Comparison of the Faecal Microbiota Composition Following a Dairy By-Product Supplemented Diet in Nero Siciliano and Large White × Landrace Pig Breeds
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals, Diets, and Experimental Design
2.2. Faecal Sample Collection and 16S Sequencing
2.3. Sequence Processing and Analysis
2.4. Alpha Diversity, Beta Diversity, Differential Analysis, and Prediction of Microbial Functions
2.5. Statistical Analysis
3. Results
3.1. Taxonomy Classification
3.2. Alpha Diversity, Beta Diversity, Differential Analysis, and Prediction of Microbial Functions
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Patil, Y.; Gooneratne, R.; Ju, X.-H. Interactions between Host and Gut Microbiota in Domestic Pigs: A Review. Gut Microbes 2020, 11, 310–334. [Google Scholar] [CrossRef] [PubMed]
- Qi, R.; Sun, J.; Qiu, X.; Zhang, Y.; Wang, J.; Wang, Q.; Huang, J.; Ge, L.; Liu, Z. The Intestinal Microbiota Contributes to the Growth and Physiological State of Muscle Tissue in Piglets. Sci. Rep. 2021, 11, 11237. [Google Scholar] [CrossRef] [PubMed]
- Gardiner, G.E.; Metzler-Zebeli, B.U.; Lawlor, P.G. Impact of Intestinal Microbiota on Growth and Feed Efficiency in Pigs: A Review. Microorganisms 2020, 8, 1886. [Google Scholar] [CrossRef]
- Russo, N.; Floridia, V.; D’Alessandro, E.; Lopreiato, V.; Pino, A.; Chiofalo, V.; Caggia, C.; Liotta, L.; Randazzo, C.L. Influence of Olive Cake Dietary Supplementation on Fecal Microbiota of Dairy Cows. Front. Microbiol. 2023, 14, 7452. [Google Scholar] [CrossRef]
- Li, Y.; Wang, X.; Wang, X.; Wang, J.; Zhao, J. Life-Long Dynamics of the Swine Gut Microbiome and Their Implications in Probiotics Development and Food Safety. Gut Microbes 2020, 11, 1824–1832. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Tsai, T.; Deng, F.; Wei, X.; Chai, J.; Knapp, J.; Apple, J.; Maxwell, C.V.; Lee, J.A.; Li, Y.; et al. Longitudinal Investigation of the Swine Gut Microbiome from Birth to Market Reveals Stage and Growth Performance Associated Bacteria. Microbiome 2019, 7, 109. [Google Scholar] [CrossRef] [Green Version]
- Zhao, W.; Wang, Y.; Liu, S.; Huang, J.; Zhai, Z.; He, C.; Ding, J.; Wang, J.; Wang, H.; Fan, W.; et al. The Dynamic Distribution of Porcine Microbiota across Different Ages and Gastrointestinal Tract Segments. PLoS ONE 2015, 10, e0117441. [Google Scholar] [CrossRef] [Green Version]
- Petri, D.; Hill, J.E.; van Kessel, A.G. Microbial Succession in the Gastrointestinal Tract (GIT) of the Preweaned Pig. Livest. Sci. 2010, 133, 107–109. [Google Scholar] [CrossRef]
- Pajarillo, E.A.B.; Chae, J.-P.; Balolong, M.P.; Kim, H.B.; Kang, D.K. Assessment of Fecal Bacterial Diversity among Healthy Piglets during the Weaning Transition. J. Genet. Appl. Microbiol. 2014, 60, 140–146. [Google Scholar] [CrossRef] [Green Version]
- Saladrigas-García, M.; D’Angelo, M.; Ko, H.L.; Nolis, P.; Ramayo-Caldas, Y.; Folch, J.M.; Llonch, P.; Solà-Oriol, D.; Pérez, J.F.; Martín-Orúe, S.M. Understanding Host-Microbiota Interactions in the Commercial Piglet around Weaning. Sci. Rep. 2021, 11, 23488. [Google Scholar] [CrossRef]
