Influence of Anti-Coccidial Compounds and Phytogenic Saponin Extracts on In Vitro and In Vivo Ruminal Fermentation and Methane Production of Cattle
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experiment 1
2.1.1. Feed Analysis
2.1.2. Respiratory Gas Exchange
2.2. Experiment 2
2.2.1. In Situ Ruminal Degradability
2.2.2. Ruminal Fermentation and Liquid Passage
2.3. Experiments 3 and 4
2.3.1. Experiment 3
2.3.2. Experiment 4
2.3.3. Fermentation Preparation
2.3.4. Sample Collection and Analysis
2.3.5. In Vitro Gas Production
2.4. Statistical Analysis
3. Results
3.1. Experiment 1
3.2. Experiment 2
3.3. Experiment 3
3.4. Experiment 4
4. Discussion
4.1. Effects of DCQ + YSE on In Vivo Ruminal Fermentation and CH4 Production
4.2. Effects of Monensin on In Vitro Ruminal Fermentation and CH4 Production
4.3. Effects of Non-Antibiotic Anti-Coccidial Compounds on In Vitro Ruminal Fermentation and CH4 Production
4.4. Effects of YSE and QSE on In Vitro Ruminal Fermentation and CH4 Production
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moss, A.R.; Jouany, J.P.; Newbold, J. Methane production by ruminants: Its contribution to global warming. Ann. Zootech. 2000, 49, 231–253. [Google Scholar] [CrossRef] [Green Version]
- Arndt, C.; Hristov, A.N.; Price, W.J.; McClelland, S.C.; Pelaez, A.M.; Cueva, S.F.; Oh, J.; Dijkstra, J.; Bannink, A.; Bayat, A.R.; et al. Full adoption of the most effective strategies to mitigate methane emissions by ruminants can help meet the 1.5 °C target by 2030 but not 2050. Proc. Natl. Acad. Sci. USA 2022, 119, e2111294119. [Google Scholar] [CrossRef] [PubMed]
- Hales, K.E.; Coppin, C.A.; Smith, Z.K.; McDaniel, Z.S.; Tedeschi, L.O.; Cole, N.A.; Galyean, M.L. Predicting metabolizable energy from digestible energy for growing and finishing beef cattle and relationships to the prediction of methane. J. Anim. Sci. 2022, 100, skac013. [Google Scholar] [CrossRef] [PubMed]
- Beauchemin, K.A.; Ungerfeld, E.M.; Eckard, R.J.; Wang, M. Fifty years of research on rumen methanogenesis: Lessons learned and future challenges for mitigation. Animal 2020, 14, s2–s16. [Google Scholar] [CrossRef] [Green Version]
- Duffield, T.F.; Merrill, J.K.; Bagg, R.N. Meta-analysis of the effects of monensin in beef cattle on feed efficiency, body weight gain, and dry matter intake. J. Anim. Sci. 2012, 90, 4583–4592. [Google Scholar] [CrossRef]
- Thornton, J.H.; Owens, F.N. Monensin supplementation and in vivo methane production by steers. J. Anim. Sci. 1981, 52, 628–634. [Google Scholar] [CrossRef] [Green Version]
- Tedeschi, L.O.; Muir, J.P.; Naumann, H.D.; Norris, A.B.; Ramírez-Restrepo, C.A.; Mertens-Talcott, S.U. Nutritional aspects of ecologically relevant phytochemicals in ruminant production. Front. Vet. Sci. 2021, 8, 628445. [Google Scholar] [CrossRef]
- de Sá Assis, M.C.; Costa, G.R.d.R.; Dias, F.M.C.; da Silva, C.S.; de Lima, J.S.; Torres, T.R.; Silva, D.K.d.A.; de Souza, E.J.O. Can phytogenic additives replace monensin sodium in beef cattle feeding? Trop. Anim. Health Prod. 2023, 55, 107. [Google Scholar] [CrossRef]
- Akbarian-Tefaghi, M.; Ghasemi, E.; Khorvash, M. Performance, rumen fermentation and blood metabolites of dairy calves fed starter mixtures supplemented with herbal plants, essential oils or monensin. J. Anim. Physiol. Anim. Nutr. 2018, 102, 630–638. [Google Scholar] [CrossRef]
