Application of Exogenous GnRH in Food Animal Production
Abstract
:Simple Summary
Abstract
1. Introduction
2. Application of Exogenous GnRH in Controlled Breeding
2.1. Follicular Development and Ovulation Induction
2.2. Timed Artificial Insemination (TAI)
2.3. Fixed Timed Artificial Insemination (FTAI)
2.4. Embryo Survival and Pregnancy Rate
2.5. Treatment of Reproductive Morbidity
3. Future Research
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hashem, N.M.; Gonzalez-Bulnes, A. Nanotechnology and Reproductive Management of Farm Animals: Challenges and Advances. Animals 2021, 11, 1932. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.M.; Chang, H.M.; Leung, P.C.K. Gonadotropin-releasing hormone analogs: Mechanisms of action and clinical applications in female reproduction. Front. Neuroendocr. 2021, 60, 100876. [Google Scholar] [CrossRef] [PubMed]
- Millar, R.P.; Lu, Z.L.; Pawson, A.J.; Flanagan, C.A.; Morgan, K.; Maudsley, S.R. Gonadotropin-releasing hormone receptors. Endocr. Rev. 2004, 25, 235–275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morgan, K.; Millar, R.P. Evolution of GnRH ligand precursors and GnRH receptors in protochordate and vertebrate species. Gen. Comp. Endocrinol. 2004, 139, 191–197. [Google Scholar] [CrossRef]
- White, B.R.; Cederberg, R.A.; Elsken, D.H.; Ross, C.E.; Lents, C.A.; Desaulniers, A.T. Role of gonadotropin-releasing hormone-II and its receptor in swine reproduction. Mol. Reprod. Dev. 2022, 89, 1–11. [Google Scholar] [CrossRef]
- Kang, S.K.; Tai, C.-J.; Nathwani, P.S.; Leung, P.C. Differential regulation of two forms of gonadotropin-releasing hormone messenger ribonucleic acid in human granulosa-luteal cells. Endocrinology 2001, 142, 182–192. [Google Scholar] [CrossRef]
- Siler-Khodr, T.M.; Yu, F.Q.; Wei, P.; Tao, S.X.; Liu, Y.X. Contraceptive action of a gonadotropin-releasing hormone II analog in the rhesus monkey. J. Clin. Endocrinol. Metab. 2004, 89, 4513–4520. [Google Scholar] [CrossRef] [Green Version]
- Siler-Khodr, T.M.; Yu, F.-Q.; Wei, P.; Tao, S.-X.; Coulhart, S.; Mactyszczyk, S.; Lui, Y.-X. Dose-related actions of GnRH II analog in the cycling rhesus monkey. Contraception 2006, 74, 157–164. [Google Scholar] [CrossRef]
- Pillon, D.; Caraty, A.; Fabre-Nys, C.; Lomet, D.; Cateau, M.; Bruneau, G. Regulation by estradiol of hypothalamic somatostatin gene expression: Possible involvement of somatostatin in the control of luteinizing hormone secretion in the ewe. Biol. Reprod. 2004, 71, 38–44. [Google Scholar] [CrossRef] [Green Version]
- Choi, J.H.; Gilks, C.B.; Auersperg, N.; Leung, P.C. Immunolocalization of gonadotropin-releasing hormone (GnRH)-I, GnRH-II, and type I GnRH receptor during follicular development in the human ovary. J. Clin. Endocrinol. Metab. 2006, 91, 4562–4570. [Google Scholar] [CrossRef] [Green Version]
- Stewart, A.J.; Katz, A.A.; Millar, R.P.; Morgan, K. Retention and silencing of prepro-GnRH-II and type II GnRH receptor genes in mammals. Neuroendocrinology 2009, 90, 416–432. [Google Scholar] [CrossRef]
- Peters, A. Veterinary clinical application of GnRH—Questions of efficacy. Anim. Reprod. Sci. 2005, 88, 155–167. [Google Scholar] [CrossRef]
- Bulman, D.C.; Lamming, G.E. Milk progesterone levels in relation to conception, repeat breeding and factors influencing acyclicity in dairy cows. Reproduction 1978, 54, 447–458. [Google Scholar] [CrossRef] [Green Version]
- Ball, P.J.H. Milk progesterone profiles in relation to dairy herd fertility. Br. Vet. J. 1982, 138, 546–551. [Google Scholar] [CrossRef]
- Beckett, S.D.; Lean, I.J. Gonadotrophin-releasing hormone in postpartum dairy cattle: A meta-analysis of effects on reproductive efficiency. Anim. Reprod. Sci. 1997, 48, 93–112. [Google Scholar] [CrossRef]
- Driancourt, M.A.; Locatelli, A.; Prunier, A. Effects of gonadotrophin deprivation on follicular growth in gilts. Reprod. Nutr. Dev. 1995, 35, 663–673. [Google Scholar] [CrossRef] [Green Version]
- Gama, R.; Vianna, W.L.; Pinese, M.E.; De Campos Rosseto, A.; De Sant’anna Moretti, A. Different doses of porcine luteinizing hormone in precocious puberty induction in gilts. Reprod. Domest. Anim. 2005, 40, 433–435. [Google Scholar] [CrossRef]
- Brüssow, K.; Wähner, M. Biological and technological background of estrus synchronization and fixed-time ovulation induction in the pig. Biotechnol. Anim. Husb. 2011, 27, 533–545. [Google Scholar] [CrossRef] [Green Version]