- Kubasova, T.; Davidova-Gerzova, L.; Babak, V.; Cejkova, D.; Montagne, L.; Le-Floc’h, N.; Rychlik, I. Effects of Host Genetics and Environmental Conditions on Fecal Microbiota Composition of Pigs. PLoS ONE 2018, 13, e0201901. [Google Scholar] [CrossRef]
- Kanengoni, A.T.; Chimonyo, M.; Tasara, T.; Cormican, P.; Chapwanya, A.; Ndimba, B.K.; Dzama, K. A Comparison of Faecal Microbial Populations of South African Windsnyer-Type Indigenous Pigs (SAWIPs) and Large White × Landrace (LW × LR) Crosses Fed Diets Containing Ensiled Maize Cobs. FEMS Microbiol. Lett. 2015, 362, fnv100. [Google Scholar] [CrossRef] [PubMed]
- López-García, A.; Benítez, R.; Núñez, Y.; Gómez-Izquierdo, E.; de Mercado, E.; García-Casco, J.M.; González-Recio, Ó.; López-Bote, C.; Estellé, J.; Óvilo, C. Influence of Genetic Background and Dietary Oleic Acid on Gut Microbiota Composition in Duroc and Iberian Pigs. PLoS ONE 2021, 16, e0251804. [Google Scholar] [CrossRef]
- Demecková, V.; Kelly, D.; Coutts, A.G.P.; Brooks, P.H.; Campbell, A. The Effect of Fermented Liquid Feeding on the Faecal Microbiology and Colostrum Quality of Farrowing Sows. Int. J. Food Microbiol. 2002, 79, 85–97. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Itoh, A.; Miyawaki, K.; Koike, S.; Iwabuchi, O.; Iimura, Y.; Kobashi, Y.; Kawashima, T.; Wakamatsu, J.; Hattori, A.; et al. Effect of Liquid Whey Feeding on Fecal Microbiota of Mature and Growing Pigs. Anim. Sci. J. 2011, 82, 607–615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, Y.; Tiezzi, F.; Howard, J.; Huang, Y.; Gray, K.; Maltecca, C. Exploring the Role of Gut Microbiota in Host Feeding Behavior among Breeds in Swine. BMC Microbiol. 2022, 22, 1. [Google Scholar] [CrossRef] [PubMed]
- Bergamaschi, M.; Tiezzi, F.; Howard, J.; Huang, Y.J.; Gray, K.A.; Schillebeeckx, C.; McNulty, N.P.; Maltecca, C. Gut Microbiome Composition Differences among Breeds Impact Feed Efficiency in Swine. Microbiome 2020, 8, 110. [Google Scholar] [CrossRef]
- McCormack, U.M.; Curião, T.; Buzoianu, S.G.; Prieto, M.L.; Ryan, T.; Varley, P.; Crispie, F.; Magowan, E.; Metzler-Zebeli, B.U.; Berry, D.; et al. Exploring a Possible Link between the Intestinal Microbiota and Feed Efficiency in Pigs. Appl. Environ. Microbiol. 2017, 83, e00380-17. [Google Scholar] [CrossRef] [Green Version]
- Xiao, L.; Estellé, J.; Kiilerich, P.; Ramayo-Caldas, Y.; Xia, Z.; Feng, Q.; Liang, S.; Pedersen, A.Ø.; Kjeldsen, N.J.; Liu, C.; et al. A Reference Gene Catalogue of the Pig Gut Microbiome. Nat. Microbiol. 2016, 1, 16161. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Xiao, Y.; Wang, J.; Xiang, Y.; Gong, Y.; Wen, X.; Li, D. Core Gut Microbiota in Jinhua Pigs and Its Correlation with Strain, Farm and Weaning Age. J. Microbiol. 2018, 56, 346–355. [Google Scholar] [CrossRef]
- Xiao, Y.; Kong, F.; Xiang, Y.; Zhou, W.; Wang, J.; Yang, H.; Zhang, G.; Zhao, J. Comparative Biogeography of the Gut Microbiome between Jinhua and Landrace Pigs. Sci. Rep. 2018, 8, 5985. [Google Scholar] [CrossRef] [PubMed]
