Effects of Combinations of Toxin Binders with or without Natural Components on Broiler Breeders Exposed to Ochratoxin A
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics
2.2. Preparation of Ochratoxin A
2.3. Experimental Animal and Design
2.4. Laying Performance
2.5. Fertility and Hatchability
2.6. Egg Quality
2.7. Bone Mineralization
2.8. Relative Organ Weight
2.9. Blood Profile
2.10. OTA Accumulation in the Feed and Liver
2.11. Statistical Analysis
3. Results
3.1. Laying Performance
3.2. Fertility and Hatchability
3.3. Egg Quality
3.4. Bone Mineralization
3.5. Relative Organ Weight
3.6. Blood Profiles
3.7. OTA Accumulation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Amézqueta, S.; González-Peñas, E.; Murillo-Arbizu, M.; de Cerain, A.L. Ochratoxin A decontamination: A review. Food Control 2009, 20, 326–333. [Google Scholar] [CrossRef]
- El-Sayed, R.A.; Jebur, A.B.; Kang, W.; El-Esawi, M.A.; El-Demerdash, F.M. An overview on the major mycotoxins in food products: Characteristics, toxicity, and analysis. J. Future Foods 2022, 2, 91–102. [Google Scholar] [CrossRef]
- Raters, M.; Matissek, R. Thermal stability of aflatoxin B 1 and ochratoxin A. Mycotoxin Res. 2008, 24, 130–134. [Google Scholar] [CrossRef] [PubMed]
- Al Shap, N.F.; El-Sherbeny, E.M.E.; El Masry, D. The efficacy of metal nanocomposite (Fe3O4/CuO/ZnO) to ameliorate the toxic effects of ochratoxin in broilers. BMC Vet. Res. 2022, 18, 312. [Google Scholar] [CrossRef] [PubMed]
- Hassan, Z.U.; Khan, M.Z.; Khan, A.; Javed, I.; Hussain, Z. Effects of individual and combined administration of ochratoxin A and aflatoxin B1 in tissues and eggs of White Leghorn breeder hens. J. Sci. Food Agr. 2012, 92, 1540–1544. [Google Scholar] [CrossRef]
- Hameed, M.R.; Khan, M.Z.; Saleemi, M.K.; Khan, A.; Akhtar, M.; Hassan, Z.U.; Hussain, Z. Study of ochratoxin A (OTA)-induced oxidative stress markers in broiler chicks. Toxin. Rev. 2017, 36, 270–274. [Google Scholar] [CrossRef]
- Bhatti, S.A.; Khan, M.Z.; Saleemi, M.K.; Hassan, Z.U. Impact of dietary Trichosporon mycotoxinivorans on ochratoxin A induced immunotoxicity; in vivo study. Food Chem. Toxicol. 2019, 132, 110696. [Google Scholar] [CrossRef]
- Wang, W.; Zhai, S.; Xia, Y.; Wang, H.; Ruan, D.; Zhou, T.; Zhu, Y.; Zhang, H.; Zhang, M.; Ye, H.; et al. Ochratoxin A induces liver inflammation: Involvement of intestinal microbiota. Microbiome 2019, 7, 151. [Google Scholar] [CrossRef]
- Zahoor-ul-Hassan, K.M.; Khan, A.; Javed, I. Pathological responses of White Leghorn breeder hens kept on ochratoxin A contaminated feed. Pak. Vet. J. 2010, 30, 118–123. [Google Scholar]
- Iqbal, S.Z.; Nisar, S.; Asi, M.R.; Jinap, S. Natural incidence of aflatoxins, ochratoxin A and zearalenone in chicken meat and eggs. Food Control 2014, 43, 98–103. [Google Scholar] [CrossRef]
- Alharthi, A.S.; Al Sulaiman, A.R.; Aljumaah, R.S.; Alabdullatif, A.A.; Ferronato, G.; Alqhtani, A.H.; Al-Garadi, M.A.; Al-sornokh, H.; Abudabos, A.M. The efficacy of bentonite and zeolite in reducing aflatoxin B1 toxicity on production performance and intestinal and hepatic health of broiler chickens. Ital. J. Anim. Sci. 2022, 21, 1181–1189. [Google Scholar] [CrossRef]