- Driancourt, M.; Cox, P.; Rubion, S.; Harnois-Milon, G.; Kemp, B.; Soede, N. Induction of an LH surge and ovulation by buserelin (as Receptal) allows breeding of weaned sows with a single fixed-time insemination. Theriogenology 2013, 80, 391–399. [Google Scholar] [CrossRef]
- BrüSsow, K.; Schneider, F.; Tuchscherer, A.; Rátky, J.; Kraeling, R.; Kanitz, W. Luteinizing hormone release after administration of the gonadotropin-releasing hormone agonist Fertilan (goserelin) for synchronization of ovulation in pigs. J. Anim. Sci. 2007, 85, 129–137. [Google Scholar] [CrossRef]
- Fries, H.; Souza, L.; Faccin, J.; Reckziegel, M.; Hernig, L.; Marimon, B.; Bernardi, M.; Wentz, I.; Bortolozzo, F. Induction and synchronization of ovulation in sows using a Gonadotropin-releasing Hormone Analog (Lecirelin). Anim. Reprod. 2010, 7, 362–366. [Google Scholar]
- Stewart, K.; Flowers, W.; Rampacek, G.; Greger, D.; Swanson, M.; Hafs, H. Endocrine, ovulatory and reproductive characteristics of sows treated with an intravaginal GnRH agonist. Anim. Reprod. Sci. 2010, 120, 112–119. [Google Scholar] [CrossRef]
- Martinat-Botté, F.; Venturi, E.; Guillouet, P.; Driancourt, M.; Terqui, M. Induction and synchronization of ovulations of nulliparous and multiparous sows with an injection of gonadotropin-releasing hormone agonist (Receptal). Theriogenology 2010, 73, 332–342. [Google Scholar] [CrossRef] [PubMed]
- Driancourt, M. Fixed time artificial insemination in gilts and sows. Tools, schedules and efficacy. Soc. Reprod. Fertil. 2013, 68, 89–99. [Google Scholar]
- Brüssow, K.; Schneider, F.; Kanitz, W.; Ratky, J.; Kauffold, J.; Wähner, M. Studies on Fixed-Time Ovulation Induction in the Pig; Nottingham University Press: Nottingham, UK, 2009. [Google Scholar]
- Von Kaufmann, F.; Holtz, W. Induction of ovulation in gonadotropin treated gilts with synthetic gonadotropin releasing hormone. Theriogenology 1982, 17, 141–157. [Google Scholar] [CrossRef]
- Langendijk, P.; Soede, N.; Kemp, B. Synchronisation of ovulation with GnRH or hCG in weaned sows, without pre-treatment with eCG. J. Reprod. Fertil. 2000, 26, 35. [Google Scholar]
- Knox, R.V.; Willenburg, K.; Rodriguez Zas, S.L.; Greger, D.; Hafs, H.; Swanson, M. Synchronization of ovulation and fertility in weaned sows treated with intravaginal triptorelin is influenced by timing of administration and follicle size. Theriogenology 2011, 75, 308–319. [Google Scholar] [CrossRef]
- Lopes, T.P.; Padilla, L.; Bolarin, A.; Rodriguez-Martinez, H.; Roca, J. Weaned Sows with Small Ovarian Follicles Respond Poorly to the GnRH Agonist Buserelin. Animals 2020, 10, 1979. [Google Scholar] [CrossRef]
- Baruselli, P.S.; Sales, J.; Sala, R.V.; Vieira, L.; Sá Filho, M.F.D. History, evolution and perspectives of timed artificial insemination programs in Brazil. Anim. Reprod. 2012, 9, 139–152. [Google Scholar]
- Pursley, J.R.; Wiltbank, M.C.; Stevenson, J.S.; Ottobre, J.S.; Garverick, H.A.; Anderson, L.L. Pregnancy rates per artificial insemination for cows and heifers inseminated at a synchronized ovulation or synchronized estrus. J. Dairy Sci. 1997, 80, 295–300. [Google Scholar] [CrossRef]
- Rivera, H.; Lopez, H.; Fricke, P.M. Fertility of holstein dairy heifers after synchronization of ovulation and timed AI or AI after removed tail chalk. J. Dairy Sci. 2004, 87, 2051–2061. [Google Scholar] [CrossRef] [Green Version]
- Moreira, F.; De La Sota, R.L.; Diaz, T.; Thatcher, W.W. Effect of day of the estrous cycle at the initiation of a timed artificial insemination protocol on reproductive responses in dairy heifers. J. Anim. Sci. 2000, 78, 1568–1576. [Google Scholar] [CrossRef]
- Martinez, M.F.; Adams, G.P.; Bergfelt, D.R.; Kastelic, J.P.; Mapletoft, R.J. Effect of LH or GnRH on the dominant follicle of the first follicular wave in beef heifers. Anim. Reprod. Sci. 1999, 57, 23–33. [Google Scholar] [CrossRef]
- Bisinotto, R.S.; Chebel, R.C.; Santos, J.E.P. Follicular wave of the ovulatory follicle and not cyclic status influences fertility of dairy cows. J. Dairy Sci. 2010, 93, 3578–3587. [Google Scholar] [CrossRef]
- Wiltbank, M.C.; Sartori, R.; Herlihy, M.M.; Vasconcelos, J.L.; Nascimento, A.B.; Souza, A.H.; Ayres, H.; Cunha, A.P.; Keskin, A.; Guenther, J.N.; et al. Managing the dominant follicle in lactating dairy cows. Theriogenology 2011, 76, 1568–1582. [Google Scholar] [CrossRef]
- Padula, A.; Borman, J.; Wright, P.; Macmillan, K. Restoration of LH output and 17β-oestradiol responsiveness in acutely ovariectomised Holstein dairy cows pre-treated with a GnRH agonist (deslorelin) for 10 days. Anim. Reprod. Sci. 2002, 70, 49–63. [Google Scholar] [CrossRef]
