Effects of Different Doses of Multienzyme Supplementation on Growth Performance, Duodenal pH and Morphology, and Carcass Traits in Broilers Fed Diets with an Increasing Reduction in Energy
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Broilers, Diets, and Housing
2.2. Growth Performance Evaluation
2.3. Carcass Traits
2.4. Duodenal pH and Morphology
2.5. Statistical Analysis
3. Results
3.1. Growth Performance
3.2. Carcass Traits
3.3. Duodenal pH and Morphology
4. Discussion
4.1. Growth Performance
4.2. Carcass Traits
4.3. Duodenal pH and Morphology
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bailey, R.W. Structural carbohydrates. In Chemistry and Biochemistry of Herbage; Butler, G.W., Bailey, R.W., Eds.; Academic Press: New York, NY, USA, 1973; Volume 1, pp. 157–211. [Google Scholar]
- Choct, M.; Annison, G. Anti-nutritive effect of wheat pentosans in broiler chickens: Role of viscosity and gut microflora. Br. Poult. Sci. 1992, 33, 821–834. [Google Scholar] [CrossRef] [PubMed]
- Langhout, D.J. The Role of Intestinal Flora as Affected by Non-Starch Polysaccharides in Broiler Chicks. Ph.D Thesis, Wageningen Agricultural University, Wageningen, The Netherlands, 1998. Available online: https://edepot.wur.nl/196307 (accessed on 15 May 2023).
- Tejeda, O.J.; K. Kim, W. Role of Dietary Fiber in Poultry Nutrition. Animals 2021, 11, 461. [Google Scholar] [CrossRef] [PubMed]
- Józefiak, D.; Rutkowski, A.; Jensen, B.B.; Engberg, R.M. The effect of β-glucanase supplementation of barley and oat-based diets on growth performance and fermentation in broiler chicken gastrointestinal tract. Br. Poult. Sci. 2006, 47, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Latorre, J.D.; Hernandez-Velasco, X.; Bielke, L.R.; Vicente, J.L.; Wolfenden, R.; Menconi, A.; Hargis, B.M.; Tellez, G. Evaluation of a Bacillus direct-fed microbial candidate on digesta viscosity, bacterial translocation, microbiota composition and bone mineralisation in broiler chickens fed on a rye-based diet. Br. Poult. Sci. 2015, 56, 723–732. [Google Scholar] [CrossRef]
- Hashemipour, H.; Khaksar, V.; Rubio, L.A.; Veldkamp, T.; Van Krimpen, M.M. Effect of feed supplementation with a thymol plus carvacrol mixture, in combination or not with an NSP-degrading enzyme, on productive and physiological parameters of broilers fed on wheat-based diets. Anim. Feed. Sci. Technol. 2016, 211, 117–131. [Google Scholar] [CrossRef]
- Morgan, N.; Choct, M.; Toghyani, M.; Wu, S.B. Effects of dietary insoluble and soluble non-starch polysaccharides on performance and ileal and excreta moisture contents in broilers. In Proceedings of the 29th Annual Australian Poultry Science symposium, Sydney, NSW, Australia, 4–7 February 2018; Available online: https://az659834.vo.msecnd.net/eventsairaueprod/production-usyd-public/3a3d3afe331b444c9f65e7cd9a5fa20b (accessed on 15 May 2023).
