Universal Tick Vaccines: Candidates and Remaining Challenges
Abstract
:Simple Summary
Abstract
1. Introduction
2. Previously Described Universal Vaccine Antigen Candidates
2.1. Bm86
2.2. Subolesin
2.3. Glutathione S-Transferases
3. New Cross-Protection Antigen Candidates
4. Vaccines Blocking Pathogen Transmission
5. Advances and Remaining Challenges to Universal Tick Vaccines
5.1. Rational Strategies for Improving Tick Vaccines
5.2. Impact of Tick Expansion into New Territories for Vaccine Development
6. Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Boulanger, N.; Boyer, P.; Talagrand-Reboul, E.; Hansmann, Y. Ticks and tick-borne diseases. Med. Mal. Infect. 2019, 49, 87–97. [Google Scholar] [CrossRef] [PubMed]
- Obaid, M.K.; Islam, N.; Alouffi, A.; Khan, A.Z.; da Silva Vaz, I., Jr.; Tanaka, T.; Ali, A. Acaricides Resistance in Ticks: Selection, Diagnosis, Mechanisms, and Mitigation. Front. Cell Infect. Microbiol. 2022, 12, 941831. [Google Scholar] [CrossRef]
- Githaka, N.W.; Kanduma, E.G.; Wieland, B.; Darghouth, M.A.; Bishop, R.P. Acaricide resistance in livestock ticks infesting cattle in Africa: Current status and potential mitigation strategies. Curr. Res. Parasitol. Vector Borne Dis. 2022, 2, 100090. [Google Scholar] [CrossRef] [PubMed]
- de la Fuente, J.; Estrada-Pena, A. Why New Vaccines for the Control of Ectoparasite Vectors Have Not Been Registered and Commercialized? Vaccines 2019, 7, 75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muhanguzi, D.; Ndekezi, C.; Nkamwesiga, J.; Kalayou, S.; Ochwo, S.; Vuyani, M.; Kimuda, M.P. Anti-Tick Vaccines: Current Advances and Future Prospects. Methods Mol. Biol. 2022, 2411, 253–267. [Google Scholar] [PubMed]
- Sander, V.A.; Sanchez Lopez, E.F.; Mendoza Morales, L.; Ramos Duarte, V.A.; Corigliano, M.G.; Clemente, M. Use of Veterinary Vaccines for Livestock as a Strategy to Control Foodborne Parasitic Diseases. Front. Cell Infect. Microbiol. 2020, 10, 288. [Google Scholar] [CrossRef]
- Choudhury, S.M.; Ma, X.; Dang, W.; Li, Y.; Zheng, H. Recent Development of Ruminant Vaccine Against Viral Diseases. Front. Vet. Sci. 2021, 8, 697194. [Google Scholar] [CrossRef]
- Ellwanger, J.H.; Veiga, A.B.G.; Kaminski, V.L.; Valverde-Villegas, J.M.; Freitas, A.W.Q.; Chies, J.A.B. Control and prevention of infectious diseases from a One Health perspective. Genet. Mol. Biol. 2021, 44, e20200256. [Google Scholar] [CrossRef]
- Stutzer, C.; Richards, S.A.; Ferreira, M.; Baron, S.; Maritz-Olivier, C. Metazoan Parasite Vaccines: Present Status and Future Prospects. Front. Cell Infect. Microbiol. 2018, 8, 67. [Google Scholar] [CrossRef] [Green Version]
- Lewis, L.A.; Radulovic, Z.M.; Kim, T.K.; Porter, L.M.; Mulenga, A. Identification of 24h Ixodes scapularis immunogenic tick saliva proteins. Ticks Tick Borne Dis. 2015, 6, 424–434. [Google Scholar] [CrossRef] [Green Version]
- Sun, T.; Wang, F.; Pan, W.; Wu, Q.; Wang, J.; Dai, J. An Immunosuppressive Tick Salivary Gland Protein DsCystatin Interferes With Toll-Like Receptor Signaling by Downregulating TRAF. Front. Immunol. 2018, 9, 1245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, N.; Lin, Z.; Xu, Z.; Gong, H.; Zhang, H.; Zhou, Y.; Cao, J.; Li, G.; Zhou, J. Immunosuppressive effects of tick protein RHcyst-1 on murine bone marrow-derived dendritic cells. Parasites Vectors 2019, 12, 169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coutinho, M.L.; Bizzarro, B.; Tirloni, L.; Berger, M.; Freire Oliveira, C.J.; Sa-Nunes, A.; Silva Vaz, I., Jr. Rhipicephalus microplus serpins interfere with host immune responses by specifically modulating mast cells and lymphocytes. Ticks Tick Borne Dis. 2020, 11, 101425. [Google Scholar] [CrossRef] [PubMed]
- Sajiki, Y.; Konnai, S.; Ochi, A.; Okagawa, T.; Githaka, N.; Isezaki, M.; Yamada, S.; Ito, T.; Ando, S.; Kawabata, H.; et al. Immunosuppressive effects of sialostatin L1 and L2 isolated from the taiga tick Ixodes persulcatus Schulze. Ticks Tick Borne Dis. 2020, 11, 101332. [Google Scholar] [CrossRef] [PubMed]
- Sajiki, Y.; Konnai, S.; Ikenaka, Y.; Gulay, K.C.M.; Kobayashi, A.; Parizi, L.F.; Joao, B.C.; Watari, K.; Fujisawa, S.; Okagawa, T.; et al. Tick saliva-induced programmed death-1 and PD-ligand 1 and its related host immunosuppression. Sci. Rep. 2021, 11, 1063. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Zeb, I.; Alouffi, A.; Zahid, H.; Almutairi, M.M.; Ayed Alshammari, F.; Alrouji, M.; Termignoni, C.; Vaz, I.D.S., Jr.; Tanaka, T. Host Immune Responses to Salivary Components—A Critical Facet of Tick-Host Interactions. Front. Cell Infect. Microbiol. 2022, 12, 809052. [Google Scholar] [CrossRef]
- Sajiki, Y.; Konnai, S.; Okagawa, T.; Maekawa, N.; Isezaki, M.; Yamada, S.; Ito, T.; Sato, K.; Kawabata, H.; Logullo, C.; et al. Suppressive effects of Ixodes persulcatus sialostatin L2 against Borrelia miyamotoi-stimulated immunity. Ticks Tick Borne Dis. 2022, 13, 101963. [Google Scholar] [CrossRef]
- Penalver, E.; Arillo, A.; Delclos, X.; Peris, D.; Grimaldi, D.A.; Anderson, S.R.; Nascimbene, P.C.; Perez-de la Fuente, R. Parasitised feathered dinosaurs as revealed by Cretaceous amber assemblages. Nat. Commun. 2017, 8, 1924. [Google Scholar] [CrossRef] [Green Version]
- Francischetti, I.M.; Sa-Nunes, A.; Mans, B.J.; Santos, I.M.; Ribeiro, J.M. The role of saliva in tick feeding. Front. Biosci. Landmark Ed. 2009, 14, 2051–2088. [Google Scholar] [CrossRef] [Green Version]
- Nuttall, P.A. Tick saliva and its role in pathogen transmission. Wien. Klin. Wochenschr. 2019, 135, 165–176. [Google Scholar] [CrossRef] [Green Version]
- Aounallah, H.; Bensaoud, C.; M’Ghirbi, Y.; Faria, F.; Chmelar, J.I.; Kotsyfakis, M. Tick Salivary Compounds for Targeted Immunomodulatory Therapy. Front. Immunol. 2020, 11, 583845. [Google Scholar] [CrossRef]