- Shaaban, M.M.; Kholif, A.E.; Abd El Tawab, A.M.; Radwan, M.A.; Hadhoud, F.I.; Khattab, M.S.A.; Saleh, H.M.; Anele, U.Y. Thyme and celery as potential alternatives to ionophores use in livestock production: Their effects on feed utilization, growth performance and meat quality of Barki lambs. Small Rumin. Res. 2021, 200, 106400. [Google Scholar] [CrossRef]
- De Sousa, O.A.; Cooke, R.F.; Brandão, A.P.; Schubach, K.M.; Schumaher, T.F.; Bohnert, D.W.; Marques, R.S. Productive and physiological responses of feeder cattle supplemented with Yucca schidigera extract during feedlot receiving. J. Anim. Sci. 2019, 97, 208–219. [Google Scholar] [CrossRef] [PubMed]
- Rett, B.; Cooke, R.F.; Brandão, A.P.; Ferreira, V.S.M.; Colombo, E.A.; Wiegand, J.B.; Pohler, K.G.; Rincker, M.J.; Schubach, K.M. Supplementing Yucca schidigera extract to mitigate frothy bloat in beef cattle receiving a high-concentrate diet. J. Anim. Sci. 2020, 98, skaa355. [Google Scholar] [CrossRef] [PubMed]
- Pen, B.; Sar, C.; Mwenya, B.; Kuwaki, K.; Morikawa, R.; Takahashi, J. Effects of Yucca schidigera and Quillaja saponaria extracts on in vitro ruminal fermentation and methane emission. Anim. Feed Sci. Technol. 2006, 129, 175–186. [Google Scholar] [CrossRef]
- Xu, M.; Rinker, M.; McLeod, K.R.; Harmon, D.L. Yucca schidigera extract decreases in vitro methane production in a variety of forages and diets. Anim. Feed Sci. Technol. 2010, 159, 18–26. [Google Scholar] [CrossRef]
- Lila, Z.A.; Mohammed, N.; Kanda, S.; Kurihara, M.; Itabashi, H. Sarsaponin effects on ruminal fermentation and microbes, methane production, digestibility and blood metabolites in steers. Asian-Australas. J. Anim. Sci. 2005, 18, 1746–1751. [Google Scholar] [CrossRef]
- Wang, C.J.; Wang, S.P.; Zhou, H. Influences of flavomycin, ropadiar, and saponin on nutrient digestibility, rumen fermentation, and methane emission from sheep. Anim. Feed Sci. Technol. 2009, 148, 157–166. [Google Scholar] [CrossRef]
- Rambozzi, L.; Molinar Min, A.; Menzano, A. In vivo anticoccidial activity of Yucca schidigera saponins in naturally infected calves. J. Anim. Vet. Adv. 2011, 10, 391–394. [Google Scholar] [CrossRef]
- Fitzgerald, P.R.; Mansfield, M.E. Efficacy of monensin against bovine coccidiosis in young Holstein-Friesian calves. J. Protozool. 1973, 20, 121–126. [Google Scholar] [CrossRef]
- Goodrich, R.D.; Garrett, J.E.; Gast, D.R.; Kirick, M.A.; Larson, D.A.; Meiske, J.C. Influence of monensin on the performance of cattle. J. Anim. Sci. 1984, 58, 1484–1498. [Google Scholar] [CrossRef]
- Cheeke, P.R. Actual and potential applications of Yucca schidigera and Quillaja saponaria saponins in human and animal nutrition. J. Anim. Sci 2000, 77, 1–10. [Google Scholar] [CrossRef]
- Taylor, M.A.; Bartram, D.J. The history of decoquinate in the control of coccidial infections in ruminants. J. Vet. Pharmacol. Ther. 2012, 35, 417–427. [Google Scholar] [CrossRef]
- Harmon, D.L.; Nagaraja, T.G.; Brandt, R.T.; Lee, R.W.; Avery, T.B. Influence of decoquinate on ruminal fermentation, diet digestibility and cattle performance. J. Anim. Sci. 1987, 64, 1227–1234. [Google Scholar] [CrossRef]
- Fox, J.E. Results of recent field trials using decoquinate coccidiostat [Cattle, coccidiosis, Eimeria bovis, Eimeria zurnii]. Agric. Pract. 1983, 4, 19. [Google Scholar]
- Rust, S.R.; Gill, D.R.; Richey, E.J.; Owens, F.N. The effects of decoquinate on gains of stressed cattle. In 1981 Animal Science Research Report; Oklahoma Agricultural Experiment Station: 1981; p. 167.