- Nazarizadeh, H.; Pourreza, J. Evaluation of three mycotoxin binders to prevent the adverse effects of aflatoxin B1 in growing broilers. J. Appl. Anim. Res. 2019, 47, 135–139. [Google Scholar] [CrossRef] [Green Version]
- Nadziakiewicza, M.; Kehoe, S.; Micek, P. Physico-chemical properties of clay minerals and their use as a health promoting feed additive. Animals 2019, 9, 714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burchacka, E.; Łukaszewicz, M.; Kułażyński, M. Determination of mechanisms of action of active carbons as a feed additive. Bioorg. Chem. 2019, 93, 102804. [Google Scholar] [CrossRef] [PubMed]
- Bhatti, S.A.; Khan, M.Z.; Saleemi, M.K.; Hassan, Z.U. Combating immunotoxicity of aflatoxin B1 by dietary carbon supplementation in broiler chickens. Environ. Sci. Pollut. Res. 2021, 28, 49089–49101. [Google Scholar] [CrossRef]
- Abidin, Z.; Khatoon, A.; Numan, M. Mycotoxins in broilers: Pathological alterations induced by aflatoxins and ochratoxins, diagnosis and determination, treatment and control of mycotoxicosis. Worlds. Poult. Sci. J. 2011, 67, 485–496. [Google Scholar] [CrossRef]
- Manafi, M.; Hedayati, M.; Yari, M. Aflatoxicosis and herbal detoxification: The effectiveness of thyme essence on performance parameters and antibody titers of commercial broilers fed aflatoxin B1. Res. Zool. 2014, 4, 43–50. [Google Scholar]
- El Khoury, R.; Atoui, A.; Mathieu, F.; Kawtharani, H.; El Khoury, A.; Maroun, R.G.; El Khoury, A. Antifungal and antiochratoxigenic activities of essential oils and total phenolic extracts: A comparative study. Antioxidants 2017, 6, 44. [Google Scholar] [CrossRef] [Green Version]
- Adeogun, J.B.; Abu, O.A.; Ewuola, E.O. Effect of yeast beta-glucans on aflatoxin absorption in the gut of broiler chickens. Niger. J. Anim. Prod. 2021, 48, 198–208. [Google Scholar]
- Kudupoje, M.B.; Malathi, V.; Yiannikouris, A. Impact of a Natural Fusarial Multi-Mycotoxin Challenge on Broiler Chickens and Mitigation Properties Provided by a Yeast Cell Wall Extract and a Postbiotic Yeast Cell Wall-Based Blend. Toxins 2022, 14, 315. [Google Scholar] [CrossRef]
- Yang, X.J.; Li, W.L.; Feng, Y.; Yao, J.H. Effects of immune stress on growth performance, immunity, and cecal microflora in chickens. Poult. Sci. 2011, 90, 2740–2746. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, F.; Yang, D.; Tang, X.; Li, H.; Lv, X.; Lu, D.; Wang, H. Berberine in combination with yohimbine attenuates sepsis-induced neutrophil tissue infiltration and multiorgan dysfunction partly via IL-10-mediated inhibition of CCR2 expression in neutrophils. Int. Immunopharmacol. 2016, 35, 217–225. [Google Scholar] [CrossRef] [PubMed]
- Islam, Z.; Pestka, J.J. LPS priming potentiates and prolongs proinflammatory cytokine response to the trichothecene deoxynivalenol in the mouse. Toxicol. Appl. Pharmacol. 2006, 211, 53–63. [Google Scholar] [CrossRef]
- Ruan, D.; Wang, W.C.; Lin, C.X.; Fouad, A.M.; Chen, W.; Xia, W.G.; Wang, S.; Luo, X.; Zhang, W.H.; Yan, S.J.; et al. Effects of curcumin on performance, antioxidation, intestinal barrier and mitochondrial function in ducks fed corn contaminated with ochratoxin A. Animal 2019, 13, 42–52. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Eicher, S.D.; Applegate, T.J. Effects of increasing dietary concentrations of corn naturally contaminated with deoxynivalenol on broiler and turkey poult performance and response to lipopolysaccharide. Poult. Sci. 2011, 90, 2766–2774. [Google Scholar] [CrossRef]