- Narasimhan, S.; Kurokawa, C.; DeBlasio, M.; Matias, J.; Sajid, A.; Pal, U.; Lynn, G.; Fikrig, E. Acquired tick resistance: The trail is hot. Parasite Immunol. 2021, 43, e12808. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, J.M. Role of saliva in tick/host interactions. Exp. Appl. Acarol. 1989, 7, 15–20. [Google Scholar] [CrossRef] [PubMed]
- Rochlin, I.; Toledo, A. Emerging tick-borne pathogens of public health importance: A mini-review. J. Med. Microbiol. 2020, 69, 781–791. [Google Scholar] [CrossRef]
- Pereira, D.F.S.; Ribeiro, H.S.; Goncalves, A.A.M.; da Silva, A.V.; Lair, D.F.; de Oliveira, D.S.; Boas, D.F.V.; Conrado, I.; Leite, J.C.; Barata, L.M.; et al. Rhipicephalus microplus: An overview of vaccine antigens against the cattle tick. Ticks Tick Borne Dis. 2022, 13, 101828. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Valle, M.; Taoufik, A.; Valdes, M.; Montero, C.; Ibrahin, H.; Hassan, S.M.; Jongejan, F.; de la Fuente, J. Efficacy of Rhipicephalus (Boophilus) microplus Bm86 against Hyalomma dromedarii and Amblyomma cajennense tick infestations in camels and cattle. Vaccine 2012, 30, 3453–3458. [Google Scholar] [CrossRef]
- Antunes, S.; Domingos, A. Tick Vaccines and Concealed versus Exposed Antigens. Pathogens 2023, 12, 374. [Google Scholar] [CrossRef]
- Fragoso, H.; Rad, P.H.; Ortiz, M.; Rodriguez, M.; Redondo, M.; Herrera, L.; de la Fuente, J. Protection against Boophilus annulatus infestations in cattle vaccinated with the B. microplus Bm86-containing vaccine Gavac. off. Vaccine 1998, 16, 1990–1992. [Google Scholar] [CrossRef]
- Parizi, L.F.; Githaka, N.W.; Logullo, C.; Konnai, S.; Masuda, A.; Ohashi, K.; da Silva Vaz, I., Jr. The quest for a universal vaccine against ticks: Cross-immunity insights. Vet. J. 2012, 194, 158–165. [Google Scholar] [CrossRef]
- Willadsen, P.; Riding, G.; McKenna, R.; Kemp, D.; Tellam, R.; Nielsen, J.; Gough, J. Immunologic control of a parasitic arthropod. Identification of a protective antigen from Boophilus microplus. J. Immunol. 1989, 143, 1346–1351. [Google Scholar] [CrossRef]
- Johnston, L.A.; Kemp, D.; Pearson, R. Immunization of cattle against Boophilus microplus using extracts derived from adult female ticks: Effects of induced immunity on tick populations. Int. J. Parasitol. 1986, 16, 27–34. [Google Scholar] [CrossRef]
- Willadsen, P.; Bird, P.; Cobon, G.S.; Hungerford, J. Commercialisation of a recombinant vaccine against Boophilus microplus. Parasitology 1995, 110, S43–S50. [Google Scholar] [CrossRef] [PubMed]
- Canales, M.; Enriquez, A.; Ramos, E.; Cabrera, D.; Dandie, H.; Soto, A.; Falcon, V.; Rodriguez, M.; de la Fuente, J. Large-scale production in Pichia pastoris of the recombinant vaccine Gavac against cattle tick. Vaccine 1997, 15, 414–422. [Google Scholar] [CrossRef] [PubMed]
- Tabor, A.E. A Review of Australian Tick Vaccine Research. Vaccines 2021, 9, 1030. [Google Scholar] [CrossRef] [PubMed]
- de la Fuente, J.; Rodriguez, M.; Montero, C.; Redondo, M.; Garcia-Garcia, J.C.; Mendez, L.; Serrano, E.; Valdes, M.; Enriquez, A.; Canales, M.; et al. Vaccination against ticks (Boophilus spp.): The experience with the Bm86-based vaccine Gavac (TM). Genet. Anal. 1999, 15, 143–148. [Google Scholar] [CrossRef] [PubMed]
- Kumar, B.; Murugan, K.; Ray, D.D.; Ghosh, S. Efficacy of rBm86 against Rhipicephalus (Boophilus) microplus (IVRI-I line) and Hyalomma anatolicum anatolicum (IVRI-II line) infestations on bovine calves. Parasitol. Res. 2012, 111, 629–635. [Google Scholar] [CrossRef]
- Manzano-Roman, R.; Diaz-Martin, V.; Oleaga, A.; Perez-Sanchez, R. Identification of protective linear B-cell epitopes on the subolesin/akirin orthologues of Ornithodoros spp. soft ticks. Vaccine 2015, 33, 1046–1055. [Google Scholar] [CrossRef]
- Kumar, B.; Manjunathachar, H.V.; Nagar, G.; Ravikumar, G.; de la Fuente, J.; Saravanan, B.C.; Ghosh, S. Functional characterization of candidate antigens of Hyalomma anatolicum and evaluation of its cross-protective efficacy against Rhipicephalus microplus. Vaccine 2017, 35, 5682–5692. [Google Scholar] [CrossRef]
- Kasaija, P.D.; Contreras, M.; Kabi, F.; Mugerwa, S.; de la Fuente, J. Vaccination with Recombinant Subolesin Antigens Provides Cross-Tick Species Protection in Bos indicus and Crossbred Cattle in Uganda. Vaccines 2020, 8, 319. [Google Scholar] [CrossRef]
- Hassan, I.A.; Wang, Y.; Zhou, Y.; Cao, J.; Zhang, H.; Zhou, J. Cross protection induced by combined Subolesin-based DNA and protein immunizations against adult Haemaphysalis longicornis. Vaccine 2020, 38, 907–915. [Google Scholar] [CrossRef]
- Kasaija, P.D.; Contreras, M.; Kabi, F.; Mugerwa, S.; Garrido, J.M.; Gortazar, C.; de la Fuente, J. Oral vaccine formulation combining tick Subolesin with heat inactivated mycobacteria provides control of cross-species cattle tick infestations. Vaccine 2022, 40, 4564–4573. [Google Scholar] [CrossRef]
- Sabadin, G.A.; Parizi, L.F.; Kiio, I.; Xavier, M.A.; da Silva Matos, R.; Camargo-Mathias, M.I.; Githaka, N.W.; Nene, V.; da Silva Vaz Jr, I. Effect of recombinant glutathione S-transferase as vaccine antigen against Rhipicephalus appendiculatus and Rhipicephalus sanguineus infestation. Vaccine 2017, 35, 6649–6656. [Google Scholar] [CrossRef] [PubMed]
- Ndawula, C., Jr.; Sabadin, G.A.; Parizi, L.F.; da Silva Vaz, I., Jr. Constituting a glutathione S-transferase-cocktail vaccine against tick infestation. Vaccine 2019, 37, 1918–1927. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Mallon, A.; Encinosa, P.E.; Mendez-Perez, L.; Bello, Y.; Rodriguez Fernandez, R.; Garay, H.; Cabrales, A.; Mendez, L.; Borroto, C.; Estrada, M.P. High efficacy of a 20 amino acid peptide of the acidic ribosomal protein P0 against the cattle tick, Rhipicephalus microplus. Ticks Tick Borne Dis. 2015, 6, 530–537. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Mallon, A.; Encinosa Guzman, P.E.; Bello Soto, Y.; Rosales Perdomo, K.; Montero Espinosa, C.; Vargas, M.; Estrada Garcia, M.P. A chemical conjugate of the tick P0 peptide is efficacious against Amblyomma mixtum. Transbound. Emerg. Dis. 2020, 67, 175–177. [Google Scholar] [CrossRef]