- NASEM. Nutrient Requirements of Beef Cattle: Eighth Revised Edition; The National Academies Press: Washington, DC, USA, 2016; p. 494. [Google Scholar]
- Mathison, G.W.; Okine, E.K.; McAllister, T.A.; Dong, Y.; Galbraith, J.; Dmytruk, O.I.N. Reducing methane emissions from ruminant animals. J. App. Anim. Res. 1998, 14, 1–28. [Google Scholar] [CrossRef] [Green Version]
- Klop, G.; Van Laar-Van Schuppen, S.; Pellikaan, W.F.; Hendriks, W.H.; Bannink, A.; Dijkstra, J. Changes in in vitro gas and methane production from rumen fluid from dairy cows during adaptation to feed additives in vivo. Animal 2017, 11, 591–599. [Google Scholar] [CrossRef] [Green Version]
- Soltan, Y.A.; Natel, A.S.; Araujo, R.C.; Morsy, A.S.; Abdalla, A.L. Progressive adaptation of sheep to a microencapsulated blend of essential oils: Ruminal fermentation, methane emission, nutrient digestibility, and microbial protein synthesis. Anim. Feed Sci. Technol. 2018, 237, 8–18. [Google Scholar] [CrossRef]
- Koontz, A.F.; El-Kadi, S.W.; Harmon, D.L.; Vanzant, E.S.; Matthews, J.C.; Boling, J.A.; McLeod, K.R. Effect of ractopamine on whole body and splanchnic energy metabolism in Holstein steers. Can. J. Anim. Sci. 2010, 90, 77–85. [Google Scholar] [CrossRef]
- Hellwing, A.L.F.; Lund, P.; Weisbjerg, M.R.; Brask, M.; Hvelplund, T. Test of a low-cost and animal-friendly system for measuring methane emissions from dairy cows. J. Dairy Sci. 2012, 95, 6077–6085. [Google Scholar] [CrossRef] [PubMed]
- Trotta, R.J.; Kreikemeier, K.K.; Royle, R.F.; Milton, T.; Harmon, D.L. Flake density and starch retrogradation influence in situ ruminal degradability characteristics of steam-flaked corn and predicted starch digestibility and energetic efficiency. J. Anim. Sci. 2021, 99, skab298. [Google Scholar] [CrossRef] [PubMed]
- Coblentz, W.K.; Fritz, J.O.; Cochran, R.C.; Rooney, W.L.; Bolsen, K.K. Protein degradation in response to spontaneous heating in alfalfa hay by in situ and ficin methods. J. Dairy Sci. 1997, 80, 700–713. [Google Scholar] [CrossRef] [PubMed]
- McDonald, I.M. A revised model for the estimation of protein degradability in the rumen. J. Agric. Sci. 1981, 96, 251–252. [Google Scholar] [CrossRef]
- Fadel, J.G. Technical note: Estimating parameters of nonlinear segmented models. J. Dairy Sci. 2004, 87, 169–173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ørskov, E.R.; McDonald, I. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. J. Agric. Sci. 1979, 92, 499–503. [Google Scholar] [CrossRef] [Green Version]
- Binnerts, W.T.; Van’t Klooster, A.T.; Frens, A.M. Soluble chromium indicator measured by atomic absorption in digestion experiments. Vet. Rec. 1968, 82, 470. [Google Scholar]
- Erwin, E.S.; Marco, G.J.; Emery, E.M. Volatile fatty acid analyses of blood and rumen fluid by gas chromatography. J. Dairy Sci. 1961, 44, 1768–1771. [Google Scholar] [CrossRef]
- Kun, E.; Kearney, E.B. Ammonia. In Methods of Enzymatic Analysis; Bergmeyer, H., Ed.; Academic Press: New York, NY, USA, 1974; Volume 3, pp. 1802–1806. [Google Scholar]
- Gutmann, I.; Wahlefeld, A.W. L(+) lactate determination with lactate dehydrogenase and NAD. In Methods of Enzymatic Analysis; Bergmeyer, H., Ed.; Academic Press: New York, NY, USA, 1974; Volume 3, pp. 1464–1495. [Google Scholar]
- Engel, P.C.; Jones, J.B. Causes and elimination of erratic blanks in enzymatic metabolite assays involving the use of NAD+ in alkaline hydrazine buffers: Improved conditions for the assay of L-glutamate, L-lactate, and other metabolites. Anal. Biochem. 1978, 88, 475–484. [Google Scholar] [CrossRef]
- Allen, M.S.; Armentano, L.E.; Pereira, M.N.; Ying, Y.; Xu, J. Method to measure fractional rate of volatile fatty acid absorption from the rumen. In Proceedings of the 25th Conference on Rumen Function, Chicago, IL, USA, 14–16 November 2000; p. 24. [Google Scholar]
- Resende Júnior, J.C.; Pereira, M.N.; Bôer, H.; Tamminga, S. Comparison of techniques to determine the clearance of ruminal volatile fatty acids. J. Dairy Sci. 2006, 89, 3096–3106. [Google Scholar] [CrossRef] [Green Version]
- Theodorou, M.K.; Lowman, R.S.; Davies, Z.S.; Cuddeford, D.; Owen, E. Principles of techniques that rely on gas measurement in ruminant nutrition. BSAP Occas. Publ. 1998, 22, 55–63. [Google Scholar] [CrossRef]
- Goering, H.K.; Van Soest, P.J. Forage Fiber Analyses (Apparatus, Reagents, Procedures, and Some Applications); US Agricultural Research Service: Washington, DC, USA, 1970; Volume 379.
