doi.org/10.3390/ani13111748
APA StyleOluwagbenga, E. M., Tetel, V., Schober, J., & Fraley, G. S. (2023). Chronic Heat Stress Part 2: Increased Stress and Fear Responses in F1 Pekin Ducks Raised from Parents That Experienced Heat Stress. Animals, 13(11), 1748. https://doi.org/10.3390/ani13111748