- Evora, P.M.; Sanches, G.S.; Guerrero, F.D.; Leon, A.P.; Bechara, G.H. Immunogenic potential of Rhipicephalus (Boophilus) microplus aquaporin 1 against Rhipicephalus sanguineus in domestic dogs. Rev. Bras. Parasitol. Vet. 2017, 26, 60–66. [Google Scholar] [CrossRef] [Green Version]
- Perez-Sanchez, R.; Manzano-Roman, R.; Obolo-Mvoulouga, P.; Oleaga, A. Function-guided selection of midgut antigens from Ornithodoros erraticus ticks and an evaluation of their protective efficacy in rabbits. Vet. Parasitol. 2019, 272, 1–12. [Google Scholar] [CrossRef]
- Githaka, N.W.; Konnai, S.; Isezaki, M.; Goto, S.; Xavier, M.A.; Fujisawa, S.; Yamada, S.; Okagawa, T.; Maekawa, N.; Logullo, C.; et al. Identification and functional analysis of ferritin 2 from the Taiga tick Ixodes persulcatus Schulze. Ticks Tick Borne Dis. 2020, 11, 101547. [Google Scholar] [CrossRef]
- Parizi, L.F.; Rangel, C.K.; Sabadin, G.A.; Saggin, B.F.; Kiio, I.; Xavier, M.A.; da Silva Matos, R.; Camargo-Mathias, M.I.; Seixas, A.; Konnai, S.; et al. Rhipicephalus microplus cystatin as a potential cross-protective tick vaccine against Rhipicephalus appendiculatus. Ticks Tick Borne Dis. 2020, 11, 101378. [Google Scholar] [CrossRef]
- Perez-Sanchez, R.; Manzano-Roman, R.; Obolo-Mvoulouga, P.; Oleaga, A. In silico selection of functionally important proteins from the mialome of Ornithodoros erraticus ticks and assessment of their protective efficacy as vaccine targets. Parasites Vectors 2019, 12, 508. [Google Scholar] [CrossRef] [Green Version]
- Obolo-Mvoulouga, P.; Oleaga, A.; Manzano-Roman, R.; Perez-Sanchez, R. Evaluation of the protective efficacy of Ornithodoros moubata midgut membrane antigens selected using omics and in silico prediction algorithms. Ticks Tick Borne Dis. 2018, 9, 1158–1172. [Google Scholar] [CrossRef] [PubMed]
- de Vos, S.; Zeinstra, L.; Taoufik, O.; Willadsen, P.; Jongejan, F. Evidence for the utility of the Bm86 antigen from Boophilus microplus in vaccination against other tick species. Exp. Appl. Acarol. 2001, 25, 245–261. [Google Scholar] [CrossRef] [PubMed]
- Kumar, B.; Azhahianambi, P.; Ray, D.D.; Chaudhuri, P.; De La Fuente, J.; Kumar, R.; Ghosh, S. Comparative efficacy of rHaa86 and rBm86 against Hyalomma anatolicum anatolicum and Rhipicephalus (Boophilus) microplus. Parasite Immunol. 2012, 34, 297–301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galai, Y.; Canales, M.; Ben Said, M.; Gharbi, M.; Mhadhbi, M.; Jedidi, M.; de La Fuente, J.; Darghouth, M.A. Efficacy of Hyalomma scupense (Hd86) antigen against Hyalomma excavatum and H. scupense tick infestations in cattle. Vaccine 2012, 30, 7084–7089. [Google Scholar] [CrossRef] [PubMed]
- Ben Said, M.; Galai, Y.; Mhadhbi, M.; Jedidi, M.; de la Fuente, J.; Darghouth, M.A. Molecular characterization of Bm86 gene orthologs from Hyalomma excavatum, Hyalomma dromedarii and Hyalomma marginatum marginatum and comparison with a vaccine candidate from Hyalomma scupense. Vet. Parasitol. 2012, 190, 230–240. [Google Scholar] [CrossRef] [PubMed]
- De La Fuente, J.; Rodríguez, M.; García-García, J.C. Immunological control of ticks through vaccination with Boophilus microplus gut antigens. Ann. N. Y. Acad. Sci. 2000, 916, 617–621. [Google Scholar] [CrossRef] [PubMed]
- Ben Said, M.; Galai, Y.; Ben Ahmed, M.; Gharbi, M.; de la Fuente, J.; Jedidi, M.; Darghouth, M.A. Hd86 mRNA expression profile in Hyalomma scupense life stages, could it contribute to explain anti-tick vaccine effect discrepancy between adult and immature instars? Vet. Parasitol. 2013, 198, 258–263. [Google Scholar] [CrossRef] [PubMed]
- Popara, M.; Villar, M.; Mateos-Hernandez, L.; de Mera, I.G.; Marina, A.; del Valle, M.; Almazan, C.; Domingos, A.; de la Fuente, J. Lesser protein degradation machinery correlates with higher BM86 tick vaccine efficacy in Rhipicephalus annulatus when compared to Rhipicephalus microplus. Vaccine 2013, 31, 4728–4735. [Google Scholar] [CrossRef]
- Miller, R.; Estrada-Pena, A.; Almazan, C.; Allen, A.; Jory, L.; Yeater, K.; Messenger, M.; Ellis, D.; Perez de Leon, A.A. Exploring the use of an anti-tick vaccine as a tool for the integrated eradication of the cattle fever tick, Rhipicephalus (Boophilus) annulatus. Vaccine 2012, 30, 5682–5687. [Google Scholar] [CrossRef]
- Arocho Rosario, C.M.; Miller, R.J.; Klafke, G.M.; Coates, C.; Grant, W.E.; Samenuk, G.; Yeater, K.; Tidwell, J.; Bach, S.; Perez de Leon, A.A.; et al. Interaction between anti-tick vaccine and a macrocyclic lactone improves acaricidal efficacy against Rhipicephalus (Boophilus) microplus (Canestrini) (Acari: Ixodidae) in experimentally infested cattle. Vaccine 2022, 40, 6795–6801. [Google Scholar] [CrossRef]
- de la Fuente, J.; Maritz-Olivier, C.; Naranjo, V.; Ayoubi, P.; Nijhof, A.M.; Almazan, C.; Canales, M.; Perez de la Lastra, J.M.; Galindo, R.C.; Blouin, E.F.; et al. Evidence of the role of tick subolesin in gene expression. BMC Genom. 2008, 9, 372. [Google Scholar] [CrossRef] [Green Version]
- Goto, A.; Matsushita, K.; Gesellchen, V.; El Chamy, L.; Kuttenkeuler, D.; Takeuchi, O.; Hoffmann, J.A.; Akira, S.; Boutros, M.; Reichhart, J.M. Akirins are highly conserved nuclear proteins required for NF-kappaB-dependent gene expression in drosophila and mice. Nat. Immunol. 2008, 9, 97–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galindo, R.C.; Doncel-Perez, E.; Zivkovic, Z.; Naranjo, V.; Gortazar, C.; Mangold, A.J.; Martin-Hernando, M.P.; Kocan, K.M.; de la Fuente, J. Tick subolesin is an ortholog of the akirins described in insects and vertebrates. Dev. Comp. Immunol. 2009, 33, 612–617. [Google Scholar] [CrossRef] [PubMed]
- Nowak, S.J.; Aihara, H.; Gonzalez, K.; Nibu, Y.; Baylies, M.K. Akirin links twist-regulated transcription with the Brahma chromatin remodeling complex during embryogenesis. PLoS Genet. 2012, 8, e1002547. [Google Scholar] [CrossRef] [Green Version]