- Chesson, A. Non-starch polysaccharide degrading enzymes in poultry diets: Influence of ingredients on the selection of activities. Worlds Poult. Sci. J. 2001, 57, 251–263. [Google Scholar] [CrossRef]
- Noy, Y.; Sklan, D. Digestion and absorption in the young chick. Poult. Sci. 1995, 74, 366–373. [Google Scholar] [CrossRef] [PubMed]
- Uni, Z.; Noy, Y.; Sklan, D. Posthatch changes in morphology and function of the small intestines in heavy and light strain chicks. Poult. Sci. 1995, 74, 1622–1629. [Google Scholar] [CrossRef]
- Svihus, B. Starch digestion capacity of poultry. Poult. Sci. 2014, 93, 2394–2399. [Google Scholar] [CrossRef]
- Gracia, M.I.; Araníbar, M.J.; Lázaro, R.; Medel, P.; Mateos, G.G. Alpha-amylase supplementation of broiler diets based on corn. Poult. Sci. 2003, 82, 436–442. [Google Scholar] [CrossRef]
- Marsman, G.J.; Gruppen, H.; Van Der Poel, A.F.; Kwakkel, R.P.; Verstegen, M.W.; Voragen, A.G. The effect of thermal processing and enzyme treatment of soybean meal on growth performance, ileal nutrient digestibility, and chyme characteristics in broiler chicks. Poult. Sci. 1997, 76, 864–872. [Google Scholar] [CrossRef]
- Abudabos, A. Enzyme Supplementation of Corn-Soybean Meal Diets Improves Performance in Broiler Chicken. Int. J. Poult. Sci. 2010, 9, 292–297. [Google Scholar] [CrossRef] [Green Version]
- Lemme, A.; Ravindran, V.; Bryden, W.L. Ileal digestibility of amino acids in feed ingredients for broilers. Worlds Poult. Sci. J. 2004, 60, 423–438. [Google Scholar] [CrossRef]
- Wilkie, D.C.; Van Kessel, A.G.; White, L.J.; Laarveld, B.; Drew, M.D. Dietary amino acids affect intestinal Clostridium perfringens populations in broiler chickens. Can. J. Anim. Sci. 2005, 85, 185–193. Available online: https://cdnsciencepub.com/doi/pdf/10.4141/A04-070?download=true (accessed on 19 July 2023). [CrossRef] [Green Version]
- Cowieson, A.; Roos, F. Bioefficacy of a mono-component protease in the diets of pigs and poultry: A meta-analysis of effect on ileal amino acid digestibility. J. Appl. Anim. Nutr. 2013, 2, e13. [Google Scholar] [CrossRef] [Green Version]
- Freitas, D.M.; Vieira, S.L.; Angel, C.R.; Favero, A.; Maiorka, A. Performance and nutrient utilization of broilers fed diets supplemented with a novel mono-component protease. J. Appl. Poult. Res. 2011, 20, 322–334. [Google Scholar] [CrossRef]
- Wealleans, A.; Ashour, R.; Abu Ishmais, M.; Al-Amaireh, S.; Gonzalez-Sanchez, D. Comparative effects of proteases on performance, carcass traits and gut structure of broilers fed diets reduced in protein and amino acids. J. Anim. Sci. Technol. 2023. [Google Scholar] [CrossRef]
- Giannenas, I.; Bonos, E.; Anestis, V.; Filioussis, G.; Papanastasiou, D.K.; Bartzanas, T.; Papaioannou, N.; Tzora, A.; Skoufos, I. Effects of protease addition and replacement of soybean meal by corn gluten meal on the growth of broilers and on the environmental performances of a broiler production system in greece. PLoS ONE 2017, 12, e0169511. [Google Scholar] [CrossRef] [Green Version]
- Rada, V.; Lichovníková, M.; Foltyn, M. The effect of serine protease on broiler growth and carcass quality. Acta Fytotech. Zootech. 2014, 17, 87–89. [Google Scholar] [CrossRef] [Green Version]
- Borda-Molina, D.; Zuber, T.; Siegert, W.; Camarinha-Silva, A.; Feuerstein, D.; Rodehutscord, M. Effects of protease and phytase supplements on small intestinal microbiota and amino acid digestibility in broiler chickens. Poult. Sci. 2019, 98, 2906–2918. [Google Scholar] [CrossRef]