- Pell, A.N.; Pitt, R.E.; Doane, P.H.; Schofield, P. The development, use and application of the gas production technique at Cornell University, USA. BSAP Occas. Publ. 1998, 22, 45–54. [Google Scholar] [CrossRef]
- Cone, J.W. The development, use and application of the gas production technique at the DLO Institute for Animal Science and Health (ID-DLO), Lelystad, The Netherlands. BSAP Occas. Publ. 1998, 22, 65–78. [Google Scholar] [CrossRef]
- Marten, G.C.; Barnes, R.F. Prediction of energy digestibility of forages with in vitro rumen fermentation and fungal enzyme systems. In Standardization of Analytical Methodology for Feeds: Proceedings of a Workshop Held in Ottawa, ON, Canada, 12–14 March 1979; Pigden, W.J., Balch, C.C., Graham, M., Eds.; International Development Research Center: Ottawa, ON, Canada, 1979; pp. 61–71. [Google Scholar]
- Pitt, R.E.; Cross, T.L.; Pell, A.N.; Schofield, P.; Doane, P.H. Use of in vitro gas production models in ruminal kinetics. Math. Biosci. 1999, 159, 145–163. [Google Scholar] [CrossRef] [PubMed]
- Dixon, P.M. Should blocks be fixed or random? In Proceedings of the 28th Annual Conference on Applied Statistics in Agriculture, Manhattan, KS, USA, 1–3 May 2016.
- Zúñiga-Serrano, A.; Barrios-García, H.B.; Anderson, R.C.; Hume, M.E.; Ruiz-Albarrán, M.; Bautista-Martínez, Y.; Sánchez-Guerra, N.A.; Vázquez-Villanueva, J.; Infante-Rodríguez, F.; Salinas-Chavira, J. Antimicrobial and Digestive Effects of Yucca schidigera Extracts Related to Production and Environment Implications of Ruminant and Non-Ruminant Animals: A Review. Agriculture 2022, 12, 1198. [Google Scholar] [CrossRef]
- Ørskov, E.R.; Flatt, W.P.; Moe, P.W. Fermentation balance approach to estimate extent of fermentation and efficiency of volatile fatty acid formation in ruminants. J. Dairy Sci. 1968, 51, 1429–1435. [Google Scholar] [CrossRef]
- Ranga Niroshan Appuhamy, J.A.D.; Strathe, A.B.; Jayasundara, S.; Wagner-Riddle, C.; Dijkstra, J.; France, J.; Kebreab, E. Anti-methanogenic effects of monensin in dairy and beef cattle: A meta-analysis. J. Dairy Sci. 2013, 96, 5161–5173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, D.H.; Mizinga, K.M.; Kube, J.C.; Friesen, K.G.; McLeod, K.R.; Harmon, D.L. Influence of monensin and lauric acid distillate or palm oil on in vitro fermentation kinetics and metabolites produced using forage and high concentrate substrates. Anim. Feed Sci. Technol. 2014, 189, 19–29. [Google Scholar] [CrossRef]
- Clary, E.M.; Brandt, R.T., Jr.; Harmon, D.L.; Nagaraja, T.G. Supplemental fat and ionophores in finishing diets: Feedlot performance and ruminal digesta kinetics in steers. J. Anim. Sci. 1993, 71, 3115–3123. [Google Scholar] [CrossRef] [Green Version]
- Hino, T.; Russell, J.B. Relative contributions of ruminal bacteria and protozoa to the degradation of protein in vitro. J. Anim. Sci 1987, 64, 261–270. [Google Scholar] [CrossRef]