- Carreon, D.; de la Lastra, J.M.; Almazan, C.; Canales, M.; Ruiz-Fons, F.; Boadella, M.; Moreno-Cid, J.A.; Villar, M.; Gortazar, C.; Reglero, M.; et al. Vaccination with BM86, subolesin and akirin protective antigens for the control of tick infestations in white tailed deer and red deer. Vaccine 2012, 30, 273–279. [Google Scholar] [CrossRef] [PubMed]
- Contreras, M.; San Jose, C.; Estrada-Pena, A.; Talavera, V.; Rayas, E.; Isabel Leon, C.; Luis Nunez, J.; Garcia Fernandez de Mera, I.; de la Fuente, J. Control of tick infestations in wild roe deer (Capreolus capreolus) vaccinated with the Q38 Subolesin/Akirin chimera. Vaccine 2020, 38, 6450–6454. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Cid, J.A.; Perez de la Lastra, J.M.; Villar, M.; Jimenez, M.; Pinal, R.; Estrada-Pena, A.; Molina, R.; Lucientes, J.; Gortazar, C.; de la Fuente, J.; et al. Control of multiple arthropod vector infestations with subolesin/akirin vaccines. Vaccine 2013, 31, 1187–1196. [Google Scholar] [CrossRef]
- Contreras, M.; de la Fuente, J. Control of Ixodes ricinus and Dermacentor reticulatus tick infestations in rabbits vaccinated with the Q38 Subolesin/Akirin chimera. Vaccine 2016, 34, 3010–3013. [Google Scholar] [CrossRef]
- Manzano-Roman, R.; Encinas-Grandes, A.; Perez-Sanchez, R. Antigens from the midgut membranes of Ornithodoros erraticus induce lethal anti-tick immune responses in pigs and mice. Vet. Parasitol. 2006, 135, 65–79. [Google Scholar] [CrossRef]
- Atanasova, M.; Dimitrov, I.; Doytchinov, I. T-cell epitope prediction by sequence-based methods and molecular docking of proteins from Boophilus microplus. Pharmacia 2017, 64, 3. [Google Scholar]
- Contreras, M.; Kasaija, P.D.; Kabi, F.; Mugerwa, S.; De la Fuente, J. The Correlation between Subolesin-Reactive Epitopes and Vaccine Efficacy. Vaccines 2022, 10, 1327. [Google Scholar] [CrossRef] [PubMed]
- Lagunes, R.; Dominguez-Garcia, D.; Quiroz, H.; Martinez-Velazquez, M.; Rosario-Cruz, R. Potential effects on Rhipicephalus microplus tick larvae fed on calves immunized with a Subolesin peptide predicted by epitope analysis. Trop. Biomed. 2016, 33, 726–738. [Google Scholar] [PubMed]
- Lagunes-Quintanilla, R.; de la Cruz-Hernandez, N.I.; Ramirez-Guillen, P.N.; Merino-Charrez, J.O. Decrease in the cattle tick Rhipicephalus microplus biological parameters using anti-subolesin peptide antibodies by artificial capillary feeding. Trop. Biomed. 2018, 35, 492–500. [Google Scholar] [PubMed]
- Mendoza-Martinez, N.; Alonso-Diaz, M.A.; Merino, O.; Fernandez-Salas, A.; Lagunes-Quintanilla, R. Protective efficacy of the peptide Subolesin antigen against the cattle tick Rhipicephalus microplus under natural infestation. Vet. Parasitol. 2021, 299, 109577. [Google Scholar] [CrossRef]
- Agianian, B.; Tucker, P.A.; Schouten, A.; Leonard, K.; Bullard, B.; Gros, P. Structure of a Drosophila sigma class glutathione S-transferase reveals a novel active site topography suited for lipid peroxidation products. J. Mol. Biol. 2003, 326, 151–165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parizi, L.F.; Reck, J., Jr.; Oldiges, D.P.; Guizzo, M.G.; Seixas, A.; Logullo, C.; de Oliveira, P.L.; Termignoni, C.; Martins, J.R.; Vaz Ida, S., Jr. Multi-antigenic vaccine against the cattle tick Rhipicephalus (Boophilus) microplus: A field evaluation. Vaccine 2012, 30, 6912–6917. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Mallon, A.; Fernandez, E.; Encinosa, P.E.; Bello, Y.; Mendez-Perez, L.; Ruiz, L.C.; Perez, D.; Gonzalez, M.; Garay, H.; Reyes, O.; et al. A novel tick antigen shows high vaccine efficacy against the dog tick, Rhipicephalus sanguineus. Vaccine 2012, 30, 1782–1789. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez Mallon, A.; Javier Gonzalez, L.; Encinosa Guzman, P.E.; Bechara, G.H.; Sanches, G.S.; Pousa, S.; Cabrera, G.; Cabrales, A.; Garay, H.; Mejias, R.; et al. Functional and mass spectrometric evaluation of an anti-tick antigen based on the P0 peptide conjugated to Bm86 protein. Pathogens 2020, 9, 513. [Google Scholar] [CrossRef]
- Terkawi, M.A.; Jia, H.; Gabriel, A.; Goo, Y.K.; Nishikawa, Y.; Yokoyama, N.; Igarashi, I.; Fujisaki, K.; Xuan, X. A shared antigen among Babesia species: Ribosomal phosphoprotein P0 as a universal babesial vaccine candidate. Parasitol. Res. 2007, 102, 35–40. [Google Scholar] [CrossRef]
- Contreras, M.; Villar, M.; de la Fuente, J. A Vaccinomics approach for the identification of tick protective antigens for the control of Ixodes ricinus and Dermacentor reticulatus infestations in companion animals. Front. Physiol. 2019, 10, 977. [Google Scholar] [CrossRef] [Green Version]
- Neelakanta, G.; Sultana, H. Transmission-Blocking Vaccines: Focus on Anti-Vector Vaccines against Tick-Borne Diseases. Arch. Immunol. Ther. Exp. 2015, 63, 169–179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rego, R.O.M.; Trentelman, J.J.A.; Anguita, J.; Nijhof, A.M.; Sprong, H.; Klempa, B.; Hajdusek, O.; Tomas-Cortazar, J.; Azagi, T.; Strnad, M.; et al. Counterattacking the tick bite: Towards a rational design of anti-tick vaccines targeting pathogen transmission. Parasites Vectors 2019, 12, 229. [Google Scholar] [CrossRef]
- Narasimhan, S.; Schuijt, T.J.; Abraham, N.M.; Rajeevan, N.; Coumou, J.; Graham, M.; Robson, A.; Wu, M.J.; Daffre, S.; Hovius, J.W.; et al. Modulation of the tick gut milieu by a secreted tick protein favors Borrelia burgdorferi colonization. Nat. Commun. 2017, 8, 184. [Google Scholar] [CrossRef] [Green Version]
- Trimnell, A.R.; Davies, G.M.; Lissina, O.; Hails, R.S.; Nuttall, P.A. A cross-reactive tick cement antigen is a candidate broad-spectrum tick vaccine. Vaccine 2005, 23, 4329–4341. [Google Scholar] [CrossRef] [PubMed]
- Labuda, M.; Trimnell, A.R.; Lickova, M.; Kazimirova, M.; Davies, G.M.; Lissina, O.; Hails, R.S.; Nuttall, P.A. An antivector vaccine protects against a lethal vector-borne pathogen. PLoS Pathog. 2006, 2, e27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abraham, N.M.; Liu, L.; Jutras, B.L.; Yadav, A.K.; Narasimhan, S.; Gopalakrishnan, V.; Ansari, J.M.; Jefferson, K.K.; Cava, F.; Jacobs-Wagner, C.; et al. Pathogen-mediated manipulation of arthropod microbiota to promote infection. Proc. Natl. Acad. Sci. USA 2017, 114, E781–E790. [Google Scholar] [CrossRef] [Green Version]