- Carvalho, N.; Nagasaku, E.; Vannucci, F.; Toledo, L.; Baruselli, P.S. Ovulation and conception rates according intravaginal progesterone device and hCG or GnRH to induce ovulation in buffalo during the off breeding season. Ital. J. Anim. Sci. 2007, 6, 646–648. [Google Scholar] [CrossRef]
- Carvalho, N.; Soares, J.; Souza, D.; Vannucci, F.; Amaral, R.; Maio, J.; Sales, J.; Sá Filho, M.F.D.; Baruselli, P.S. Different circulating progesterone concentrations during synchronization of ovulation protocol did not affect ovarian follicular and pregnancy responses in seasonal anestrous buffalo cows. Theriogenology 2014, 81, 490–495. [Google Scholar] [CrossRef]
- Murugavel, K.; Antoine, D.; Raju, M.; López-Gatius, F. The effect of addition of equine chorionic gonadotropin to a progesterone-based estrous synchronization protocol in buffaloes (Bubalus bubalis) under tropical conditions. Theriogenology 2009, 71, 1120–1126. [Google Scholar] [CrossRef]
- Neglia, G.; Natale, A.; Esposito, G.; Salzillo, F.; Adinolfi, L.; Campanile, G.; Francillo, M.; Zicarelli, L. Effect of prostaglandin F2α at the time of AI on progesterone levels and pregnancy rate in synchronized Italian Mediterranean buffaloes. Theriogenology 2008, 69, 953–960. [Google Scholar] [CrossRef]
- Monteiro, B.M.; De Souza, D.C.; Vasconcellos, G.S.F.M.; Corrêa, T.B.; Vecchio, D.; De Sá Filho, M.F.; De Carvalho, N.a.T.; Baruselli, P.S. Ovarian responses of dairy buffalo cows to timed artificial insemination protocol, using new or used progesterone devices, during the breeding season (autumn–winter). Anim. Sci. J. 2016, 87, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, N.; Soares, J.; Porto Filho, R.M.; Gimenes, L.; Souza, D.; Nichi, M.; Sales, J.; Baruselli, P.S. Equine chorionic gonadotropin improves the efficacy of a timed artificial insemination protocol in buffalo during the nonbreeding season. Theriogenology 2013, 79, 423–428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vecchio, D.; Neglia, G.; Gasparrini, B.; Russo, M.; Pacelli, C.; Prandi, A.; D’occhio, M.; Campanile, G. Corpus luteum development and function and relationship to pregnancy during the breeding season in the Mediterranean buffalo. Theriogenology 2012, 77, 1811–1815. [Google Scholar] [CrossRef] [PubMed]
- Vasconcelos, J.; Sartori, R.; Oliveira, H.; Guenther, J.; Wiltbank, M. Reduction in size of the ovulatory follicle reduces subsequent luteal size and pregnancy rate. Theriogenology 2001, 56, 307–314. [Google Scholar] [CrossRef]
- Sartori, R.; Haughian, J.; Shaver, R.; Rosa, G.; Wiltbank, M. Comparison of ovarian function and circulating steroids in estrous cycles of Holstein heifers and lactating cows. J. Dairy Sci. 2004, 87, 905–920. [Google Scholar] [CrossRef] [Green Version]
- Wolfenson, D.; Inbar, G.; Roth, Z.; Kaim, M.; Bloch, A.; Braw Tal, R. Follicular dynamics and concentrations of steroids and gonadotropins in lactating cows and nulliparous heifers. Theriogenology 2004, 62, 1042–1055. [Google Scholar] [CrossRef]
- Haider, S.; Chishti, G.A.; Mehmood, M.U.; Jamal, M.A.; Mehmood, K.; Shahzad, M.; Tahir, M.Z. The effect of GnRH administration/insemination time on follicular growth rate, ovulation intervals, and conception rate of Nili Ravi buffalo heifers in 7–day-CIDR Co-synch. Trop. Anim. Health Prod. 2021, 53, 558. [Google Scholar] [CrossRef]
- Haider, M.; Hassan, M.; Khan, A.; Husnain, A.; Bilal, M.; Pursley, J.; Ahmad, N. Effect of timing of insemination after CIDR removal with or without GnRH on pregnancy rates in Nili-Ravi buffalo. Anim. Reprod. Sci. 2015, 163, 24–29. [Google Scholar] [CrossRef]
- Martinez, M.; Kastelic, J.; Adams, G.; Mapletoft, R. The use of GnRH or estradiol to facilitate fixed-time insemination in an MGA-based synchronization regimen in beef cattle. Anim. Reprod. Sci. 2001, 67, 221–229. [Google Scholar] [CrossRef]
- Naseer, Z.; Ahmad, E.; Singh, J.; Ahmad, N. Fertility following CIDR based synchronization regimens in anoestrous Nili-Ravi buffaloes. Reprod. Domest. Anim. 2011, 46, 814–817. [Google Scholar] [CrossRef]
- Lonergan, P.; Monaghan, P.; Rizos, D.; Boland, M.; Gordon, I. Effect of follicle size on bovine oocyte quality and developmental competence following maturation, fertilization, and culture in vitro. Mol. Reprod. Dev. 1994, 37, 48–53. [Google Scholar] [CrossRef]
- Mehmood, M.U.; Qamar, A.; Sattar, A.; Ahmad, L.; Ahmad, N. Incorporation of estradiol benzoate to CIDR protocol improves the reproductive responses in crossbred dairy heifers. Trop. Anim. Health Prod. 2017, 49, 347–351. [Google Scholar] [CrossRef]