- Zinzadze, C. Colorimetric methods for the determination of phosphorus. Ind. Eng. Chem. Anal. Ed. 1935, 7, 227–230. [Google Scholar] [CrossRef]
- Eid, Y.Z.; Hassan, R.A.; El-soud, S.A.; Eldebani, N. The Protective Role of Silymarin to Ameliorate the Adverse Effects of Ochratoxin-A in Laying Hens on Productive Performance, Blood Biochemistry, Hematological and Antioxidants Status. Braz. J. Poult. Sci. 2022, 24, eRBCA-2021. [Google Scholar] [CrossRef]
- Konrad, I.; Röschenthaler, R. Inhibition of phenylalanine tRNA synthetase from Bacillus subtilis by ochratoxin A. Febs Lett. 1977, 83, 341–347. [Google Scholar] [CrossRef] [Green Version]
- Miazzo, R.; Rosa, C.A.R.; Carvalho, E.D.Q.; Magnoli, C.; Chiacchiera, S.M.; Palacio, G.; Saenz, M.; Kikot, A.; Basaldella, E.; Dalcero, A. Efficacy of synthetic zeolite to reduce the toxicity of aflatoxin in broiler chicks. Poult. Sci. 2000, 79, 1–6. [Google Scholar] [CrossRef]
- Bhatti, S.A.; Khan, M.Z.; Hassan, Z.U.; Saleemi, M.K.; Saqib, M.; Khatoon, A.; Akhter, M. Comparative efficacy of Bentonite clay, activated charcoal and Trichosporon mycotoxinivorans in regulating the feed-to-tissue transfer of mycotoxins. J. Sci. Food Agric. 2018, 98, 884–890. [Google Scholar] [CrossRef]
- Saminathan, M.; Selamat, J.; Abbasi Pirouz, A.; Abdullah, N.; Zulkifli, I. Effects of nano-composite adsorbents on the growth performance, serum biochemistry, and organ weights of broilers fed with aflatoxin-contaminated feed. Toxins 2018, 10, 345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thanissery, R.; McReynolds, J.L.; Conner, D.E.; Macklin, K.S.; Curtis, P.A.; Fasina, Y.O. Evaluation of the efficacy of yeast extract in reducing intestinal Clostridium perfringens levels in broiler chickens. Poult. Sci. 2010, 89, 2380–2388. [Google Scholar] [CrossRef] [PubMed]
- Esper, R.H.; Gonçalez, E.; Marques, M.O.; Felicio, R.C.; Felicio, J.D. Potential of essential oils for protection of grains contaminated by aflatoxin produced by Aspergillus flavus. Front. Microbiol. 2014, 5, 269. [Google Scholar] [CrossRef] [PubMed]
- Teng, P.Y.; Kim, W.K. Roles of prebiotics in intestinal ecosystem of broilers. Front. Vet. Sci. 2018, 5, 245. [Google Scholar] [CrossRef] [Green Version]
- Nazarizadeh, H.; Mohammad Hosseini, S.; Pourreza, J. Effect of plant extracts derived from thyme and chamomile on the growth performance, gut morphology and immune system of broilers fed aflatoxin B1 and ochratoxin A contaminated diets. Ital. J. Anim. Sci. 2019, 18, 1073–1081. [Google Scholar] [CrossRef] [Green Version]
- Jia, R.; Ma, Q.; Fan, Y.; Ji, C.; Zhang, J.; Liu, T.; Zhao, L. The toxic effects of combined aflatoxins and zearalenone in naturally contaminated diets on laying performance, egg quality and mycotoxins residues in eggs of layers and the protective effect of Bacillus subtilis biodegradation product. Food Chem. Toxicol. 2016, 90, 142–150. [Google Scholar] [CrossRef] [PubMed]