- Koci, J.; Bista, S.; Chirania, P.; Yang, X.; Kitsou, C.; Rana, V.S.; Yas, O.B.; Sonenshine, D.E.; Pal, U. Antibodies against EGF-like domains in Ixodes scapularis BM86 orthologs impact tick feeding and survival of Borrelia burgdorferi. Sci. Rep. 2021, 11, 6095. [Google Scholar] [CrossRef]
- Almazan, C.; Moreno-Cantu, O.; Moreno-Cid, J.A.; Galindo, R.C.; Canales, M.; Villar, M.; de la Fuente, J. Control of tick infestations in cattle vaccinated with bacterial membranes containing surface-exposed tick protective antigens. Vaccine 2012, 30, 265–272. [Google Scholar] [CrossRef]
- Torina, A.; Moreno-Cid, J.A.; Blanda, V.; Fernandez de Mera, I.G.; de la Lastra, J.M.; Scimeca, S.; Blanda, M.; Scariano, M.E.; Brigano, S.; Disclafani, R.; et al. Control of tick infestations and pathogen prevalence in cattle and sheep farms vaccinated with the recombinant Subolesin-Major Surface Protein 1a chimeric antigen. Parasites Vectors 2014, 7, 10. [Google Scholar] [CrossRef] [Green Version]
- de la Fuente, J.; Moreno-Cid, J.A.; Galindo, R.C.; Almazan, C.; Kocan, K.M.; Merino, O.; Perez de la Lastra, J.M.; Estrada-Pena, A.; Blouin, E.F. Subolesin/Akirin vaccines for the control of arthropod vectors and vectorborne pathogens. Transbound. Emerg. Dis. 2013, 60, 172–178. [Google Scholar] [CrossRef]
- Olds, C.L.; Mwaura, S.; Odongo, D.O.; Scoles, G.A.; Bishop, R.; Daubenberger, C. Induction of humoral immune response to multiple recombinant Rhipicephalus appendiculatus antigens and their effect on tick feeding success and pathogen transmission. Parasites Vectors 2016, 9, 484. [Google Scholar] [CrossRef] [Green Version]
- Contreras, M.; Alberdi, P.; Fernandez De Mera, I.G.; Krull, C.; Nijhof, A.; Villar, M.; De La Fuente, J. Vaccinomics approach to the identification of candidate protective antigens for the control of tick vector infestations and Anaplasma phagocytophilum infection. Front. Cell Infect. Microbiol. 2017, 7, 360. [Google Scholar] [CrossRef] [Green Version]
- Oldiges, D.P.; Laughery, J.M.; Tagliari, N.J.; Leite Filho, R.V.; Davis, W.C.; da Silva Vaz Jr, I.; Termignoni, C.; Knowles, D.P.; Suarez, C.E. Transfected Babesia bovis expressing a tick GST as a live vector vaccine. PLoS Negl. Trop. Dis. 2016, 10, e0005152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shakya, M.; Kumar, B.; Nagar, G.; de la Fuente, J.; Ghosh, S. Subolesin: A candidate vaccine antigen for the control of cattle tick infestations in Indian situation. Vaccine 2014, 32, 3488–3494. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Ahmad, S.; de Albuquerque, P.M.M.; Kamil, A.; Alshammari, F.A.; Alouffi, A.; da Silva Vaz, I., Jr. Prediction of Novel Drug Targets and Vaccine Candidates against Human Lice (Insecta), Acari (Arachnida), and Their Associated Pathogens. Vaccines 2021, 10, 8. [Google Scholar] [CrossRef] [PubMed]
- Cunha, R.C.; Andreotti, R.; Garcia, M.V.; Aguirre Ade, A.; Leitão, A. Calculation of the efficacy of vaccines against tick infestations on cattle. Rev. Bras. Parasitol. Vet. 2013, 22, 571–578. [Google Scholar] [CrossRef] [Green Version]
- Aguirre Ade, A.; Lobo, F.P.; Cunha, R.C.; Garcia, M.V.; Andreotti, R. Design of the ATAQ peptide and its evaluation as an immunogen to develop a Rhipicephalus vaccine. Vet. Parasitol. 2016, 221, 30–38. [Google Scholar] [CrossRef]
- Hue, T.; Petermann, J.; Bonnefond, R.; Mermoud, I.; Rantoen, D.; Vuocolo, T. Experimental efficacy of a vaccine against Rhipicephalus australis. Exp. Appl. Acarol. 2017, 73, 245–256. [Google Scholar] [CrossRef]
- Martins, T.F.; Barbieri, A.R.; Costa, F.B.; Terassini, F.A.; Camargo, L.M.; Peterka, C.R.; de Pacheco, C.R.; Dias, R.A.; Nunes, P.H.; Marcili, A.; et al. Geographical distribution of Amblyomma cajennense (sensu lato) ticks (Parasitiformes: Ixodidae) in Brazil, with description of the nymph of A. cajennense (sensu stricto). Parasites Vectors 2016, 9, 186. [Google Scholar] [CrossRef] [Green Version]
- Coimbra-Dores, M.J.; Nunes, T.; Dias, D.; Rosa, F. Rhipicephalus sanguineus (Acari: Ixodidae) species complex: Morphometric and ultrastructural analyses. Exp. Appl. Acarol. 2016, 70, 455–468. [Google Scholar] [CrossRef]
- Ali, A.; Parizi, L.F.; Ferreira, B.R.; da Silva Vaz, I. A revision of two distinct species of Rhipicephalus: R. microplus and R. australis. Cienc. Rural. 2017, 46, 1240–1248. [Google Scholar] [CrossRef] [Green Version]
- Costa, G.C.A.; Ribeiro, I.C.T.; Melo-Junior, O.; Gontijo, N.F.; Sant’Anna, M.R.V.; Pereira, M.H.; Pessoa, G.C.D.; Koerich, L.B.; Oliveira, F.; Valenzuela, J.G.; et al. Amblyomma sculptum Salivary Protease Inhibitors as Potential Anti-Tick Vaccines. Front. Immunol. 2020, 11, 611104. [Google Scholar] [CrossRef]
- Garcia-Garcia, J.C.; Gonzalez, I.L.; Gonzalez, D.M.; Valdes, M.; Mendez, L.; Lamberti, J.; D’Agostino, B.; Citroni, D.; Fragoso, H.; Ortiz, M.; et al. Sequence variations in the Boophilus microplus Bm86 locus and implications for immunoprotection in cattle vaccinated with this antigen. Exp. Appl. Acarol. 1999, 23, 883–895. [Google Scholar] [CrossRef] [PubMed]
- Estrada-Pena, A.; Mallon, A.R.; Bermudez, S.; de la Fuente, J.; Domingos, A.; Garcia, M.P.E.; Labruna, M.B.; Merino, O.; Mosqueda, J.; Nava, S.; et al. One Health Approach to Identify Research Needs on Rhipicephalus microplus Ticks in the Americas. Pathogens 2022, 11, 1180. [Google Scholar] [CrossRef]
- de la Fuente, J.; Almazan, C.; Blas-Machado, U.; Naranjo, V.; Mangold, A.J.; Blouin, E.F.; Gortazar, C.; Kocan, K.M. The tick protective antigen, 4D8, is a conserved protein involved in modulation of tick blood ingestion and reproduction. Vaccine 2006, 24, 4082–4095. [Google Scholar] [CrossRef] [PubMed]