- Soede, N.; Wetzels, C.; Zondag, W.; Hazeleger, W.; Kemp, B. Effects of a second insemination after ovulation on fertilization rate and accessory sperm count in sows. J. Reprod. Fertil. 1995, 105, 135–140. [Google Scholar] [CrossRef] [Green Version]
- Waberski, D.; Soares, J.; Bandeira, E.; Weitze, K. Effect of a transcervical infusion of seminal plasma prior to insemination on the fertilising competence of low numbers of boar spermatozoa at controlled AI-ovulation intervals. Anim. Reprod. Sci. 1996, 44, 165–173. [Google Scholar] [CrossRef]
- De Rensis, F.; Kirkwood, R. Control of estrus and ovulation: Fertility to timed insemination of gilts and sows. Theriogenology 2016, 86, 1460–1466. [Google Scholar] [CrossRef]
- Bai, J.H.; Qin, Y.S.; Zhang, S.L.; Xu, X.L.; Song, Y.Q.; Xiao, L.L.; Feng, T.; Tian, J.H.; Liu, Y. A comparison of the reproductive performance in primiparous sows following two timed artificial insemination protocols. Animal 2021, 15, 100410. [Google Scholar] [CrossRef]
- Peltoniemi, O.; Easton, B.; Love, R.; Klupiec, C.; Evans, G. Effect of chronic treatment with a GnRH agonist (Goserelin) on LH secretion and early pregnancy in gilts. Anim. Reprod. Sci. 1995, 40, 121–133. [Google Scholar] [CrossRef]
- Haen, S.M.; Heinonen, M.; Kauffold, J.; Heikinheimo, M.; Hoving, L.L.; Soede, N.M.; Peltoniemi, O.A. GnRH-agonist deslorelin implant alters the progesterone release pattern during early pregnancy in gilts. Reprod. Domest. Anim. 2019, 54, 464–472. [Google Scholar] [CrossRef]
- Knox, R.; Willenburg, K.; Rodriguez-Zas, S.; Greger, D.; Swanson, M.; Hafs, H. Intravaginal GnRH agonist gel advances time of ovulation and facilitates timed AI in weaned sows. Am. Assoc. Swine Vet. 2003, 11, 495–498. [Google Scholar]
- Rodrigues, L.; Amezcua, R.; Cassar, G.; O’sullivan, T.; Friendship, R. Comparison of single, fixed-time artificial insemination in weaned sows using 2 different protocols to synchronize ovulation. Can. Vet. J. 2020, 61, 53. [Google Scholar]
- Dillard, D.; Flowers, W. Reproductive performance of sows associated with single, fixed-time insemination programs in commercial farms based on either average herd weaning-to-estrus intervals or postweaning estrous activity. Appl. Anim. Sci. 2020, 36, 100–107. [Google Scholar] [CrossRef]
- Miller, A.T.; Picton, H.M.; Hunter, M.G. Suppression of ovarian activity in the gilt and reversal by exogenous gonadotrophin administration. Anim. Reprod. Sci. 1999, 54, 179–193. [Google Scholar] [CrossRef] [PubMed]
- Knox, R.; Stewart, K.; Flowers, W.; Swanson, M.; Webel, S.; Kraeling, R. Design and biological effects of a vaginally administered gel containing the GnRH agonist, triptorelin, for synchronizing ovulation in swine. Theriogenology 2018, 112, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Knox, R.; Webel, S.; Swanson, M.; Johnston, M.; Kraeling, R. Effects of estrus synchronization using Matrix® followed by treatment with the GnRH agonist triptorelin to control ovulation in mature gilts. Anim. Reprod. Sci. 2017, 185, 66–74. [Google Scholar] [CrossRef]
- Diskin, M.G.; Austin, E.J.; Roche, J.F. Exogenous hormonal manipulation of ovarian activity in cattle. Domest. Anim. Endocrinol. 2002, 23, 211–228. [Google Scholar] [CrossRef]
- Bishop, B.; Thomas, J.; Abel, J.; Poock, S.; Ellersieck, M.; Smith, M.; Patterson, D. Split-time artificial insemination in beef cattle: I–Using estrous response to determine the optimal time (s) at which to administer GnRH in beef heifers and postpartum cows. Theriogenology 2016, 86, 1102–1110. [Google Scholar] [CrossRef]
- Bó, G.A.; Baruselli, P.S. Synchronization of ovulation and fixed-time artificial insemination in beef cattle. Animal 2014, 8, 144–150. [Google Scholar] [CrossRef] [Green Version]
- Yamada, K. Development of ovulation synchronization and fixed time artificial insemination in dairy cows. J. Reprod. Dev. 2005, 51, 177–186. [Google Scholar] [CrossRef] [Green Version]
- Tummaruk, P.; Sang-Gassanee, K.; Audban, C.; Pichitpantapong, S.; Panyathong, R.; Lin, H.; De Rensis, F. Gilt reproductive performance in a tropical environment after oestrus synchronization and fixed-time artificial insemination. Theriogenology 2022, 192, 45–51. [Google Scholar] [CrossRef]
- Zhao, Q.; Tao, C.; Pan, J.; Wei, Q.; Zhu, Z.; Wang, L.; Liu, M.; Huang, J.; Yu, F.; Chen, X. Equine chorionic gonadotropin pretreatment 15 days before fixed-time artificial insemination improves the reproductive performance of replacement gilts. Animal 2021, 15, 100406. [Google Scholar] [CrossRef]