- Zaghini, A.; Martelli, G.; Roncada, P.; Simioli, M.; Rizzi, L. Mannanoligosaccharides and aflatoxin B1 in feed for laying hens: Effects on egg quality, aflatoxins B1 and M1 residues in eggs, and aflatoxin B1 levels in liver. Poult. Sci. 2005, 84, 825–832. [Google Scholar] [CrossRef]
- Yildirim, E.; Yalcinkaya, I.; Kanbur, M.U.R.A.T.; Cinar, M.; Oruc, E. Effects of yeast glucomannan on performance, some biochemical parameters and pathological changes in experimental aflatoxicosis in broiler chickens. Rev. Med. Vet. 2011, 162, 413–420. [Google Scholar]
- Leung, E.K.Y. Parathyroid hormone. In Advances in Clinical Chemistry; Elsevier: Amsterdam, The Netherlands, 2021; Volume 101, pp. 41–93. [Google Scholar]
- Darmawan, A.; Ozturk, E. The Impact of Bentonite Feed Additives on Laying Hens Performance and Egg Quality: A Meta Analysis. Iran. J. Appl. Anim. Sci. 2022, 12, 647–653. [Google Scholar]
- Elliott, C.T.; Connolly, L.; Kolawole, O. Potential adverse effects on animal health and performance caused by the addition of mineral adsorbents to feeds to reduce mycotoxin exposure. Mycotoxin Res. 2020, 36, 115–126. [Google Scholar] [CrossRef] [Green Version]
- Kriseldi, R.; Johnson, J.A.; Walk, C.L.; Bedford, M.R.; Dozier III, W.A. Influence of exogenous phytase supplementation on phytate degradation, plasma inositol, alkaline phosphatase, and glucose concentrations of broilers at 28 days of age. Poult. Sci. 2021, 100, 224–234. [Google Scholar] [CrossRef] [PubMed]
- Lokaewmanee, K.; Yamauchi, K.E.; Komori, T.; Saito, K. Eggshell quality, eggshell structure and small intestinal histology in laying hens fed dietary Pantoea-6® and plant extracts. Ital. J. Anim. Sci. 2014, 13, 3163. [Google Scholar] [CrossRef]
- Miranda, L.L.; Guimaraes-Lopes, V.D.P.; Altoe, L.S.; Sarandy, M.M.; Melo, F.C.S.A.; Novaes, R.D.; Goncalves, R.V. Plant extracts in the bone repair process: A systematic review. Mediat. Inflamm. 2019, 2019, 1296153. [Google Scholar] [CrossRef] [PubMed]
- Sacakli, P.; Ergun, A.; Koksal, B.H.; Ozsoy, B.; Cantekin, Z. Effects of inactivated brewer’s yeast (Saccharomyces cereviciae) on egg production, serum antibody titres and cholesterol levels in laying hens. Vet. Ir. Zootech. 2013, 61, 53–60. [Google Scholar]
- Sarwar, F.; Akhtar, R.; Akram, Q.; Rizwan, H.M.; Naeem, M.A.; Azad, A.; Rahman, M.S.; Saleem, M.M.; Anwar, M.N.; Zahid, B.; et al. Effects of Saccharomyces Cerevisiae Supplemented Diet on Production Performance, Egg Quality and Humoral Immunity in Black Australorp and Fayoumi Layers. Braz. J. Poult. Sci. 2023, 25, eRBCA-2021. [Google Scholar]
- Andretta, I.; Kipper, M.; Lehnen, C.R.; Lovatto, P.A. Meta-analysis of the relationship of mycotoxins with biochemical and hematological parameters in broilers. Poult. Sci. 2012, 91, 376–382. [Google Scholar] [CrossRef]
- Ghareeb, K.; Awad, W.A.; Böhm, J. Ameliorative effect of a microbial feed additive on infectious bronchitis virus antibody titer and stress index in broiler chicks fed deoxynivalenol. Poult. Sci. 2012, 91, 800–807. [Google Scholar] [CrossRef]
- Riahi, I.; Marquis, V.; Ramos, A.J.; Brufau, J.; Esteve-Garcia, E.; Pérez-Vendrell, A.M. Effects of Deoxynivalenol-contaminated diets on productive, morphological, and physiological indicators in broiler Chickens. Animals 2020, 10, 1795. [Google Scholar] [CrossRef]