- Zeb, I.; Almutairi, M.M.; Aloufi, A.; Islam, N.; Parizi, L.F.; Safi, S.Z.; Tanaka, T.; da Silva Vaz, I.; Ali, A. Low genetic polymorphism in the immunogenic sequences of Rhipicephalus microplus clade C. Vaccines 2022, 10, 1909. [Google Scholar] [CrossRef]
- Parthasarathi, B.C.; Kumar, B.; Ghosh, S. Current status and future prospects of multi-antigen tick vaccine. J. Vector Borne Dis. 2021, 58, 183–192. [Google Scholar]
- Tirloni, L.; Reck, J.; Terra, R.M.; Martins, J.R.; Mulenga, A.; Sherman, N.E.; Fox, J.W.; Yates, J.R., 3rd; Termignoni, C.; Pinto, A.F.; et al. Proteomic analysis of cattle tick Rhipicephalus (Boophilus) microplus saliva: A comparison between partially and fully engorged females. PLoS ONE 2014, 9, e94831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tirloni, L.; Islam, M.S.; Kim, T.K.; Diedrich, J.K.; Yates, J.R., 3rd; Pinto, A.F.; Mulenga, A.; You, M.J.; Da Silva Vaz, I., Jr. Saliva from nymph and adult females of Haemaphysalis longicornis: A proteomic study. Parasites Vectors 2015, 8, 338. [Google Scholar] [CrossRef] [Green Version]
- Kim, T.K.; Tirloni, L.; Pinto, A.F.; Moresco, J.; Yates, J.R., 3rd; da Silva Vaz, I., Jr.; Mulenga, A. Ixodes scapularis Tick Saliva Proteins Sequentially Secreted Every 24 h during Blood Feeding. PLoS Negl. Trop. Dis. 2016, 10, e0004323. [Google Scholar] [CrossRef] [Green Version]
- Tirloni, L.; Kim, T.K.; Pinto, A.F.M.; Yates, J.R., 3rd; da Silva Vaz, I., Jr.; Mulenga, A. Tick-Host Range Adaptation: Changes in Protein Profiles in Unfed Adult Ixodes scapularis and Amblyomma americanum Saliva Stimulated to Feed on Different Hosts. Front. Cell Infect. Microbiol. 2017, 7, 517. [Google Scholar] [CrossRef] [Green Version]
- Contreras, M.; Kasaija, P.D.; Merino, O.; de la Cruz-Hernandez, N.I.; Gortazar, C.; de la Fuente, J. Oral vaccination with a formulation combining Rhipicephalus microplus subolesin with heat inactivated Mycobacterium bovis reduces tick infestations in cattle. Front. Cell Infect. Microbiol. 2019, 9, 45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ndekezi, C.; Nkamwesiga, J.; Ochwo, S.; Kimuda, M.P.; Mwiine, F.N.; Tweyongyere, R.; Amanyire, W.; Muhanguzi, D. Identification of Ixodid tick-specific aquaporin-1 potential anti-tick vaccine epitopes: An in-silico analysis. Front. Bioeng. Biotechnol. 2019, 7, 236. [Google Scholar] [CrossRef] [PubMed]
- Ndawula, C., Jr.; Amaral Xavier, M.; Villavicencio, B.; Cortez Lopes, F.; Juliano, M.A.; Parizi, L.F.; Verli, H.; da Silva Vaz, I., Jr.; Ligabue-Braun, R. Prediction, mapping and validation of tick glutathione S-transferase B-cell epitopes. Ticks Tick Borne Dis. 2020, 11, 101445. [Google Scholar] [CrossRef]
- Couto, J.; Seixas, G.; Stutzer, C.; Olivier, N.A.; Maritz-Olivier, C.; Antunes, S.; Domingos, A. Probing the Rhipicephalus bursa sialomes in potential anti-tick vaccine candidates: A reverse vaccinology approach. Biomedicines 2021, 9, 363. [Google Scholar] [CrossRef] [PubMed]
- de la Fuente, J.; Kopacek, P.; Lew-Tabor, A.; Maritz-Olivier, C. Strategies for new and improved vaccines against ticks and tick-borne diseases. Parasite Immunol. 2016, 38, 754–769. [Google Scholar] [CrossRef] [Green Version]
- Bonam, S.R.; Partidos, C.D.; Halmuthur, S.K.M.; Muller, S. An overview of novel adjuvants designed for improving vaccine efficacy. Trends Pharmacol. Sci. 2017, 38, 771–793. [Google Scholar] [CrossRef]
- Pan, Y.; Qi, Y.; Shao, N.; Tadle, A.C.; Huang, Y. Amino-modified polymer nanoparticles as adjuvants to activate the complement system and to improve vaccine efficacy in vivo. Biomacromolecules 2019, 20, 3575–3583. [Google Scholar] [CrossRef]
- Petermann, J.; Bonnefond, R.; Mermoud, I.; Rantoen, D.; Meynard, L.; Munro, C.; Lua, L.H.L.; Hue, T. Evaluation of three adjuvants with respect to both adverse effects and the efficacy of antibody production to the Bm86 protein. Exp. Appl. Acarol. 2017, 72, 303–315. [Google Scholar] [CrossRef]
- Mody, K.T.; Zhang, B.; Li, X.; Fletcher, N.L.; Akhter, D.T.; Jarrett, S.; Zhang, J.; Yu, C.; Thurecht, K.J.; Mahony, T.J.; et al. Characterization of the biodistribution of a silica vesicle nanovaccine carrying a Rhipicephalus (Boophilus) microplus protective antigen with in vivo live animal imaging. Front. Bioeng. Biotechnol. 2020, 8, 606652. [Google Scholar] [CrossRef]
- VanBlargan, L.A.; Himansu, S.; Foreman, B.M.; Ebel, G.D.; Pierson, T.C.; Diamond, M.S. An mRNA vaccine protects mice against multiple tick-transmitted flavivirus infections. Cell. Rep. 2018, 25, 3382–3392.e3. [Google Scholar] [CrossRef] [Green Version]
- Sajid, A.; Matias, J.; Arora, G.; Kurokawa, C.; DePonte, K.; Tang, X.; Lynn, G.; Wu, M.J.; Pal, U.; Strank, N.O.; et al. mRNA vaccination induces tick resistance and prevents transmission of the Lyme disease agent. Sci. Transl. Med. 2021, 13, eabj9827. [Google Scholar] [CrossRef]
- Shahrear, S.; Islam, A. Immunoinformatics guided modeling of CCHF_GN728, an mRNA-based universal vaccine against Crimean-Congo hemorrhagic fever virus. Comput. Biol. Med. 2021, 140, 105098. [Google Scholar] [CrossRef] [PubMed]
- Bensaci, M.; Bhattacharya, D.; Clark, R.; Hu, L.T. Oral vaccination with vaccinia virus expressing the tick antigen subolesin inhibits tick feeding and transmission of Borrelia burgdorferi. Vaccine 2012, 30, 6040–6046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oldiges, D.P.; Parizi, L.F.; Zimmer, K.R.; Lorenzini, D.M.; Seixas, A.; Masuda, A.; da Silva Vaz Jr, I.; Termignoni, C. A Rhipicephalus (Boophilus) microplus cathepsin with dual peptidase and antimicrobial activity. Int. J. Parasitol. 2012, 42, 635–645. [Google Scholar] [CrossRef] [PubMed]
- Gardner, A.M.; Pawlikowski, N.C.; Hamer, S.A.; Hickling, G.J.; Miller, J.R.; Schotthoefer, A.M.; Tsao, J.I.; Allan, B.F. Landscape features predict the current and forecast the future geographic spread of Lyme disease. Proc. Biol. Sci. 2020, 287, 20202278. [Google Scholar] [CrossRef]