- Pursley, J.R.; Mee, M.O.; Wiltbank, M.C. Synchronization of ovulation in dairy cows using PGF2α and GnRH. Theriogenology 1995, 44, 915–923. [Google Scholar] [CrossRef]
- Brusveen, D.J.; Cunha, A.P.; Silva, C.D.; Cunha, P.M.; Sterry, R.A.; Silva, E.P.; Guenther, J.N.; Wiltbank, M.C. Altering the time of the second gonadotropin-releasing hormone injection and artificial insemination (AI) during Ovsynch affects pregnancies per AI in lactating dairy cows. J. Dairy Sci. 2008, 91, 1044–1052. [Google Scholar] [CrossRef] [Green Version]
- Geary, T.W.; Downing, E.R.; Bruemmer, J.E.; Whittier, J.C. Ovarian and estrous response of suckled beef cows to the select synch estrous synchronization protocol. Prof. Anim. Sci. 2000, 16, 1–5. [Google Scholar] [CrossRef]
- Bello, N.M.; Steibel, J.P.; Pursley, J.R. Optimizing ovulation to first GnRH improved outcomes to each hormonal injection of Ovsynch in lactating dairy cows. J. Dairy Sci. 2006, 89, 3413–3424. [Google Scholar] [CrossRef] [Green Version]
- Colazo, M.G.; Gordon, M.B.; Rajamahendran, R.; Mapletoft, R.J.; Ambrose, D.J. Pregnancy rates to timed artificial insemination in dairy cows treated with gonadotropin-releasing hormone or porcine luteinizing hormone. Theriogenology 2009, 72, 262–270. [Google Scholar] [CrossRef]
- Martinez, M.F.; Kastelic, J.P.; Adams, G.P.; Mapletoft, R.J. The use of a progesterone-releasing device (CIDR-B) or melengestrol acetate with GnRH, LH, or estradiol benzoate for fixed-time AI in beef heifers. J. Anim. Sci. 2002, 80, 1746–1751. [Google Scholar] [CrossRef]
- Bartolome, J.A.; Sheerin, P.; Luznar, S.; Melendez, P.; Kelbert, D.; Risco, C.A.; Thatcher, W.W.; Archbald, L.F. Conception rate of lactating dairy cows using ovsynch after presynchronization with prostaglandin F2α (PGF2α) or Gonadotropin Releasing Hormone (GnRH). Bov. Pract. 2002, 36, 35–39. [Google Scholar] [CrossRef]
- Moreira, F.; Orlandi, C.; Risco, C.A.; Mattos, R.; Lopes, F.; Thatcher, W.W. Effects of presynchronization and bovine somatotropin on pregnancy rates to a timed artificial insemination protocol in lactating dairy cows. J. Dairy Sci. 2001, 84, 1646–1659. [Google Scholar] [CrossRef]
- Kirkwood, R.; Kauffold, J. Advances in breeding management and use of ovulation induction for fixed-time AI. Reprod. Domest. Anim. 2015, 50, 85–89. [Google Scholar] [CrossRef] [Green Version]
- Baer, C.; Bilkei, G. The effect of intravaginal applied GnRH-agonist on the time of ovulation and subsequent reproductive performance of weaned multiparous sows. Reprod. Domest. Anim. 2004, 39, 293–297. [Google Scholar] [CrossRef]
- Knox, R.; Esparza-Harris, K.; Johnston, M.; Webel, S. Effect of numbers of sperm and timing of a single, post-cervical insemination on the fertility of weaned sows treated with OvuGel®. Theriogenology 2017, 92, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Knox, R. Artificial insemination in pigs today. Theriogenology 2016, 85, 83–93. [Google Scholar] [CrossRef] [PubMed]
- Young, B.; Dewey, C.E.; Friendship, R.M. Management factors associated with farrowing rate in commercial sow herds in Ontario. Can. Vet. J. 2010, 51, 185–189. [Google Scholar] [PubMed]
- Bilodeau-Goeseels, S.; Kastelic, J. Factors affecting embryo survival and strategies to reduce embryonic mortality in cattle. Can. J. Anim. Sci. 2003, 83, 659–671. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Ispierto, I.; De Rensis, F.; Pérez-Salas, J.; Nunes, J.; Pradés, B.; Serrano-Pérez, B.; López-Gatius, F. The GnRH analogue dephereline given in a fixed-time AI protocol improves ovulation and embryo survival in dairy cows. Res. Vet. Sci. 2019, 122, 170–174. [Google Scholar] [CrossRef]
- Couto, S.R.; Guerson, Y.B.; Caparelli, N.M.; Andrade, J.P.N.; Jacob, J.C.; Barbero, R.P.; Mello, M.R. Mitigation of low pregnancy rate in excitable Nellore cows by administration of GnRH or P4. Theriogenology 2022, 192, 14–21. [Google Scholar] [CrossRef]
- Córdova-Izquierdo, A.; Villa-Mancera, A.; Olivares Pérez, J.; Sánchez-Aparicio, P. Environmental stress effect on animal reproduction. Open J. Anim. Sci. 2014, 4, 79–84. [Google Scholar] [CrossRef] [Green Version]
- Mendonça, L.; Mantelo, F.; Stevenson, J. Fertility of lactating dairy cows treated with gonadotropin-releasing hormone at AI, 5 days after AI, or both, during summer heat stress. Theriogenology 2017, 91, 9–16. [Google Scholar] [CrossRef]
- Kirkwood, R.; Baidoo, S.; Aherne, F.; Sather, A. The influence of feeding level during lactation on the occurrence and endocrinology of the postweaning estrus in sows. Can. J. Anim. Sci. 1987, 67, 405–415. [Google Scholar] [CrossRef]