- Giuffrè, L.; Giosa, D.; Galeano, G.; Aiese Cigliano, R.; Paytuví-Gallart, A.; Sutera, A.M.; Tardiolo, G.; Zumbo, A.; Romeo, O.; D’Alessandro, E. Whole-Metagenome Shotgun Sequencing of Pig Faecal Microbiome. Ital. J. Anim. Sci. 2021, 20, 1147–1155. [Google Scholar] [CrossRef]
- Tardiolo, G.; Romeo, O.; Zumbo, A.; Di Marsico, M.; Sutera, A.M.; Cigliano, R.A.; Paytuví, A.; D’Alessandro, E. Characterization of the Nero Siciliano Pig Fecal Microbiota after a Liquid Whey-Supplemented Diet. Animals 2023, 13, 642. [Google Scholar] [CrossRef]
- Zumbo, A.; Sutera, A.M.; Tardiolo, G.; D’Alessandro, E. Sicilian Black Pig: An Overview. Animals 2020, 10, 2326. [Google Scholar] [CrossRef]
- D’Alessandro, E.; Sottile, G.; Sardina, M.T.; Criscione, A.; Bordonaro, S.; Sutera, A.M.; Zumbo, A.; Portolano, B.; Mastrangelo, S. Genome-wide Analyses Reveal the Regions Involved in the Phenotypic Diversity in Sicilian Pigs. Anim. Genet. 2020, 51, 101–105. [Google Scholar] [CrossRef] [PubMed]
- D’Alessandro, E.; Arfuso, F.; Floridia, V.; Tardiolo, G.; Fazio, F.; Giannetto, C.; Piccione, G.; Zumbo, A. Different Genotype and a Liquid Whey-Supplemented Diet Influence the Resilience of Pigs through Immune-Modulation and Anti-Inflammatory Response. Front. Vet. Sci. 2022, 9, 1046101. [Google Scholar] [CrossRef]
- D’Alessandro, E.; Giosa, D.; Sapienza, I.; Giuffrè, L.; Cigliano, R.A.; Romeo, O.; Zumbo, A. Whole Genome SNPs Discovery in Nero Siciliano Pig. Genet. Mol. Biol. 2019, 42, 594–602. [Google Scholar] [CrossRef] [Green Version]
- Niemi, J.K.; Sevón-Aimonen, M.L.; Stygar, A.H.; Partanen, K. The economic and environmental value of genetic improvements in fattening pigs: An integrated dynamic model approach. J. Anim. Sci. 2015, 93, 4161–4171. [Google Scholar] [CrossRef]
- Melini, V.; Melini, F.; Luziatelli, F.; Ruzzi, M. Functional Ingredients from Agri-Food Waste: Effect of Inclusion Thereof on Phenolic Compound Content and Bioaccessibility in Bakery Products. Antioxidants 2020, 9, 1216. [Google Scholar] [CrossRef]
- Featherstone, P. Keeping Food Losses in Food Chain through Animal Feed. In Proceedings of the XVI International Symposium “Feed Technology”; University of Novi Sad: Novi Sad, Serbia, 2014; ISBN 978-86-7994-042-1. [Google Scholar]
- Biondi, L.; Luciano, G.; Cutello, D.; Natalello, A.; Mattioli, S.; Priolo, A.; Lanza, M.; Morbidini, L.; Gallo, A.; Valenti, B. Meat Quality from Pigs Fed Tomato Processing Waste. Meat Sci. 2020, 159, 107940. [Google Scholar] [CrossRef]
- Pires, A.F.; Marnotes, N.G.; Rubio, O.D.; Garcia, A.C.; Pereira, C.D. Dairy By-Products: A Review on the Valorization of Whey and Second Cheese Whey. Foods 2021, 10, 1067. [Google Scholar] [CrossRef] [PubMed]
- Leibbrandt, V.D.; Benevenga, N.J. Utilization of Liquid Whey in Feeding Swine; Butterworth-Heineman: Boston, MA, USA, 1991. [Google Scholar]
- Maswaure, S.M.; Mandisodza, K.T. An Evaluation of the Performance of Weaner Pigs Fed Diets Incorporating Fresh Sweet Liquid Whey. Anim. Feed Sci. Technol. 1995, 54, 193–201. [Google Scholar] [CrossRef]