- Lourenco, J.M.; Nunn, S.C.; Lee, E.J.; Dove, C.R.; Callaway, T.R.; Azain, M.J. Effect of supplemental protease on growth performance and excreta microbiome of broiler chicks. Microorganisms 2020, 8, 475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kocher, A.; Choct, M.; Ross, G.; Broz, J.; Chung, T.K. Effects of enzyme combinations on apparent metabolizable energy of corn-soybean meal-based diets in broilers. J. Appl. Poult. Res. 2003, 12, 275–283. [Google Scholar] [CrossRef]
- Cowieson, A.J.; Adeola, O. Carbohydrases, protease, and phytase have an additive beneficial effect in nutritionally marginal diets for broiler chicks. Poult. Sci. 2005, 84, 1860–1867. [Google Scholar] [CrossRef] [PubMed]
- Olukosi, O.A.; Cowieson, A.J.; Adeola, O. Age-related influence of a cocktail of xylanase, amylase, and protease or phytase individually or in combination in broilers. Poult. Sci. 2007, 86, 77–86. [Google Scholar] [CrossRef]
- Cowieson, A.J.; Ravindran, V. Sensitivity of broiler starters to three doses of an enzyme cocktail in maize-based diets. Br. Poult. Sci. 2008, 49, 340–346. [Google Scholar] [CrossRef] [Green Version]
- Cowieson, A.J.; Ravindran, V. Effect of exogenous enzymes in maize-based diets varying in nutrient density for young broilers: Growth performance and digestibility of energy, minerals and amino acids. Br. Poult. Sci. 2008, 49, 37–44. [Google Scholar] [CrossRef]
- Yegani, M.; Korver, D.R. Effects of corn source and exogenous enzymes on growth performance and nutrient digestibility in broiler chickens. Poult. Sci. 2013, 92, 1208–1220. [Google Scholar] [CrossRef]
- Wealleans, A.L.; Walsh, M.C.; Romero, L.F.; Ravindran, V. Comparative effects of two multi-enzyme combinations and a Bacillus probiotic on growth performance, digestibility of energy and nutrients, disappearance of non-starch polysaccharides, and gut microflora in broiler chickens. Poult. Sci. 2017, 96, 4287–4297. [Google Scholar] [CrossRef]
- Adebiyi, A.O.; Olukosi, O.A. Metabolizable energy content of wheat distillers’ dried grains with solubles supplemented with or without a mixture of carbohydrases and protease for broilers and turkeys. Poult. Sci. 2015, 94, 1270–1276. [Google Scholar] [CrossRef]
- Olukosi, O.A.; Beeson, L.A.; Englyst, K.; Romero, L.F. Effects of exogenous proteases without or with carbohydrases on nutrient digestibility and disappearance of non-starch polysaccharides in broiler chickens. Poult. Sci. 2015, 94, 2662–2669. [Google Scholar] [CrossRef]
- Liu, S.Y.; Cadogan, D.J.; Péron, A.; Truong, H.H.; Selle, P.H. A combination of xylanase, amylase and protease influences growth performance, nutrient utilisation, starch and protein digestive dynamics in broiler chickens offered maize-, sorghum- and wheat-based diets. Anim. Prod. Sci. 2015, 55, 1255–1263. [Google Scholar] [CrossRef]
- Amerah, A.M.; Romero, L.F.; Awati, A.; Ravindran, V. Effect of exogenous xylanase, amylase, and protease as single or combined activities on nutrient digestibility and growth performance of broilers fed corn/soy diets. Poult. Sci. 2017, 96, 807–816. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.K.; Tiwari, U.P.; Berrocoso, J.D.; Dersjant-Li, Y.; Awati, A.; Jha, R. Effects of a combination of xylanase, amylase and protease, and probiotics on major nutrients including amino acids and non-starch polysaccharides utilization in broilers fed different level of fibers. Poult. Sci. 2019, 98, 5571–5581. [Google Scholar] [CrossRef]
- Meng, X.; Slominski, B.A. The nutritive value of corn, soybean meal, canola meal or peas for broiler chickens as affected by a multi-carbohydrase preparation of cell wall degrading enzymes. Poult. Sci. 2005, 84, 1242–1251. [Google Scholar] [CrossRef]
- Cowieson, A.J.; Bedford, M.R.; Ravindran, V. Interactions between xylanase and glucanase in maize-soy-based diets for broilers. Br. Poult. Sci. 2010, 51, 246–257. [Google Scholar] [CrossRef]