- Mendoza, G.D.; Britton, R.A.; Stock, R.A. Influence of ruminal protozoa on site and extent of starch digestion and ruminal fermentation. J. Anim. Sci. 1993, 71, 1572–1578. [Google Scholar] [CrossRef]
- Richardson, L.F.; Raun, A.P.; Potter, E.L.; Cooley, C.O.; Rathmacher, R.P. Effect of monensin on rumen fermentation in vitro and in vivo. J. Anim. Sci. 1976, 43, 657–664. [Google Scholar] [CrossRef]
- Prange, R.W.; Davis, C.L.; Clark, J.H. Propionate production in the rumen of Holstein steers fed either a control or monensin supplemented diet. J. Anim. Sci. 1978, 46, 1120–1124. [Google Scholar] [CrossRef] [Green Version]
- Rogers, J.A.; Davis, C.L. Rumen volatile fatty acid production and nutrient utilization in steers fed a diet supplemented with sodium bicarbonate and monensin. J. Dairy Sci. 1982, 65, 944–952. [Google Scholar] [CrossRef] [PubMed]
- Domescik, E.J.; Martin, S.A. Effects of laidlomycin propionate and monensin on the in vitro mixed ruminal microorganism fermentation. J. Anim. Sci. 1999, 77, 2305–2312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Russell, J.B.; Martin, S.A. Effects of various methane inhibitors on the fermentation of amino acids by mixed rumen microorganisms in vitro. J. Anim. Sci. 1984, 59, 1329–1338. [Google Scholar] [CrossRef]
- Ogunade, I.; Schweickart, H.; Andries, K.; Lay, J.; Adeyemi, J. Monensin alters the functional and metabolomic profile of rumen microbiota in beef cattle. Animals 2018, 8, 211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ricke, S.C.; Berger, L.L.; Van der Aar, P.J.; Fahey, G.C., Jr. Effects of lasalocid and monensin on nutrient digestion, metabolism and rumen characteristics of sheep. J. Anim. Sci. 1984, 58, 194–202. [Google Scholar] [CrossRef]
- Callaway, T.R.; Carneiro De Melo, A.M.S.; Russell, J.B. The effect of nisin and monensin on ruminal fermentations in vitro. Curr. Microbiol. 1997, 35, 90–96. [Google Scholar] [CrossRef]
- Van Nevel, C.J.; Demeyer, D.I. Effect of monensin on rumen metabolism in vitro. Appl. Environ. Microbiol. 1977, 34, 251–257. [Google Scholar] [CrossRef] [Green Version]
- Fuller, J.R.; Johnson, D.E. Monensin and lasalocid effects on fermentation in vitro. J. Anim. Sci. 1981, 53, 1574–1580. [Google Scholar] [CrossRef]
- Martin, S.A.; Macy, J.M. Effects of monensin, pyromellitic diimide and 2-bromoethanesulfonic acid on rumen fermentation in vitro. J. Anim. Sci. 1985, 60, 544–550. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; McAllister, T.A.; Yanke, L.J.; Cheeke, P.R. Effect of steroidal saponin from Yucca schidigera extract on ruminal microbes. J. Appl. Microbiol. 2000, 88, 887–896. [Google Scholar] [CrossRef]
- Narvaez, N.; Wang, Y.; McAllister, T. Effects of extracts of Humulus lupulus (hops) and Yucca schidigera applied alone or in combination with monensin on rumen fermentation and microbial populations in vitro. J. Sci. Food Agric. 2013, 93, 2517–2522. [Google Scholar] [CrossRef] [PubMed]