- Canibe, N.; Jensen, B.B. Fermented and Nonfermented Liquid Feed to Growing Pigs: Effect on Aspects of Gastrointestinal Ecology and Growth Performance. J. Anim. Sci. 2003, 81, 2019–2031. [Google Scholar] [CrossRef] [Green Version]
- Wells, J.E.; Yen, J.T.; Miller, D.N. Impact of Dried Skim Milk in Production Diets on Lactobacillus and Pathogenic Bacterial Shedding in Growing-Finishing Swine. J. Appl. Microbiol. 2005, 99, 400–407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, Interactive, Scalable and Extensible Microbiome Data Science Using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef] [PubMed]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-Resolution Sample Inference from Illumina Amplicon Data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henderson, G.; Yilmaz, P.; Kumar, S.; Forster, R.J.; Kelly, W.J.; Leahy, S.C.; Guan, L.L.; Janssen, P.H. Improved Taxonomic Assignment of Rumen Bacterial 16S RRNA Sequences Using a Revised SILVA Taxonomic Framework. PeerJ 2019, 7, e6496. [Google Scholar] [CrossRef]
- Robeson, M.S.; O’Rourke, D.R.; Kaehler, B.D.; Ziemski, M.; Dillon, M.R.; Foster, J.T.; Bokulich, N.A. RESCRIPt: Reproducible Sequence Taxonomy Reference Database Management. PLoS Comput. Biol. 2021, 17, e1009581. [Google Scholar] [CrossRef]
- McMurdie, P.J.; Holmes, S. Phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLoS ONE 2013, 8, e61217. [Google Scholar] [CrossRef] [Green Version]
- Wickham, H. Ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016; ISBN 978-3-319-24277-4. [Google Scholar]
- Love, M.I.; Huber, W.; Anders, S. Moderated Estimation of Fold Change and Dispersion for RNA-Seq Data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [Green Version]
- Blighe, K.; Rana, S.; Lewis, M. EnhancedVolcano: Publication-Ready Volcano Plots with Enhanced Colouring and Labeling. R Package Version 1.16.0. 2022. Available online: https://github.com/kevinblighe/EnhancedVolcano (accessed on 20 February 2023).
- Dixon, P. VEGAN, a package of R functions for community ecology. J. Veget. Sci. 2003, 14, 927–930. [Google Scholar] [CrossRef]
- Hinkle, E.E.; Fernando, S.; Burkey, T.E. Differences in Core Microbiota between P1 and P3 Dams and Their Progeny. In Proceedings of the 12th International Symposium Digestive Physiology of Pigs, (Abstr. 1034), Keystone, CO, USA, 1 June 2012. [Google Scholar]
- Aluthge, N.D.; van Sambeek, D.M.; Carney-Hinkle, E.E.; Li, Y.S.; Fernando, S.C.; Burkey, T.E. BOARD INVITED REVIEW: The Pig Microbiota and the Potential for Harnessing the Power of the Microbiome to Improve Growth and Health1. J. Anim. Sci. 2019, 97, 3741–3757. [Google Scholar] [CrossRef]
- Liotta, L.; Chiofalo, V.; D’Alessandro, E.; Lo Presti, V.; Chiofalo, B. Supplementation of Rosemary Extract in the Diet of Nero Siciliano Pigs: Evaluation of the Antioxidant Properties on Meat Quality. Animal 2015, 9, 1065–1072. [Google Scholar] [CrossRef] [PubMed]
- Russo, V.; Fontanesi, L.; Davoli, R.; Chiofalo, L.; Liotta, L.; Zumbo, A. Analysis of Single Nucleotide Polymorphisms in Major and Candidate Genes for Production Traits in Nero Siciliano Pig Breed. Ital. J. Anim. Sci. 2004, 3, 19–29. [Google Scholar] [CrossRef]