- Kaczmarek, S.A.; Rogiewicz, A.; Mogielnicka, M.; Rutkowski, A.; Jones, R.O.; Slominski, B.A. The effect of protease, amylase, and nonstarch polysaccharide-degrading enzyme supplementation on nutrient utilization and growth performance of broiler chickens fed corn-soybean meal-based diets. Poult. Sci. 2014, 93, 1745–1753. [Google Scholar] [CrossRef] [PubMed]
- Munyaka, P.M.; Nandha, N.K.; Kiarie, E.; Nyachoti, C.M.; Khafipour, E. Impact of combined β-glucanase and xylanase enzymes on growth performance, nutrients utilization and gut microbiota in broiler chickens fed corn or wheat-based diets. Poult. Sci. 2016, 95, 528–540. [Google Scholar] [CrossRef]
- Morgan, N.; Bhuiyan, M.M.; Hopcroft, R. Non-starch polysaccharide degradation in the gastrointestinal tract of broiler chickens fed commercial-type diets supplemented with either a single dose of xylanase, a double dose of xylanase, or a cocktail of non-starch polysaccharide-degrading enzymes. Poult. Sci. 2022, 101, 101846. [Google Scholar] [CrossRef]
- Cho, J.H.; Zhao, P.; Kim, I.H. Effects of emulsifier and multi-enzyme in different energy density diet on growth performance, blood profiles, and relative organ weight in broiler chickens. J. Agric. Sci. 2012, 4, 161. [Google Scholar]
- Hussein, E.O.S.; Suliman, G.M.; Alowaimer, A.N.; Ahmed, S.H.; Abd El-Hack, M.E.; Taha, A.E.; Swelum, A.A. Growth, carcass characteristics, and meat quality of broilers fed a low-energy diet supplemented with a multienzyme preparation. Poult. Sci. 2020, 99, 1988–1994. [Google Scholar] [CrossRef]
- Classen, H.L. Response of Broiler Chickens to Dietary Energy and its Relationship to Amino Acid Nutrition. In Proceedings of the 24th Australian Poultry Science Symposium, Sydney, Australia, 17 February 2013; pp. 107–114. Available online: http://bibliotecavirtual.corpmontana.com/bitstream/123456789/3939/1/M003401.pdf (accessed on 16 May 2023).
- Thirumalaisamy, G.; Muralidharan, J.; Senthilkumar, S.; Hema Sayee, R.; Priyadharsini, M. Cost-effective feeding of poultry. Int. J. Sci. Env. Technol. 2016, 5, 3997–4005. Available online: https://www.ijset.net/journal/1410.pdf (accessed on 19 July 2023).
- Johnson, C.A.; Duong, T.; Latham, R.E.; Shirley, R.B.; Lee, J.T. Effects of amino acid and energy density on growth performance and processing yield of mixed-sex Cobb 700× MV broiler chickens. J. Appl. Poult. Res. 2020, 29, 269–283. [Google Scholar] [CrossRef]
- Hafez, H.M.; Attia, Y.A. Challenges to the Poultry Industry: Current Perspectives and Strategic Future After the COVID-19 Outbreak. Front. Vet. Sci. 2020, 7, 516. [Google Scholar] [CrossRef] [PubMed]
- Classen, H.L. Diet energy and feed intake in chickens. Anim. Feed. Sci. Technol. 2017, 233, 13–21. [Google Scholar] [CrossRef]
- Haetinger, V.S.; Dalmoro, Y.K.; Godoy, G.L.; Lang, M.B.; De Souza, M.B.; Aristimunha, P.; Stefanello, C. Optimizing cost, growth performance and nutrient absorption with a bio-emulsifier based on lysophospholipids for broiler chickens. Poult. Sci. 2021, 100, 101025. [Google Scholar] [CrossRef]
- Zanella, I.; Sakomura, N.K.; Silversides, F.G.; Fiqueirdo, A.; Pack, M. Effect of enzyme supplementation of broiler diets based on corn and soybeans. Poult. Sci. 1999, 78, 561–568. [Google Scholar] [CrossRef]
- González-Sánchez, D.; Kaczmarek, S.A. Validation of the Nutritional Matrix of a Multienzyme Complex through Performance and Digestibility Improvement. In Proceedings of the 7th Mediterranean Poultry Summit, Cordoba, Spain, 8–10 June 2022; Available online: http://www.mpn-wpsa.org/cordoba2020/proceedings/papers/130139.pdf (accessed on 2 May 2023).