- Kirkwood, R.; Lapwood, K.; Smith, W.; Anderson, I. Plasma concentrations of LH, prolactin, oestradiol-17β and progesterone in sows weaned after lactation for 10 or 35 days. Reproduction 1984, 70, 95–102. [Google Scholar] [CrossRef] [Green Version]
- Thatcher, W.W.; Macmillan, K.L.; Hansen, P.J.; Drost, M. Concepts for regulation of corpus luteum function by the conceptus and ovarian follicles to improve fertility. Theriogenology 1989, 31, 149–164. [Google Scholar] [CrossRef]
- Mann, G.; Lamming, G.; Fray, M. Plasma oestradiol and progesterone during early pregnancy in the cow and the effects of treatment with buserelin. Anim. Reprod. Sci. 1995, 37, 121–131. [Google Scholar] [CrossRef]
- Arshad, U.; Qayyum, A.; Hassan, M.; Husnain, A.; Sattar, A.; Ahmad, N. Effect of resynchronization with GnRH or progesterone (P4) intravaginal device (CIDR) on Day 23 after timed artificial insemination on cumulative pregnancy and embryonic losses in CIDR-GnRH synchronized Nili-Ravi buffaloes. Theriogenology 2017, 103, 104–109. [Google Scholar] [CrossRef]
- Pacelli, C.; Barile, V.L.; Sabia, E.; Casano, A.B.; Braghieri, A.; Martina, V.; Barbato, O. Use of GnRH Treatment Based on Pregnancy-Associated Glyco-Proteins (PAGs) Levels as a Strategy for the Maintenance of Pregnancy in Buffalo Cows: A Field Study. Animals 2022, 12, 2822. [Google Scholar] [CrossRef]
- Bartolome, J.; Kamimura, S.; Silvestre, F.; Arteche, A.; Trigg, T.; Thatcher, W. The use of a deslorelin implant (GnRH agonist) during the late embryonic period to reduce pregnancy loss. Theriogenology 2006, 65, 1443–1453. [Google Scholar] [CrossRef]
- Cam, M.A.; Kuran, M.; Yildiz, S.; Selcuk, E. Fetal growth and reproductive performance in ewes administered GnRH agonist on day 12 post-mating. Anim. Reprod. Sci. 2002, 72, 73–82. [Google Scholar] [CrossRef]
- Ataman, M.B.; Aköz, M.; Saribay, M.K.; Erdem, H.; Bucak, M.N. Prevention of embryonic death using different hormonal treatments in ewes. Turk. J. Vet. Anim. Sci. 2013, 37, 6–8. [Google Scholar] [CrossRef]
- Bolzan, E.; Andronowska, A.; Bodek, G.; Morawska-Pucinska, E.; Krawczynski, K.; Dabrowski, A.; Ziecik, A.J. The novel effect of hCG administration on luteal function maintenance during the estrous cycle/pregnancy and early embryo development in the pig. Pol. J. Vet. Sci. 2013, 16, 323–332. [Google Scholar] [CrossRef] [Green Version]
- Guthrie, H.; Bolt, D. Changes in plasma estrogen, luteinizing hormone, follicle-stimulating hormone and 13, 14-dihydro-15-keto-prostaglandin F2α during blockade of luteolysis in pigs after human chorionic gonadotropin treatment. J. Anim. Sci. 1983, 57, 993–1000. [Google Scholar] [CrossRef]
- Macmillan, K.; Day, A.; Taufa, V.; Gibb, M.; Pearce, M. Effects of an agonist of gonadotrophin releasing hormone in cattle. I. Hormone concentrations and oestrous cycle length. Anim. Reprod. Sci. 1985, 8, 203–212. [Google Scholar] [CrossRef]
- Macmillan, K.; Taufa, V.; Day, A. Effects of an agonist of gonadotrophin releasing hormone (Buserelin) in cattle. III. Pregnancy rates after a post-insemination injection during metoestrus or dioestrus. Anim. Reprod. Sci. 1986, 11, 1–10. [Google Scholar] [CrossRef]
- Drew, S.; Peters, A. Effect of buserelin on pregnancy rates in dairy cows. Vet. Rec. 1994, 134, 267–269. [Google Scholar] [CrossRef] [PubMed]
- Sheldon, I.; Dobson, H. Effects of gonadotrophin releasing hormone administered 11 days after insemination on the pregnancy rates of cattle to the first and later services. Vet. Rec. 1993, 133, 160–163. [Google Scholar] [CrossRef] [PubMed]
- Ryan, D.; Snijders, S.; Condon, T.; Grealy, M.; Sreenan, J.; O’farrell, K. Endocrine and ovarian responses and pregnancy rates in dairy cows following the administration of a gonadotrophin releasing hormone analog at the time of artificial insemination or at mid-cycle post insemination. Anim. Reprod. Sci. 1994, 34, 179–191. [Google Scholar] [CrossRef]
- Geisert, R.; Fazleabas, A.; Lucy, M.; Mathew, D. Interaction of the conceptus and endometrium to establish pregnancy in mammals: Role of interleukin 1β. Cell Tissue Res. 2012, 349, 825–838. [Google Scholar] [CrossRef] [Green Version]
- Green, J.A.; Geisert, R.D.; Johnson, G.A.; Spencer, T.E. Implantation and placentation in ruminants. In Placentation in Mammals: Tribute to EC Amoroso’s Lifetime Contributions to Viviparity; Springer: Cham, Switzerland, 2021; pp. 129–154. [Google Scholar]