- Salem, R.; El-Habashi, N.; Fadl, S.E.; Sakr, O.A.; Elbialy, Z.I. Effect of probiotic supplement on aflatoxicosis and gene expression in the liver of broiler chicken. Environ. Toxicol. Pharmacol. 2018, 60, 118–127. [Google Scholar] [CrossRef]
- Śliżewska, K.; Cukrowska, B.; Smulikowska, S.; Cielecka-Kuszyk, J. The effect of probiotic supplementation on performance and the histopathological changes in liver and kidneys in broiler chickens fed diets with aflatoxin B1. Toxins 2019, 11, 112. [Google Scholar] [CrossRef] [Green Version]
- Ismail, I.E.; Farag, M.R.; Alagawany, M.; Mahmoud, H.K.; Reda, F.M. Efficacy of some feed additives to attenuate the hepato-renal damage induced by aflatoxin B1 in rabbits. J. Anim. Physiol. Anim. Nutr. 2020, 104, 1343–1350. [Google Scholar] [CrossRef] [PubMed]
- Murray, H.H. Traditional and new applications for kaolin, smectite, and palygorskite: A general overview. Appl. Clay Sci. 2000, 17, 207–221. [Google Scholar] [CrossRef]
- Vaičiulienė, G.; Bakutis, B.; Jovaišienė, J.; Falkauskas, R.; Gerulis, G.; Bartkienė, E.; Klupšaitė, D.; Klementavičiūtė, J.; Baliukonienė, V. Effects of Ethanol Extracts of Origanum vulgare and Thymus vulgaris on the Mycotoxin Concentrations and the Hygienic Quality of Maize (Zea mays L.) Silage. Toxins 2022, 14, 298. [Google Scholar] [CrossRef] [PubMed]
Items | 0–8 Weeks |
---|---|
Ingredients (%) | |
Corn | 54.12 |
Soybean meal, 45% | 15.00 |
DDGS 28% | 10.00 |
Corn Gluten Feed | 6.27 |
Wheat Pollards | 2.50 |
Rice pollards | 1.50 |
Animal Fats | 0.50 |
L-Lys-SO4 | 0.08 |
DL-Methionine | 0.12 |
L-Threonine | 0.02 |
L-Tryptophan | 0.13 |
Salt | 0.21 |
Limestone | 8.97 |
Mineral premix 1 | 0.22 |
Vitamin premix 2 | 0.11 |
Choline | 0.25 |
Total | 100 |
Calculated Value | |
ME, Kcal/Kg | 2710 |
Crude protein, % | 15.42 |
Crude Fat, % | 3.86 |
Crude Fiber, % | 3.85 |
Total Lys, % | 0.749 |
Total TSAA, % | 0.684 |
Calcium, % | 3.50 |
Available P, % | 0.41 |
Items | NC | PC | T1 | T2 | T3 | T4 | SEM | p-Value |
---|---|---|---|---|---|---|---|---|
Egg production, % | 95.00 a | 79.91 c | 83.13 bc | 86.11 bc | 88.49 b | 82.54 bc | 1.763 | <0.001 |
Egg weight, g/egg | 64.59 | 62.58 | 63.40 | 64.86 | 63.74 | 63.68 | 0.761 | 0.401 |
Items | NC | PC | T1 | T2 | T3 | T4 | SEM | p-Value |
---|---|---|---|---|---|---|---|---|
Fertility, % | 91.67 | 85.94 | 85.65 | 87.96 | 86.11 | 86.57 | 1.730 | 0.119 |
Hatchability, % | 86.25 a | 75.26 b | 77.08 ab | 78.24 ab | 78.70 ab | 77.31 ab | 2.282 | 0.024 |
Items | NC | PC | T1 | T2 | T3 | T4 | SEM | p-Value |
---|---|---|---|---|---|---|---|---|
Eggshell color (Hunter color) | ||||||||
L* | 72.39 | 77.37 | 77.47 | 80.73 | 78.07 | 78.49 | 1.769 | 0.091 |
a* | 8.11 | 6.98 | 7.67 | 6.10 | 8.59 | 7.48 | 0.692 | 0.377 |
b* | 21.25 | 22.09 | 21.82 | 20.92 | 23.26 | 21.33 | 0.904 | 0.634 |
Egg yolk color | 8.00 | 7.25 | 7.22 | 7.56 | 7.44 | 7.44 | 0.358 | 0.662 |
Haugh unit | 86.24 a | 78.51 b | 83.28 ab | 84.18 ab | 80.99 ab | 84.24 ab | 1.561 | 0.030 |
Eggshell strength (kg/cm2) | 4.81 a | 4.18 c | 4.38 bc | 4.54 b | 4.55 b | 4.29 c | 0.053 | <0.001 |
Eggshell Thickness (μm) | 411.27 | 404.83 | 404.56 | 407.33 | 408.48 | 405.67 | 6.211 | 0.972 |
Items | NC | PC | T1 | T2 | T3 | T4 | SEM | p-Value |