- Hristov, A.N.; McAllister, T.A.; Van Herk, F.H.; Cheng, K.J.; Newbold, C.J.; Cheeke, P.R. Effect of Yucca schidigera on ruminal fermentation and nutrient digestion in heifers. J. Anim. Sci. 1999, 77, 2554–2563. [Google Scholar] [CrossRef] [PubMed]
Item | |
---|---|
Ingredient composition, DM basis | |
Cracked corn, % | 27.5 |
High-moisture corn, % | 27.5 |
Dried corn distillers’ grains with solubles, % | 25.0 |
Corn silage, % | 10.0 |
Fine-ground corn, % | 6.95 |
Limestone, % | 1.92 |
Trace mineral premix, % 1 | 0.50 |
Urea, % | 0.36 |
Choice white grease, % | 0.25 |
Vitamin A, D, and E premix, % 2 | 0.02 |
Chemical composition | |
Dry matter, % | 71.5 |
Crude protein, % of DM | 14.5 |
Neutral detergent fiber, % of DM | 12.1 |
Acid detergent fiber, % of DM | 6.7 |
Ca, % of DM | 0.73 |
P, % of DM | 0.45 |
Net energy for maintenance, Mcal/kg 3 | 1.95 |
Net energy for gain, Mcal/kg 3 | 1.30 |
Source | Level | Amt. Basal Substrate | Amt. Mix Substrate | Liquid Added 4 | |
---|---|---|---|---|---|
Exp. 3 | |||||
Basal substrate (control) | 0X | 500 mg | - | Water | |
Monensin | 1X | 496.25 mg | 3.75 mg of premix 1 | Water | |
Monensin | 10X | 462.5 mg | 37.5 mg of premix 1 | Water | |
Decoquinate | 1X | 489.6 mg | 10.4 mg of premix 2 | Water | |
Decoquinate | 10X | 396 mg | 104 mg of premix 3 | Water | |
Amprolium | 1X | 500 mg | - | Corid 9.6% Oral solution | |
Amprolium | 10X | 500 mg | - | Corid 9.6% Oral solution | |
Exp. 4 | |||||
Basal substrate (control) | 0X | 500 mg | - | Water | |
Yucca schidigera extract | 1X | 500 mg | - | 0.25% Micro-Aid Liquid solution | |
Yucca schidigera extract | 10X | 500 mg | - | 2.5% Micro-Aid Liquid solution | |
Yucca schidigera extract | 20X | 500 mg | - | 5% Micro-Aid Liquid solution | |
Quillaja saponaria extract | 1X | 500 mg | - | 0.25% Phytogenic Patch Plus solution | |
Quillaja saponaria extract | 10X | 500 mg | - | 2.5% Phytogenic Patch Plus solution | |
Quillaja saponaria extract | 20X | 500 mg | - | 5% Phytogenic Patch Plus solution |
Treatment | ||||
---|---|---|---|---|
Item | Control | DCQ + YSE | SEM 1 | p-Value |
O2 consumption | ||||
L | 2963 | 2931 | 66.9 | 0.74 |
L/kg DMI | 419 | 413 | 10.1 | 0.71 |
L/kg BW | 8.95 | 8.90 | 0.193 | 0.85 |
L/kg BW0.75 | 38.2 | 37.9 | 0.81 | 0.82 |
CO2 production | ||||
L | 3009 | 2964 | 68.7 | 0.65 |
L/kg DMI | 425 | 418 | 10.5 | 0.63 |
L/kg BW | 9.09 | 9.00 | 0.197 | 0.75 |
L/kg BW0.75 | 38.7 | 38.3 | 0.83 | 0.72 |
CH4 production | ||||
L | 98.6 | 94.3 | 6.43 | 0.64 |
L/kg DMI | 13.8 | 13.2 | 0.91 | 0.62 |
L/kg BW | 0.294 | 0.281 | 0.0172 | 0.60 |
L/kg BW0.75 | 1.26 | 1.20 | 0.075 | 0.61 |
Respiratory quotient | 1.01 | 1.01 | 0.004 | 0.64 |
Treatment | ||||
---|---|---|---|---|
Item | Control | DCQ + YSE | SEM 1 | p-Value |
Soluble fraction, % | 53.1 | 51.6 | 0.78 | 0.24 |
Potentially degradable fraction, % | 29.9 | 31.9 | 1.34 | 0.35 |
Potential extent of degradation, % | 83.0 | 83.4 | 0.98 | 0.74 |