- Pugliese, C.; Calagna, G.; Chiofalo, V.; Moretti, V.M.; Margiotta, S.; Franci, O.; Gandini, G. Comparison of the Performances of Nero Siciliano Pigs Reared Indoors and Outdoors: 2. Joints Composition, Meat and Fat Traits. Meat Sci. 2004, 68, 523–528. [Google Scholar] [CrossRef] [PubMed]
- Liotta, L.; Chiofalo, B.; Zumbo, A.; Chiofalo, V. Effects of Different Nutritional Levels on Nero Siciliano Pig Performance. Ital. J. Anim. Sci. 2005, 4, 470–472. [Google Scholar] [CrossRef]
- Luo, Y.; Su, Y.; Wright, A.-D.G.; Zhang, L.; Smidt, H.; Zhu, W. Lean Breed Landrace Pigs Harbor Fecal Methanogens at Higher Diversity and Density than Obese Breed Erhualian Pigs. Archaea 2012, 2012, 605289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riva, A.; Borgo, F.; Lassandro, C.; Verduci, E.; Morace, G.; Borghi, E.; Berry, D. Pediatric Obesity Is Associated with an Altered Gut Microbiota and Discordant Shifts in Firmicutes Populations. Environ. Microbiol. 2017, 19, 95–105. [Google Scholar] [CrossRef]
- Yang, H.; Xiang, Y.; Robinson, K.; Wang, J.; Zhang, G.; Zhao, J.; Xiao, Y. Gut Microbiota Is a Major Contributor to Adiposity in Pigs. Front. Microbiol. 2018, 9, 3045. [Google Scholar] [CrossRef]
- Lavery, T.J.; Roudnew, B.; Seymour, J.; Mitchell, J.G.; Jeffries, T. High Nutrient Transport and Cycling Potential Revealed in the Microbial Metagenome of Australian Sea Lion (Neophoca cinerea) Faeces. PLoS ONE 2012, 7, e36478. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Huang, X.; Fang, S.; Xin, W.; Huang, L.; Chen, C. Uncovering the Composition of Microbial Community Structure and Metagenomics among Three Gut Locations in Pigs with Distinct Fatness. Sci. Rep. 2016, 6, 27427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hou, Y.-P.; He, Q.-Q.; Ouyang, H.-M.; Peng, H.-S.; Wang, Q.; Li, J.; Lv, X.-F.; Zheng, Y.-N.; Li, S.-C.; Liu, H.-L.; et al. Human Gut Microbiota Associated with Obesity in Chinese Children and Adolescents. Biomed. Res. Int. 2017, 2017, 7585989. [Google Scholar] [CrossRef]
- Camarinha-Silva, A.; Maushammer, M.; Wellmann, R.; Vital, M.; Preuss, S.; Bennewitz, J. Host Genome Influence on Gut Microbial Composition and Microbial Prediction of Complex Traits in Pigs. Genetics 2017, 206, 1637–1644. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, P.; Nelson, C.D.; Driver, J.D.; Elzo, M.A.; Peñagaricano, F.; Jeong, K.C. Host Genetics Exerts Lifelong Effects upon Hindgut Microbiota and Its Association with Bovine Growth and Immunity. ISME J. 2021, 15, 2306–2321. [Google Scholar] [CrossRef] [PubMed]
- Roehe, R.; Dewhurst, R.J.; Duthie, C.-A.; Rooke, J.A.; McKain, N.; Ross, D.W.; Hyslop, J.J.; Waterhouse, A.; Freeman, T.C.; Watson, M.; et al. Bovine Host Genetic Variation Influences Rumen Microbial Methane Production with Best Selection Criterion for Low Methane Emitting and Efficiently Feed Converting Hosts Based on Metagenomic Gene Abundance. PLoS Genet. 2016, 12, e1005846. [Google Scholar] [CrossRef] [PubMed]