- Alqhtani, A.H.; Al Sulaiman, A.R.; Alharthi, A.S.; Abudabos, A.M. Effect of Exogenous Enzymes Cocktail on Performance, Carcass Traits, Biochemical Metabolites, Intestinal Morphology, and Nutrient Digestibility of Broilers Fed Normal and Low-Energy Corn–Soybean Diets. Animals 2022, 12, 1094. [Google Scholar] [CrossRef]
- Hajati, H. Effects of enzyme supplementation on performance, carcass characteristics, carcass composition and some blood parameters of broiler chicken. Am. J. Anim. Vet. Sci. 2010, 5, 221–227. [Google Scholar] [CrossRef] [Green Version]
- Hajati, H.; Rezaei, M.; Sayyahzadeh, H. The effects of enzyme supplementation on performance, carcass characteristics and some blood parameters of broilers fed on corn-soybean meal-wheat diets. Int. J. Poult. Sci. 2009, 8, 1199–1205. [Google Scholar] [CrossRef] [Green Version]
- Zakaria, H.A.H.; Jalal, M.A.R.; Abu Ishmais, M.A. The influence of supplemental multi-enzyme feed additive on the performance, carcass characteristics and meat quality traits of broiler chickens. Int. J. Poul Sci. 2010, 9, 126–133. [Google Scholar] [CrossRef] [Green Version]
- Fouad, A.M.; El-Senousey, H.K. Nutritional factors affecting abdominal fat deposition in poultry: A review. Asian-Australas. J. Anim. Sci. 2014, 27, 1057–1068. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mabray, C.J.; Waldroup, P.W. The influence of dietary energy and amino acid levels on abdominal fat pad development of the broiler chicken. Poult. Sci. 1981, 60, 151–159. [Google Scholar] [CrossRef]
- Deaton, J.W.; Lott, B.D. Age and dietary energy effect on broiler abdominal fat deposition. Poult. Sci. 1985, 64, 2161–2164. [Google Scholar] [CrossRef]
- Kassim, H.; Suwanpradit, S. The effect of energy levels on the carcass composition of the broilers. Asian J. Anim. Sci. 1996, 9, 331–335. [Google Scholar] [CrossRef]
- Rabie, M.H.; Szilagyi, M. Effects of L-carnitine supplementation of diets differing in energy levels on performance, abdominal fat content, and yield and composition of edible meat of broilers. Br. J. Nutr. 1998, 80, 391–400. [Google Scholar] [CrossRef] [Green Version]
- Jayaraman, S.; Thangavel, G.; Kurian, H.; Mani, R.; Mukkalil, R.; Chirakkal, H. Bacillus subtilis PB6 improves intestinal health of broiler chickens challenged with Clostridium perfringens-induced necrotic enteritis. Poult. Sci. 2013, 92, 370–374. [Google Scholar] [CrossRef] [PubMed]
- Karimi, K.; Zhandi, M. The effect of β-mannanase and β-glucanase on small intestine morphology in male broilers fed diets containing various levels of metabolizable energy. J. Appl. Anim. Res. 2015, 43, 324–329. [Google Scholar] [CrossRef] [Green Version]
- Zou, J.; Zheng, P.; Zhang, K.; Ding, X.; Bai, S. Effects of exogenous enzymes and dietary energy on performance and digestive physiology of broilers. J. Anim. Sci. Biotechnol. 2013, 4, 14. [Google Scholar] [CrossRef] [Green Version]