- Raghavan, R.K.; Barker, S.C.; Cobos, M.E.; Barker, D.; Teo, E.J.M.; Foley, D.H.; Nakao, R.; Lawrence, K.; Heath, A.C.G.; Peterson, A.T. Potential spatial distribution of the newly introduced long-horned tick, Haemaphysalis longicornis in North America. Sci. Rep. 2019, 9, 498. [Google Scholar] [CrossRef] [Green Version]
- Gomes, A.F.; Neves, L. Rhipicephalus microplus (Acarina, Ixodidae) in Angola: Evidence of its establishment and expansion. Exp. Appl. Acarol. 2018, 74, 117–122. [Google Scholar] [CrossRef]
- Nava, S.; Gamietea, I.J.; Morel, N.; Guglielmone, A.A.; Estrada-Pena, A. Assessment of habitat suitability for the cattle tick Rhipicephalus (Boophilus) microplus in temperate areas. Res. Vet. Sci. 2022, 150, 10–21. [Google Scholar] [CrossRef]
- Lew-Tabor, A.E.; Rodriguez Valle, M. A review of reverse vaccinology approaches for the development of vaccines against ticks and tick borne diseases. Ticks Tick Borne Dis. 2016, 7, 573–585. [Google Scholar] [CrossRef]
- Porretta, D.; Mastrantonio, V.; Amendolia, S.; Gaiarsa, S.; Epis, S.; Genchi, C.; Bandi, C.; Otranto, D.; Urbanelli, S. Effects of global changes on the climatic niche of the tick Ixodes ricinus inferred by species distribution modelling. Parasites Vectors 2013, 6, 271. [Google Scholar] [CrossRef] [Green Version]
- Teo, E.J.M.; Vial, M.N.; Hailu, S.; Kelava, S.; Zalucki, M.P.; Furlong, M.J.; Barker, D.; Barker, S.C. Climatic requirements of the eastern paralysis tick, Ixodes holocyclus, with a consideration of its possible geographic range up to Int. J. Parasitol. 2021, 51, 241–249. [Google Scholar]
- Cortinas, M.R.; Kitron, U. County-level surveillance of white-tailed deer infestation by Ixodes scapularis and Dermacentor albipictus (Acari: Ixodidae) along the Illinois River. J. Med. Entomol. 2006, 43, 810–819. [Google Scholar] [CrossRef] [PubMed]
- Ogden, N.H.; Lindsay, L.R.; Hanincova, K.; Barker, I.K.; Bigras-Poulin, M.; Charron, D.F.; Heagy, A.; Francis, C.M.; O’Callaghan, C.J.; Schwartz, I.; et al. Role of migratory birds in introduction and range expansion of Ixodes scapularis ticks and of Borrelia burgdorferi and Anaplasma phagocytophilum in Canada. Appl. Environ. Microbiol. 2008, 74, 1780–1790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tagwireyi, P.; Ndebele, M.; Chikurunhe, W. Climate change diminishes the potential habitat of the bont tick (Amblyomma hebraeum): Evidence from Mashonaland Central Province, Zimbabwe. Parasites Vectors 2022, 15, 237. [Google Scholar] [CrossRef]
- Gray, J.; Kahl, O.; Zintl, A. What do we still need to know about Ixodes ricinus? Ticks Tick Borne Dis. 2021, 12, 101682. [Google Scholar] [CrossRef]
- Zannou, O.M.; Da Re, D.; Ouedraogo, A.S.; Biguezoton, A.S.; Abatih, E.; Yao, K.P.; Farougou, S.; Lempereur, L.; Vanwambeke, S.O.; Saegerman, C. Modelling habitat suitability of the invasive tick Rhipicephalus microplus in West Africa. Transbound. Emerg. Dis. 2022, 69, 2938–2951. [Google Scholar] [CrossRef]
- Ouedraogo, A.S.; Zannou, O.M.; Biguezoton, A.S.; Kouassi, P.Y.; Belem, A.; Farougou, S.; Oosthuizen, M.; Saegerman, C.; Lempereur, L. Cattle ticks and associated tick-borne pathogens in Burkina Faso and Benin: Apparent northern spread of Rhipicephalus microplus in Benin and first evidence of Theileria velifera and Theileria annulata. Ticks Tick Borne Dis. 2021, 12, 101733. [Google Scholar] [CrossRef]
- Nyangiwe, N.; Harrison, A.; Horak, I.G. Displacement of Rhipicephalus decoloratus by Rhipicephalus microplus (Acari: Ixodidae) in the Eastern Cape Province, South Africa. Exp. Appl. Acarol. 2013, 61, 371–382. [Google Scholar] [CrossRef] [Green Version]
- Estrada-Pena, A.; Carreon, D.; Almazan, C.; de la Fuente, J. Modeling the impact of climate and landscape on the efficacy of white tailed deer vaccination for cattle tick control in northeastern Mexico. PLoS ONE 2014, 9, e102905. [Google Scholar] [CrossRef] [Green Version]
- Schetters, T.; Bishop, R.; Crampton, M.; Kopacek, P.; Lew-Tabor, A.; Maritz-Olivier, C.; Miller, R.; Mosqueda, J.; Patarroyo, J.; Rodriguez-Valle, M.; et al. Cattle tick vaccine researchers join forces in CATVAC. Parasites Vectors 2016, 9, 105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marr, E.J.; Sargison, N.D.; Nisbet, A.J.; Burgess, S.T. RNA interference for the identification of ectoparasite vaccine candidates. Parasite Immunol. 2014, 36, 616–626. [Google Scholar] [CrossRef]
- Ranjbar, M.M.; Gupta, S.K.; Ghorban, K.; Nabian, S.; Sazmand, A.; Taheri, M.; Esfandyari, S.; Taheri, M. Designing and modeling of complex DNA vaccine based on tropomyosin protein of Boophilus genus tick. Appl. Biochem. Biotechnol. 2015, 175, 323–339. [Google Scholar] [CrossRef] [PubMed]
- van Zyl, W.A.; Stutzer, C.; Olivier, N.A.; Maritz-Olivier, C. Comparative microarray analyses of adult female midgut tissues from feeding Rhipicephalus species. Ticks Tick Borne Dis. 2015, 6, 84–90. [Google Scholar] [CrossRef] [Green Version]
- Kules, J.; Horvatic, A.; Guillemin, N.; Galan, A.; Mrljak, V.; Bhide, M. New approaches and omics tools for mining of vaccine candidates against vector-borne diseases. Mol. Biosyst. 2016, 12, 2680–2694. [Google Scholar] [CrossRef]
- Maritz-Olivier, C.; van Zyl, W.; Stutzer, C. A systematic, functional genomics, and reverse vaccinology approach to the identification of vaccine candidates in the cattle tick, Rhipicephalus microplus. Ticks Tick Borne Dis. 2012, 3, 179–187. [Google Scholar] [CrossRef] [PubMed]
- Blecha, I.M.Z.; Csordas, B.G.; Aguirre, A.A.R.; Cunha, R.C.; Garcia, M.V.; Andreotti, R. Analysis of Bm86 conserved epitopes: Is a global vaccine against Cattle Tick Rhipicephalus microplus possible? Rev. Bras. Parasitol. Vet. 2018, 27, 267–279. [Google Scholar] [CrossRef]
- Martinez-Arzate, S.G.; Tenorio-Borroto, E.; Barbabosa Pliego, A.; Diaz-Albiter, H.M.; Vazquez-Chagoyan, J.C.; Gonzalez-Diaz, H. PTML model for proteome mining of B-Cell epitopes and theoretical-experimental study of Bm86 protein sequences from Colima, Mexico. J. Proteome Res. 2017, 16, 4093–4103. [Google Scholar] [CrossRef]