- Weimer, P.J. Redundancy, Resilience, and Host Specificity of the Ruminal Microbiota: Implications for Engineering Improved Ruminal Fermentations. Front. Microbiol. 2015, 6, 296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, X.; Ouyang, K.; Long, T.; Liu, Z.; Li, Y.; Qiu, Q. Dynamic Variations in Rumen Fermentation Characteristics and Bacterial Community Composition during In Vitro Fermentation. Fermentation 2022, 8, 276. [Google Scholar] [CrossRef]
- Fang, S.; Xiong, X.; Su, Y.; Huang, L.; Chen, C. 16S RRNA Gene-Based Association Study Identified Microbial Taxa Associated with Pork Intramuscular Fat Content in Feces and Cecum Lumen. BMC Microbiol. 2017, 17, 162. [Google Scholar] [CrossRef]
- Biddle, A.; Stewart, L.; Blanchard, J.; Leschine, S. Untangling the Genetic Basis of Fibrolytic Specialization by Lachnospiraceae and Ruminococcaceae in Diverse Gut Communities. Diversity 2013, 5, 627–640. [Google Scholar] [CrossRef] [Green Version]
- Nugent, A.P. Health Properties of Resistant Starch. Nutr. Bull. 2005, 30, 27–54. [Google Scholar] [CrossRef]
- Galassi, G.; Battelli, M.; Verdile, N.; Rapetti, L.; Zanchi, R.; Arcuri, S.; Petrera, F.; Abeni, F.; Crovetto, G.M. Effect of a Polyphenol-Based Additive in Pig Diets in the Early Stages of Growth. Animals 2021, 11, 3241. [Google Scholar] [CrossRef] [PubMed]
- Niu, Q.; Pu, G.; Fan, L.; Gao, C.; Lan, T.; Liu, C.; Du, T.; Kim, S.W.; Niu, P.; Zhang, Z.; et al. Identification of Gut Microbiota Affecting Fiber Digestibility in Pigs. Curr. Issues Mol. Biol. 2022, 44, 4557–4569. [Google Scholar] [CrossRef]
- Yang, H.; Huang, X.; Fang, S.; He, M.; Zhao, Y.; Wu, Z.; Yang, M.; Zhang, Z.; Chen, C.; Huang, L. Unraveling the Fecal Microbiota and Metagenomic Functional Capacity Associated with Feed Efficiency in Pigs. Front. Microbiol. 2017, 8, 1555. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Ji, H.; Wang, S.; Liu, H.; Zhang, W.; Zhang, D.; Wang, Y. Probiotic Lactobacillus Plantarum Promotes Intestinal Barrier Function by Strengthening the Epithelium and Modulating Gut Microbiota. Front. Microbiol. 2018, 9, 1953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Callaway, T.R.; Edrington, T.S.; Anderson, R.C.; Harvey, R.B.; Genovese, K.J.; Kennedy, C.N.; Venn, D.W.; Nisbet, D.J. Probiotics, Prebiotics and Competitive Exclusion for Prophylaxis against Bacterial Disease. Anim. Health Res. Rev. 2008, 9, 217–225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fairbrother, J.M.; Nadeau, É.; Gyles, C.L. Escherichia Coli in Postweaning Diarrhea in Pigs: An Update on Bacterial Types, Pathogenesis, and Prevention Strategies. Anim. Health Res. Rev. 2005, 6, 17–39. [Google Scholar] [CrossRef] [Green Version]
- Ohashi, Y.; Tokunaga, M.; Taketomo, N.; Ushida, K. Stimulation of Indigenous Lactobacilli by Fermented Milk Prepared with Probiotic Bacterium, Lactobacillus Delbrueckii Subsp. Bulgaricus Strain 2038, in the Pigs. J. Nutr. Sci. Vitaminol. 2007, 53, 82–86. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, N.; Gaskins, H.R.; Collier, C.T.; Nava, G.M.; Rai, D.; Petschow, B.; Russell, W.M.; Harris, C.; Mackie, R.I.; Wampler, J.L.; et al. Molecular Ecological Analysis of Fecal Bacterial Populations from Term Infants Fed Formula Supplemented with Selected Blends of Prebiotics. Appl. Environ. Microbiol. 2009, 75, 1121–1128. [Google Scholar] [CrossRef] [Green Version]