---|---|---|---|---|---|---|---|---|
Eggshell color (Hunter color) | ||||||||
L* | 73.81 | 78.79 | 78.89 | 82.15 | 79.49 | 79.91 | 1.788 | 0.094 |
a* | 9.53 | 8.40 | 9.09 | 7.51 | 10.01 | 8.90 | 0.692 | 0.382 |
b* | 22.67 | 23.51 | 23.24 | 22.03 | 24.68 | 22.75 | 0.908 | 0.560 |
Egg yolk color | 8.30 | 7.50 | 7.67 | 8.11 | 8.22 | 7.78 | 0.291 | 0.327 |
Haugh unit | 87.19 a | 70.69 c | 78.84 abc | 82.20 ab | 85.95 ab | 77.91 bc | 2.115 | <0.001 |
Eggshell strength (kg/cm2) | 4.42 | 3.49 | 3.92 | 3.40 | 3.36 | 3.87 | 0.358 | 0.266 |
Eggshell Thickness (μm) | 415.50 | 396.08 | 397.52 | 416.52 | 406.00 | 402.19 | 10.972 | 0.686 |
Items | NC | PC | T1 | T2 | T3 | T4 | SEM | p-Value |
---|---|---|---|---|---|---|---|---|
Ash, % | 31.75 a | 22.27 c | 23.25 c | 25.12 bc | 27.40 b | 26.19 bc | 0.980 | <0.001 |
Ca, % | 10.73 a | 5.87 c | 6.21 c | 6.75 c | 8.80 b | 7.97 b | 0.317 | <0.001 |
P, % | 5.04 a | 3.29 c | 3.72 bc | 4.04 b | 4.31 b | 4.12 b | 0.189 | <0.001 |
Items | NC | PC | T1 | T2 | T3 | T4 | SEM | p-Value |
---|---|---|---|---|---|---|---|---|
Liver, g/kg | 19.55 c | 24.56 a | 22.38 b | 21.27 bc | 20.81 bc | 21.73 b | 0.498 | <0.001 |
Spleen, g/kg | 0.73 | 0.67 | 0.70 | 0.68 | 0.71 | 0.68 | 0.021 | 0.337 |
Abdominal fat, g/kg | 28.57 b | 31.74 a | 30.70 ab | 29.51 ab | 28.60 b | 30.02 ab | 0.654 | 0.012 |
Items | NC | PC | T1 | T2 | T3 | T4 | SEM | p-Value |
---|---|---|---|---|---|---|---|---|
GOT, U/L | 137.00 d | 229.88 a | 198.44 bc | 172.89 c | 191.56 bc | 213.56 ab | 5.280 | <0.001 |
GPT, U/L | 3.70 | 4.75 | 4.33 | 4.11 | 4.33 | 4.22 | 0.342 | 0.442 |
Total-C, mg/dL | 119.70 a | 95.25 b | 119.22 a | 116.89 a | 119.33 a | 117.44 a | 4.373 | 0.005 |
HDL, mg/dL | 49.00 c | 78.25 a | 70.11 ab | 52.44 c | 53.33 c | 60.33 bc | 3.948 | <0.001 |
Items | NC | PC | T1 | T2 | T3 | T4 | SEM | p-Value |
---|---|---|---|---|---|---|---|---|
Feed, ppm | ND | 4.02 | 4.01 | 4.00 | 4.01 | 4.01 | 0.003 | 0.173 |
Liver, ppb | ND | 48.07 a | 33.18 b | 30.79 bc | 29.13 c | 33.19 b | 0.760 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.; Cho, H.; Song, D.; Chang, S.; An, J.; Nam, J.; Lee, B.; Kim, S.; Kim, W.K.; Cho, J. Effects of Combinations of Toxin Binders with or without Natural Components on Broiler Breeders Exposed to Ochratoxin A. Animals 2023, 13, 2266. https://doi.org/10.3390/ani13142266
Lee J, Cho H, Song D, Chang S, An J, Nam J, Lee B, Kim S, Kim WK, Cho J. Effects of Combinations of Toxin Binders with or without Natural Components on Broiler Breeders Exposed to Ochratoxin A. Animals. 2023; 13(14):2266. https://doi.org/10.3390/ani13142266
Chicago/Turabian StyleLee, Jihwan, Hyunah Cho, Dongcheol Song, Seyeon Chang, Jaewoo An, Jeonghun Nam, Byoungkon Lee, Sowoong Kim, Woo Kyun Kim, and Jinho Cho. 2023. "Effects of Combinations of Toxin Binders with or without Natural Components on Broiler Breeders Exposed to Ochratoxin A" Animals 13, no. 14: 2266. https://doi.org/10.3390/ani13142266
APA StyleLee, J., Cho, H., Song, D., Chang, S., An, J., Nam, J., Lee, B., Kim, S., Kim, W. K., & Cho, J. (2023). Effects of Combinations of Toxin Binders with or without Natural Components on Broiler Breeders Exposed to Ochratoxin A. Animals, 13(14), 2266. https://doi.org/10.3390/ani13142266