- Patel, O.V.; Sulon, J.; Beckers, J.F.; Takahashi, T.; Hirako, M.; Sasaki, N.; Domeki, I. Plasma bovine pregnancy-associated glycoprotein concentrations throughout gestation in relationship to fetal number in the cow. Eur. J. Endocrinol. 1997, 137, 423–428. [Google Scholar] [CrossRef] [Green Version]
- Wallace, J.; Aitken, R.; Cheyne, M.; Humblot, P. Pregnancy-specific protein B and progesterone concentrations in relation to nutritional regimen, placental mass and pregnancy outcome in growing adolescent ewes carrying singleton fetuses. Reproduction 1997, 109, 53–58. [Google Scholar] [CrossRef] [Green Version]
- Reimers, T.; Ullmann, M.; Hansel, W. Progesterone and prostanoid production by bovine binucleate trophoblastic cells. Biol. Reprod. 1985, 33, 1227–1236. [Google Scholar] [CrossRef]
- Gross, T.; Williams, W. Bovine placental prostaglandin synthesis: Principal cell synthesis as modulated by the binucleate cell. Biol. Reprod. 1988, 38, 1027–1034. [Google Scholar] [CrossRef] [Green Version]
- Bartolome, J.; Melendez, P.; Kelbert, D.; Swift, K.; Mchale, J.; Hernandez, J.; Silvestre, F.; Risco, C.; Arteche, A.; Thatcher, W. Strategic use of gonadotrophin-releasing hormone (GnRH) to increase pregnancy rate and reduce pregnancy loss in lactating dairy cows subjected to synchronization of ovulation and timed insemination. Theriogenology 2005, 63, 1026–1037. [Google Scholar] [CrossRef]
- Szenci, O.; Takács, E.; Sulon, J.; De Sousa, N.M.; Beckers, J.F. Evaluation of GnRH treatment 12 days after AI in the reproductive performance of dairy cows. Theriogenology 2006, 66, 1811–1815. [Google Scholar] [CrossRef]
- Campanile, G.; Vecchio, D.; Di Palo, R.; Neglia, G.; Gasparrini, B.; Prandi, A.; Zicarelli, L.; D’occhio, M. Delayed treatment with GnRH agonist, hCG and progesterone and reduced embryonic mortality in buffaloes. Theriogenology 2008, 70, 1544–1549. [Google Scholar] [CrossRef]
- Vecchio, D.; Neglia, G.; Di Palo, R.; Prandi, A.; Gasparrini, B.; Balestrieri, A.; D’occhio, M.J.; Zicarelli, L.; Campanile, G. Is a delayed treatment with GnRH, hCG or progesterone beneficial for reducing embryonic mortality in buffaloes? Reprod. Domest. Anim. 2010, 45, 614–618. [Google Scholar] [CrossRef]
- Bryan, M.A.; Bo, G.; Mapletoft, R.J.; Emslie, F.R. The use of equine chorionic gonadotropin in the treatment of anestrous dairy cows in gonadotropin-releasing hormone/progesterone protocols of 6 or 7 days. J. Dairy Sci. 2013, 96, 122–131. [Google Scholar] [CrossRef] [Green Version]
- Kharche, S.D.; Srivastava, S.K. Dose dependent effect of GnRH analogue on pregnancy rate of repeat breeder crossbred cows. Anim. Reprod. Sci. 2007, 99, 196–201. [Google Scholar] [CrossRef]
- Peter, A. An update on cystic ovarian degeneration in cattle. Reprod. Domest. Anim. 2004, 39, 1–7. [Google Scholar] [CrossRef]
- Vanholder, T.; Opsomer, G.; De Kruif, A. Aetiology and pathogenesis of cystic ovarian follicles in dairy cattle: A review. Reprod. Nutr. Dev. 2006, 46, 105–119. [Google Scholar] [CrossRef] [Green Version]
- Borș, S.I.; Ibănescu, I.; Creangă, Ș.; Borș, A. Reproductive performance in dairy cows with cystic ovarian disease after single treatment with buserelin acetate or dinoprost. J. Vet. Med. Sci. 2018, 80, 1190–1194. [Google Scholar] [CrossRef] [Green Version]
- Walters, D.L.; Short, R.E.; Convey, E.M.; Staigmiller, R.B.; Dunn, T.G.; Kaltenbach, C.C. Pituitary and ovarian function in postpartum beef cows. II. Endocrine changes prior to ovulation in suckled and nonsuckled postpartum cows compared to cycling cows. Biol. Reprod. 1982, 26, 647–654. [Google Scholar] [CrossRef] [Green Version]
- Edwards, S.; Roche, J.; Niswender, G. Response of suckling beef cows to multiple, low-dose injections of Gn-RH with or without progesterone pretreatment. Reproduction 1983, 69, 65–72. [Google Scholar] [CrossRef] [Green Version]
- Phatak, A.P.; Whitmore, H.L.; Brown, M.D. Effect of gonadotrophin releasing hormone on conception rate in repeat-breeder dairy cows. Theriogenology 1986, 26, 605–609. [Google Scholar] [CrossRef] [PubMed]
- López-Gatius, F.; Garcia-Ispierto, I. Treatment with an elevated dose of the GnRH analogue dephereline in the early luteal phase improves pregnancy rates in repeat-breeder dairy cows. Theriogenology 2020, 155, 12–16. [Google Scholar] [CrossRef] [PubMed]