Lag time, h | 4.24 | 2.72 | 2.81 | 0.72 |
Fractional rate of degradation, % per h | 3.08 | 3.22 | 0.489 | 0.85 |
Fractional rate of liquid passage, % per h | 5.52 | 5.23 | 0.546 | 0.72 |
In situ ruminal degradability, % | 63.6 | 63.7 | 0.96 | 0.99 |
Liquid retention time, h | 18.5 | 19.9 | 1.83 | 0.61 |
Rumen liquid volume, L | 30.0 | 29.2 | 6.46 | 0.94 |
Rumen liquid outflow, L/h | 1.60 | 1.46 | 0.305 | 0.77 |
Treatment | ||||
---|---|---|---|---|
Item | Control | DCQ + YSE | SEM 1 | p-Value |
L(+)-Lactate, mM | 0.545 | 1.32 | 0.250 | 0.03 |
NH3, mM | 6.67 | 6.06 | 0.289 | 0.14 |
Total VFA, mM | 125 | 119 | 3.8 | 0.33 |
mol/100 mol | ||||
Acetate | 46.8 | 45.8 | 0.49 | 0.19 |
Propionate | 33.7 | 34.9 | 0.51 | 0.09 |
Isobutyrate | 0.524 | 0.468 | 0.0607 | 0.12 |
Butyrate | 10.8 | 10.1 | 0.36 | 0.18 |
Isovalerate | 2.12 | 1.80 | 0.082 | 0.01 |
Valerate | 5.57 | 7.43 | 0.239 | <0.01 |
Acetate:propionate | 1.43 | 1.41 | 0.031 | 0.64 |
Treatment | Contrast p-Value 2 | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Item | 0X | MON | DCQ | AMP | Source | Level | ||||||||
1X | 10X | 1X | 10X | 1X | 10X | SEM 1 | ACC | IPH | DCQ vs. AMP | Linear MON | Linear DCQ | Linear AMP | ||
pH | 6.78 | 6.81 | 6.87 | 6.84 | 6.83 | 6.85 | 6.83 | 0.014 | <0.01 | 0.92 | 0.8 | <0.01 | 0.2 | 0.34 |
Gas production, mL | 116 | 111 | 93.5 | 115 | 122 | 115 | 120 | 1.4 | 0.02 | <0.01 | 0.42 | <0.01 | <0.01 | 0.07 |
Rate, %/h | 13.7 | 15 | 16 | 14 | 11.6 | 13.8 | 12.7 | 0.42 | 0.8 | <0.01 | 0.3 | <0.01 | <0.01 | 0.07 |
CH4, % | 7.83 | 7.43 | 5.79 | 7.75 | 7.92 | 7.76 | 7.68 | 0.252 | 0.11 | <0.01 | 0.65 | <0.01 | 0.74 | 0.66 |
CH4, mL | 9.14 | 8.46 | 5.51 | 9.09 | 9.84 | 9.02 | 9.27 | 0.299 | 0.07 | <0.01 | 0.3 | <0.01 | 0.11 | 0.6 |
NH3, mM | 27.5 | 27.3 | 25.7 | 27.2 | 25.3 | 27.2 | 26.3 | 0.83 | 0.25 | 0.97 | 0.58 | 0.19 | 0.04 | 0.19 |
Total VFA, mM | 61.5 | 57 | 60.7 | 62.5 | 64.5 | 60.7 | 64.8 | 2.48 | 0.92 | 0.05 | 0.73 | 0.64 | 0.24 | 0.34 |
mol/100 mol | ||||||||||||||
Acetate | 41.6 | 41.3 | 41.5 | 41.3 | 40.8 | 41.1 | 41 | 0.31 | 0.24 | 0.21 | 0.99 | 0.93 | 0.02 | 0.17 |
Propionate | 18 | 18.8 | 21.1 | 18.5 | 18.6 | 18.6 | 18.4 | 0.24 | <0.01 | <0.01 | 0.8 | <0.01 | <0.01 | 0.32 |
Isobutyrate | 5.28 | 5.15 | 4.58 | 5.25 | 5.38 | 5.21 | 5.11 | 0.208 | 0.47 | 0.04 | 0.47 | 0.08 | 0.08 | 0.16 |
Butyrate | 12.6 | 12.1 | 10.4 | 12.4 | 12.6 | 12.4 | 12.6 | 0.23 | 0.04 | <0.01 | 0.99 | <0.01 | 0.64 | 0.4 |
Isovalerate | 5.43 | 5.52 | 5.68 | 5.4 | 5.35 | 5.45 | 5.45 | 0.045 | 0.39 | <0.01 | 0.1 | 0.01 | 0.12 | 0.85 |
Valerate | 5.61 | 5.73 | 5.4 | 5.59 | 5.64 | 5.64 | 5.76 | 0.065 | 0.82 | 0.14 | 0.15 | 0.04 | 0.78 | 0.04 |
Acetate:propionate | 1.92 | 1.82 | 1.58 | 1.85 | 1.83 | 1.84 | 1.86 | 0.019 | <0.01 | <0.01 | 0.79 | <0.01 | <0.01 | 0.19 |
Treatment | Contrast p-Value 2 | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Item | 0X | YSE | QSE | SAP | YSE vs. QSE | Level | ||||||||