- Ramayo-Caldas, Y.; Mach, N.; Lepage, P.; Levenez, F.; Denis, C.; Lemonnier, G.; Leplat, J.-J.; Billon, Y.; Berri, M.; Doré, J.; et al. Phylogenetic Network Analysis Applied to Pig Gut Microbiota Identifies an Ecosystem Structure Linked with Growth Traits. ISME J. 2016, 10, 2973–2977. [Google Scholar] [CrossRef] [Green Version]
CTRL | TRT | |
---|---|---|
Crossbred (CB) | 10 | 10 |
Nero Siciliano (NS) | 5 | 5 |
Contrast | Model Design |
---|---|
Breed contrast | Diet + Breeds |
Interaction effects in crossbred | Diet + Time + Diet: Time |
Interaction effects in Nero Siciliano | Diet + Time + Diet: Time |
Phylum (75% 1) | Family (87% 1) | Genera (95% 1) | |
---|---|---|---|
CB_CTRL 2 | 9 | 51 | 106 |
CB_TRT 2 | 10 | 55 | 110 |
NS_CTRL 3 | 9 | 48 | 109 |
NS_TRT 3 | 10 | 45 | 104 |
Phylum | Family | Genus | Mean of Relative Abundance | |||
---|---|---|---|---|---|---|
CB_CTRL | CB_TRT | NS_CTRL | NS_TRT | |||
Bacteroidota | Prevotellaceae | Prevotella | 6.56% | 7.23% | 9.86% | 9.11% |
Spirochaetota | Spirochaetaceae | Treponema | 5.59% | 6.43% | 7.33% | 5.86% |
Firmicutes | Lactobacillaceae | Lactobacillus | 4.85% | 5.76% | 5.25% | 6.04% |
Variable | F Statistics | R2 | p-Value | |
---|---|---|---|---|
Crossbreds | Diet | 5.11 | 0.05 | 0.003 * |
Time | 15.99 | 0.34 | 0.001 * | |
Nero Siciliano | Diet | 1.38 | 0.04 | 0.199 |
Time | 2.82 | 0.17 | 0.004 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Floridia, V.; Giuffrè, L.; Giosa, D.; Arfuso, F.; Aragona, F.; Fazio, F.; Chen, C.; Song, C.; Romeo, O.; D’Alessandro, E. Comparison of the Faecal Microbiota Composition Following a Dairy By-Product Supplemented Diet in Nero Siciliano and Large White × Landrace Pig Breeds. Animals 2023, 13, 2323. https://doi.org/10.3390/ani13142323
Floridia V, Giuffrè L, Giosa D, Arfuso F, Aragona F, Fazio F, Chen C, Song C, Romeo O, D’Alessandro E. Comparison of the Faecal Microbiota Composition Following a Dairy By-Product Supplemented Diet in Nero Siciliano and Large White × Landrace Pig Breeds. Animals. 2023; 13(14):2323. https://doi.org/10.3390/ani13142323
Chicago/Turabian StyleFloridia, Viviana, Letterio Giuffrè, Domenico Giosa, Francesca Arfuso, Francesca Aragona, Francesco Fazio, Cai Chen, Chengy Song, Orazio Romeo, and Enrico D’Alessandro. 2023. "Comparison of the Faecal Microbiota Composition Following a Dairy By-Product Supplemented Diet in Nero Siciliano and Large White × Landrace Pig Breeds" Animals 13, no. 14: 2323. https://doi.org/10.3390/ani13142323
APA StyleFloridia, V., Giuffrè, L., Giosa, D., Arfuso, F., Aragona, F., Fazio, F., Chen, C., Song, C., Romeo, O., & D’Alessandro, E. (2023). Comparison of the Faecal Microbiota Composition Following a Dairy By-Product Supplemented Diet in Nero Siciliano and Large White × Landrace Pig Breeds. Animals, 13(14), 2323. https://doi.org/10.3390/ani13142323