- Mathlouthi, N.; Mallet, S.; Saulnier, L.; Quemener, B.; Larbier, M. Effects of xylanase and β-glucanase addition on performance, nutrient digestibility, and physico-chemical conditions in the small intestine contents and caecal microflora of broiler chickens fed a wheat and barley-based diet. Anim. Res. 2002, 51, 395–406. [Google Scholar] [CrossRef]
- Basmacioğlu Malayoğlu, H.; Baysal, Ş.; Misirlioğlu, Z.; Polat, M.; Yilmaz, H.; Turan, N. Effects of oregano essential oil with or without feed enzymes on growth performance, digestive enzyme, nutrient digestibility, lipid metabolism and immune response of broilers fed on wheat–soybean meal diets. Br. Poult. Sci. 2010, 51, 67–80. [Google Scholar] [CrossRef]
0–14 Days (Starter) | 14–28 Days (Grower) | 28–35 Days (Finisher) | |||||||
---|---|---|---|---|---|---|---|---|---|
Ingredients (g/kg) | PC | NC1 1 | NC2 1 | PC | NC1 1 | NC2 1 | PC | NC1 1 | NC2 1 |
Corn | 584.00 | 586.02 | 562.52 | 649.21 | 636.29 | 621.10 | 701.83 | 680.95 | 669.78 |
Soybean meal, 46% CP | 343.13 | 361.92 | 356.64 | 251.92 | 310.39 | 306.66 | 179.74 | 254.08 | 254.92 |
Soybean oil | 10.00 | 2.00 | 2.00 | 10.00 | 6.92 | 5.99 | 15.00 | 15.00 | 13.20 |
Corn gluten meal, 60% CP | 23.72 | 10.00 | 10.00 | 50.33 | 10.00 | 10.00 | 63.37 | 12.64 | 10.00 |
Limestone | 11.65 | 12.81 | 12.93 | 11.39 | 11.10 | 11.18 | 12.07 | 11.70 | 11.75 |
Wheat bran | - | - | 29.37 | - | - | 20.00 | - | - | 15.00 |
Monocalcium phosphate | 11.09 | 11.00 | 10.63 | 10.31 | 10.07 | 9.82 | 9.92 | 9.62 | 9.41 |
Sodium chloride | 1.76 | 1.92 | 1.85 | 1.45 | 1.95 | 1.90 | 1.14 | 1.77 | 1.77 |
Sodium bicarbonate | 2.43 | 2.57 | 2.24 | 2.86 | 2.16 | 2.19 | 3.32 | 2.42 | 2.40 |
L-Lysine HCl | 3.89 | 3.39 | 3.44 | 4.83 | 3.30 | 3.33 | 5.82 | 3.87 | 3.80 |
DL-Methionine | 3.57 | 3.67 | 3.66 | 2.94 | 3.25 | 3.24 | 2.86 | 3.25 | 3.27 |
L-Threonine | 1.16 | 1.10 | 1.12 | 1.16 | 0.97 | 0.99 | 1.33 | 1.10 | 1.10 |
Vitamin-mineral premix 2 | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 |
Betaine | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 |
Phytase 3 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 |
Bio-emulsifier 4 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 |
Feed cost (EUR/t) 5 | 425.8 | 416.7 | 414.3 | 414.7 | 404.5 | 402.2 | 407.0 | 397.1 | 394.0 |
Cost difference vs. PC (EUR/t) | −9.1 | −11.5 | −10.2 | −12.5 | −9.9 | −13.0 | |||
Calculated nutrient composition (%, as fed basis) | |||||||||
Dry matter | 87.68 | 87.56 | 87.56 | 87.68 | 87.56 | 87.54 | 87.72 | 87.62 | 87.59 |
ME, kcal/kg | 2900 | 2820 | 2780 | 3000 | 2920 | 2880 | 3100 | 3020 | 2980 |
Crude protein | 22.65 | 22.65 | 22.65 | 20.5 | 20.5 | 20.5 | 18.5 | 18.5 | 18.5 |
Crude fat | 3.70 | 2.92 | 2.92 | 3.84 | 3.50 | 3.42 | 4.43 | 4.38 | 4.21 |
Crude fiber | 3.08 | 3.17 | 3.36 | 2.73 | 2.99 | 3.12 | 2.46 | 2.77 | 2.89 |
SID Lysine | 1.32 | 1.32 | 1.32 | 1.20 | 1.20 | 1.20 | 1.10 | 1.10 | 1.10 |
SID Methionine | 0.68 | 0.68 | 0.68 | 0.60 | 0.60 | 0.60 | 0.58 | 0.58 | 0.58 |
SID Methionine + cysteine | 0.96 | 0.96 | 0.96 | 0.87 | 0.87 | 0.87 | 0.82 | 0.82 | 0.82 |
SID Threonine | 0.81 | 0.81 | 0.81 | 0.73 | 0.73 | 0.73 | 0.67 | 0.67 | 0.67 |