1X | 10X | 20X | 1X | 10X | 20X | SEM 1 | Lin. YSE | Quad. YSE | Lin. QSE | Quad. QSE | ||||
pH | 6.88 | 6.88 | 6.88 | 6.87 | 6.90 | 6.90 | 6.89 | 0.008 | 0.20 | <0.01 | 0.67 | 0.34 | 0.75 | 0.16 |
Gas production, mL | 114 | 116 | 116 | 120 | 111 | 108 | 114 | 2.2 | 0.96 | <0.01 | 0.02 | 0.43 | 0.88 | 0.08 |
Rate, %/h | 12.9 | 12.7 | 12.8 | 12.9 | 12.5 | 13.9 | 15.4 | 0.45 | 0.39 | <0.01 | 0.89 | 0.82 | <0.01 | 0.80 |
CH4, % | 7.67 | 7.71 | 7.24 | 7.25 | 7.49 | 7.47 | 7.58 | 0.234 | 0.39 | 0.56 | 0.13 | 0.44 | 0.91 | 0.61 |
CH4, mL | 8.78 | 8.97 | 8.34 | 8.72 | 8.30 | 8.03 | 8.53 | 0.313 | 0.38 | 0.13 | 0.59 | 0.28 | 0.75 | 0.13 |
NH3, mM | 27.2 | 25.9 | 27.1 | 26.8 | 27.4 | 28.4 | 26.8 | 0.93 | 0.91 | 0.22 | 0.76 | 0.83 | 0.86 | 0.22 |
Total VFA, mM | 66.8 | 64.3 | 67.6 | 69.7 | 63.3 | 67.3 | 67.3 | 2.20 | 0.93 | 0.52 | 0.11 | 0.81 | 0.42 | 0.81 |
mol/100 mol | ||||||||||||||
Acetate | 47.4 | 47.3 | 47.1 | 46.5 | 46.5 | 47.0 | 46.7 | 0.24 | 0.04 | 0.26 | <0.01 | 0.31 | 0.06 | 0.51 |
Propionate | 24.0 | 24.2 | 24.9 | 25.2 | 24.6 | 24.9 | 25.6 | 0.24 | <0.01 | 0.17 | <0.01 | 0.30 | <0.01 | 0.96 |
Isobutyrate | 2.03 | 2.03 | 1.99 | 1.95 | 2.04 | 2.02 | 1.94 | 0.016 | 0.03 | 0.46 | <0.01 | 0.87 | <0.01 | 0.11 |
Butyrate | 14.9 | 14.8 | 14.4 | 14.6 | 14.7 | 14.4 | 14.0 | 0.13 | <0.01 | 0.03 | 0.04 | 0.07 | <0.01 | 0.73 |
Isovalerate | 4.72 | 4.70 | 4.63 | 4.55 | 4.71 | 4.69 | 4.55 | 0.043 | 0.07 | 0.47 | <0.01 | 0.85 | <0.01 | 0.27 |
Valerate | 6.94 | 6.95 | 6.96 | 7.23 | 6.98 | 7.29 | 7.32 | 0.069 | 0.01 | <0.01 | <0.01 | 0.09 | <0.01 | 0.07 |
Acetate:propionate | 2.01 | 2.00 | 1.92 | 1.87 | 1.95 | 1.91 | 1.84 | 0.027 | <0.01 | 0.15 | <0.01 | 0.51 | <0.01 | 0.75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trotta, R.J.; Kreikemeier, K.K.; Foote, S.; McLeod, K.R.; Harmon, D.L. Influence of Anti-Coccidial Compounds and Phytogenic Saponin Extracts on In Vitro and In Vivo Ruminal Fermentation and Methane Production of Cattle. Animals 2023, 13, 2308. https://doi.org/10.3390/ani13142308
Trotta RJ, Kreikemeier KK, Foote S, McLeod KR, Harmon DL. Influence of Anti-Coccidial Compounds and Phytogenic Saponin Extracts on In Vitro and In Vivo Ruminal Fermentation and Methane Production of Cattle. Animals. 2023; 13(14):2308. https://doi.org/10.3390/ani13142308
Chicago/Turabian StyleTrotta, Ronald J., Kelly K. Kreikemeier, Scott Foote, Kyle R. McLeod, and David L. Harmon. 2023. "Influence of Anti-Coccidial Compounds and Phytogenic Saponin Extracts on In Vitro and In Vivo Ruminal Fermentation and Methane Production of Cattle" Animals 13, no. 14: 2308. https://doi.org/10.3390/ani13142308
APA StyleTrotta, R. J., Kreikemeier, K. K., Foote, S., McLeod, K. R., & Harmon, D. L. (2023). Influence of Anti-Coccidial Compounds and Phytogenic Saponin Extracts on In Vitro and In Vivo Ruminal Fermentation and Methane Production of Cattle. Animals, 13(14), 2308. https://doi.org/10.3390/ani13142308