- Soumano, K.; Silversides, D.; Doizé, F.; Price, C. Follicular 3β-hydroxysteroid dehydrogenase and cytochromes P450 17α-hydroxylase and aromatase messenger ribonucleic acids in cattle undergoing superovulation. Biol. Reprod. 1996, 55, 1419–1426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Komar, C.; Berndtson, A.; Evans, A.; Fortune, J. Decline in circulating estradiol during the periovulatory period is correlated with decreases in estradiol and androgen, and in messenger RNA for P450 aromatase and P450 17α-hydroxylase, in bovine preovulatory follicles. Biol. Reprod. 2001, 64, 1797–1805. [Google Scholar] [CrossRef] [Green Version]
- Tortorella, R.D.; Ferreira, R.; Dos Santos, J.T.; De Andrade Neto, O.S.; Barreta, M.H.; Oliveira, J.F.; Gonçalves, P.B.; Neves, J.P. The effect of equine chorionic gonadotropin on follicular size, luteal volume, circulating progesterone concentrations, and pregnancy rates in anestrous beef cows treated with a novel fixed-time artificial insemination protocol. Theriogenology 2013, 79, 1204–1209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adams, G.P.; Singh, J. Ovarian follicular and luteal dynamics in cattle. In Bovine Reproduction; Hopper, R.M., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2021; pp. 292–323. [Google Scholar] [CrossRef]
- Rocha, C.C.; Martins, T.; Cardoso, B.O.; Silva, L.A.; Binelli, M.; Pugliesi, G. Ultrasonography-accessed luteal size endpoint that most closely associates with circulating progesterone during the estrous cycle and early pregnancy in beef cows. Anim. Reprod. Sci. 2019, 201, 12–21. [Google Scholar] [CrossRef]
- Jimenez-Krassel, F.; Folger, J.; Ireland, J.; Smith, G.; Hou, X.; Davis, J.; Lonergan, P.; Evans, A.; Ireland, J. Evidence that high variation in ovarian reserves of healthy young adults has a negative impact on the corpus luteum and endometrium during estrous cycles in cattle. Biol. Reprod. 2009, 80, 1272–1281. [Google Scholar] [CrossRef] [Green Version]
- Hashem, N.M.; El-Hawy, A.S.; El-Bassiony, M.F.; El-Hamid, I.S.A.; Gonzalez-Bulnes, A.; Martinez-Ros, P. Use of GnRH-Encapsulated Chitosan Nanoparticles as an Alternative to eCG for Induction of Estrus and Ovulation during Non-Breeding Season in Sheep. Biology 2023, 12, 351. [Google Scholar] [CrossRef]
- Hashem, N.M.; El-Sherbiny, H.R.; Fathi, M.; Abdelnaby, E.A. Nanodelivery system for ovsynch protocol improves ovarian response, ovarian blood flow Doppler velocities, and hormonal profile of goats. Animals 2022, 12, 1442. [Google Scholar] [CrossRef]
- Hassanein, E.M.; Hashem, N.M.; El-Azrak, K.E.-D.M.; Gonzalez-Bulnes, A.; Hassan, G.A.; Salem, M.H. Efficiency of GnRH–loaded chitosan nanoparticles for inducing LH secretion and fertile ovulations in protocols for artificial insemination in rabbit does. Animals 2021, 11, 440. [Google Scholar] [CrossRef]
- Samartzi, F.; Theodosiadou, E.K.; Rekkas, C.A.; Saratsi, A.; Lymberopoulos, A.G.; Vainas, E.; Tsiligianni, T. Effect of equine chorionic gonadotropin on glycosidase activity in the reproductive tract of ewes, in relation to ovarian response and embryo yield. Small Rumin. Res. 2020, 191, 106186. [Google Scholar] [CrossRef]
- Luna-Palomera, C.; Macías-Cruz, U.; Sánchez-Dávila, F. Superovulatory response and embryo quality in Katahdin ewes treated with FSH or FSH plus eCG during non-breeding season. Trop. Anim. Health Prod. 2019, 51, 1283–1288. [Google Scholar] [CrossRef]
- Lin, E.; Li, Z.; Huang, Y.; Ru, G.; He, P. High dosages of equine chorionic gonadotropin exert adverse effects on the developmental competence of IVF-derived mouse embryos and cause oxidative stress-induced aneuploidy. Front. Cell Dev. Biol. 2021, 8, 609290. [Google Scholar] [CrossRef]
- Bor, S.S.; Bor, S.A. Ovarian cysts, an anovulatory condition in dairy cattle. J. Vet. Med. Sci. 2020, 82, 1515–1522. [Google Scholar] [CrossRef]
- Cech, S.; Dolezel, R. Treatment of ovarian cysts in sows-a field trial. Vet. Med. 2007, 52, 413–418. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uddin, A.H.M.M.; Petrovski, K.R.; Song, Y.; Garg, S.; Kirkwood, R.N. Application of Exogenous GnRH in Food Animal Production. Animals 2023, 13, 1891. https://doi.org/10.3390/ani13121891
Uddin AHMM, Petrovski KR, Song Y, Garg S, Kirkwood RN. Application of Exogenous GnRH in Food Animal Production. Animals. 2023; 13(12):1891. https://doi.org/10.3390/ani13121891
Chicago/Turabian StyleUddin, A. H. M. Musleh, Kiro R. Petrovski, Yunmei Song, Sanjay Garg, and Roy N. Kirkwood. 2023. "Application of Exogenous GnRH in Food Animal Production" Animals 13, no. 12: 1891. https://doi.org/10.3390/ani13121891
APA StyleUddin, A. H. M. M., Petrovski, K. R., Song, Y., Garg, S., & Kirkwood, R. N. (2023). Application of Exogenous GnRH in Food Animal Production. Animals, 13(12), 1891. https://doi.org/10.3390/ani13121891