- Cunha, R.C.; Saimo-Kahwa, M.; Valério Garcia, M.; Santos, F.D.S.; Samuel, E.; Ann, N.; Ikwap, K.; Julie Akwongo, C.; Leivas Leite, F.P.; Andreotti, R. RA92A recombinant protein as immunogen to protect cattle against tick challenge in Brazil and Uganda. Biosci. J. 2021, 37, e37068. [Google Scholar] [CrossRef]
- Sprong, H.; Trentelman, J.; Seemann, I.; Grubhoffer, L.; Rego, R.O.; Hajdusek, O.; Kopacek, P.; Sima, R.; Nijhof, A.M.; Anguita, J.; et al. ANTIDotE: Anti-tick vaccines to prevent tick-borne diseases in Europe. Parasites Vectors 2014, 7, 77. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Mallon, A.; Anadon, J.L.C.; Perez, A.A.L.; Bechara, G.H.; Machado, R.Z.; Cruz, R.L.; Domingos, A.; Tamayo Sosa, A.R. CYTED Network to develop an immunogen compatible with integrated management strategies for tick control in cattle. Vaccine 2018, 36, 6581–6586. [Google Scholar] [CrossRef] [PubMed]
Name | Target Tick Species | Cross-Protected Tick Species/Host | Vaccine Efficacy/Infestation Stage | References |
---|---|---|---|---|
Bm86 and orthologs | R. (B.) microplus | Hyalomma anatolicum anatolicum (Koch, 1844)/cattle | 36.5% (L) | [36] |
H. a. anatolicum | R. (B.) microplus/cattle | 26.8% (L); 25.1% (AF) | [36] | |
R. (B.) microplus | Hyalomma dromedarii (Koch, 1844)/cattle | 89% a, 98% a (L); 29% a, 36% a (AF) | [26] | |
R. (B.) microplus | H. dromedarii/camel | 26.7% a, 31.3% a 38.6% a (AF) | [26] | |
Subolesin and orthologs | Ornithodoros erraticus (Lucas, 1849) d | Ornithodoros moubata (Murray, 1877)/rabbit | ~40.0% (L, N, AF) | [37] |
O. moubatad | O. erraticus/rabbit | 50.3% (L, N, AF) | [37] | |
H. a. anatolicum | R. (B.) microplus/cattle | 54% (L) | [38] | |
Rhipicephalus appendiculatus (Neumann, 1901) | Amblyomma variegatum (Fabricius, 1794)/cattle b | 50% and 89% (L) | [39] | |
R. appendiculatus | Rhipicephalus (Boophilus) decoloratus (Koch, 1844)/cattle c | 51% (L) | [39] | |
A. variegatum | R. appendiculatus/cattle b | 86% and 83% (L) | [39] | |
A. variegatum | R. (B.) decoloratus/cattle c | 72% (L) | [39] | |
R. (B.) decoloratus | R. appendiculatus/cattle b | 66% and 89% (L) | [39] | |
R. (B.) decoloratus | A. variegatum/cattle b | 58% and 94% (L) | [39] | |
Rhipicephalus haemaphysaloides (Supino, 1897) | Haemaphysalis longicornis (Neumann, 1901) | 79.3% and 86.6% (AF) | [40] | |
R. (B.) decoloratus | R. appendiculatus/cattle | 99% (L, N, AF) | [41] | |
Calreticulin | H. a. anatolicum | R. (B.) microplus/cattle | 37.56% (L) | [38] |
CathL | H. a. anatolicum | R. (B.) microplus/cattle | 22.21% (L) | [38] |
GST | H. longicornis | R. appendiculatus/rabbit | 67% (AF) | [42] |
R. (B.) decoloratus/A. variegatum e | Rhipicephalus sanguineus s.l. (Latreille, 1806)/rabbit | 35% (AF) | [43] | |
P0 | R. sanguineus s.l./R. (B.) microplus d | R. (B.) microplus/cattle | 96% (L) | [44] |
R. sanguineus s.l./R. (B.) microplus d | Amblyomma mixtum (Koch, 1844)/rabbit | 54% (L) | [45] | |
Aquaporin | R. (B.) microplus | R. sanguineus s.l./dog | 7.2% (L); 4.5% (N) | [46] |
O. erraticus | O. moubata/rabbit | 9.3% (AF) | [47] | |
ABC transporter | O. erraticus | O. moubata/rabbit | 26.7% (AF); 15.4% (AM) | [47] |
Selenoprotein T | O. erraticus | O. moubata/rabbit | 18.6% (AM) | [47] |
Ferritin | Ixodes persulcatus (Schulze, 1930) | Ixodes ovatus (Neumann, 1899)/guinea pig | ~40% (AF) | [48] |
Cystatin | R. (B.) microplus | R. appendiculatus/rabbit | 11.5% (AF) | [49] |
Chitinase | O. erraticus | O. moubata/rabbit | 19.6% (AF) | [50] |
Secreted protein PK-4 | O. erraticus | O. moubata/rabbit | 8.1% (N, AM) | [50] |
OM03, OM85 and OM99 peptides | O. moubata | O. erraticus/rabbit | 20.7% to 66.1% (N, AF, AM) | [51] |
Geographic Region | Antigen | Target Tick Species | Target Tick Borne Disease | References |
---|---|---|---|---|
Africa and Asia | Bm86 and orthologs | R. (B.) microplus, H. a. anatolicum, H. dromedarii | B. burgdorferi | [26,36,53,87] |
Calreticulin and CathL | R. (B.) microplus, H. a.anatolicum | [38] | ||
Africa | Subolesin and orthologs | O. moubata, O. erraticus, R. (B.) microplus, H. a. anatolicum, A. variegatum, R. (B.) decoloratus, R. appendiculatus | [37,39,41] | |
ABC transporter | O. moubata, O. erraticus | [47] | ||
GST | R. appendiculatus, R. (B.) decoloratus, A. variegatum, Rhipicephalus sanguineus s.l. | B. bovis | [42,43,93] | |
Aquaporin | R. sanguineus s.l., O. moubata | [46,47] | ||
Selenoprotein T, Chitinase, Secreted protein PK-4, OM03, OM85 and OM99 peptides | O. moubata, O. erraticus | [47,50,51] | ||
Asia | Subolesin and orthologs | R. (B.) microplus, H. anatolicum, H. longicornis, R. haemaphysaloides | B. burgdorferi | [38,40,87] |
Ferritin | I. ovatus, I. persulcatus | [48] | ||
Americas | Subolesin and orthologs | R. (B.) microplus, R. (B.) annulatus | B. bigemina | [89] |
P0 | R. (B.) microplus, A. mixtum | [44,45] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parizi, L.F.; Githaka, N.W.; Logullo, C.; Zhou, J.; Onuma, M.; Termignoni, C.; da Silva Vaz, I., Jr. Universal Tick Vaccines: Candidates and Remaining Challenges. Animals 2023, 13, 2031. https://doi.org/10.3390/ani13122031
Parizi LF, Githaka NW, Logullo C, Zhou J, Onuma M, Termignoni C, da Silva Vaz I Jr. Universal Tick Vaccines: Candidates and Remaining Challenges. Animals. 2023; 13(12):2031. https://doi.org/10.3390/ani13122031
Chicago/Turabian StyleParizi, Luís Fernando, Naftaly Wang’ombe Githaka, Carlos Logullo, Jinlin Zhou, Misao Onuma, Carlos Termignoni, and Itabajara da Silva Vaz, Jr. 2023. "Universal Tick Vaccines: Candidates and Remaining Challenges" Animals 13, no. 12: 2031. https://doi.org/10.3390/ani13122031
APA StyleParizi, L. F., Githaka, N. W., Logullo, C., Zhou, J., Onuma, M., Termignoni, C., & da Silva Vaz, I., Jr. (2023). Universal Tick Vaccines: Candidates and Remaining Challenges. Animals, 13(12), 2031. https://doi.org/10.3390/ani13122031