SID Arginine | 1.32 | 1.33 | 1.33 | 1.10 | 1.20 | 1.20 | 0.91 | 1.05 | 1.05 |
SID Tryptophan | 0.22 | 0.23 | 0.23 | 0.19 | 0.20 | 0.20 | 0.15 | 0.17 | 0.17 |
Ca | 0.95 | 0.95 | 0.95 | 0.85 | 0.85 | 0.85 | 0.85 | 0.85 | 0.85 |
Digestible phosphorous | 0.48 | 0.48 | 0.48 | 0.45 | 0.45 | 0.45 | 0.43 | 0.43 | 0.43 |
Na | 0.15 | 0.15 | 0.15 | 0.14 | 0.14 | 0.14 | 0.14 | 0.14 | 0.14 |
Cl | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 |
PC | NC1 | NC2 | NC1 + KZP300 | NC2 + KZP500 | SEM | p-Value | |
---|---|---|---|---|---|---|---|
BW d0, kg | 0.046 | 0.045 | 0.045 | 0.045 | 0.045 | 0.0003 | 0.7743 |
BW d14, kg | 0.550 | 0.536 | 0.531 | 0.536 | 0.523 | 0.0068 | 0.0963 |
BW d28, kg | 1.565 ab | 1.438 c | 1.416 c | 1.581 a | 1.535 b | 0.0110 | <0.001 |
BW d35, kg | 2.077 ab | 1.921 c | 1.872 d | 2.098 a | 2.047 b | 0.0111 | <0.001 |
BWG 0–14, kg | 0.505 | 0.491 | 0.486 | 0.491 | 0.478 | 0.0069 | 0.1121 |
BWG 14–28, kg | 1.015 a | 0.902 b | 0.885 b | 1.046 a | 1.013 a | 0.0089 | <0.001 |
BWG 28–35, kg | 0.511 ab | 0.483 bc | 0.456 c | 0.516 a | 0.512 ab | 0.0073 | <0.001 |
BWG 0–35, kg | 2.031 ab | 1.876 c | 1.827 d | 2.053 a | 2.002 b | 0.0112 | <0.001 |
FI 0–14, kg | 0.595 | 0.589 | 0.593 | 0.584 | 0.574 | 0.0072 | 0.2896 |
FI 14–28, kg | 1.521 | 1.511 | 1.488 | 1.543 | 1.505 | 0.0141 | 0.1046 |
FI 28–35, kg | 0.836 b | 0.855 ab | 0.867 ab | 0.832 b | 0.890 a | 0.0123 | 0.0134 |
FI 0–35, kg | 2.952 | 2.955 | 2.948 | 2.960 | 2.970 | 0.0185 | 0.9284 |
FCR 0–14 | 1.180 | 1.200 | 1.220 | 1.190 | 1.204 | 0.0100 | 0.0917 |
FCR 14–28 | 1.500 b | 1.676 a | 1.682 a | 1.478 b | 1.487 b | 0.0090 | <0.001 |
FCR 28–35 | 1.640 c | 1.768 b | 1.900 a | 1.613 c | 1.742 b | 0.0136 | <0.001 |
FCR 0–35 | 1.421 d | 1.538 b | 1.574 a | 1.412 d | 1.452 c | 0.0048 | <0.001 |
PC | NC1 | NC2 | NC1 + KZP300 | NC2 + KZP500 | SEM | p-Value | |
---|---|---|---|---|---|---|---|
Dressing 1, % | 74.56 | 74.01 | 72.14 | 75.29 | 75.20 | 0.1984 | 0.513 |
Breast 2, % | 32.22 | 31.75 | 30.02 | 31.55 | 31.14 | 0.1300 | 0.241 |
Thigh 3, % | 16.61 ab | 16.00 b | 15.95 b | 17.03 a | 16.70 a | 0.0937 | 0.010 |
Drumstick 3, % | 8.67 | 8.15 | 8.07 | 8.90 | 8.77 | 0.0958 | 0.425 |
Abdominal fat, % | 1.33 a | 1.29 a | 1.17 b | 1.18 b | 1.08 c | 0.0496 | 0.040 |
Liver, % | 2.32 | 2.38 | 2.33 | 2.52 | 2.50 | 0.0660 | 0.244 |
Gizzard, % | 0.96 | 1.09 | 0.89 | 0.90 | 1.00 | 0.0188 | 0.152 |
Heart, % | 0.31 | 0.32 | 0.33 | 0.37 | 0.36 | 0.0039 | 0.363 |
Spleen, % | 0.07 | 0.08 | 0.06 | 0.08 | 0.06 | 0.0023 | 0.203 |
Bursa, % | 0.06 | 0.05 | 0.05 | 0.08 | 0.05 | 0.0025 | 0.452 |
PC | NC1 | NC2 | NC1 + KZP300 | NC2 + KZP500 | SEM | p-Value | |
---|---|---|---|---|---|---|---|
Villus height, μm | 1430.635 a | 1340.480 b | 1296.048 b | 1404.012 a | 1320.151 b | 14.327 | <0.001 |
Crypt depth, μm | 194.807 ab | 198.384 a | 199.936 a | 181.204 b | 186.504 ab | 3.848 | 0.0046 |
VH:CD ratio | 7.362 ab | 6.785 bc | 6.509 c | 7.781 a | 7.098 bc | 0.158 | <0.001 |
pH | 5.502 b | 5.435 b | 5.884 a | 5.493 b | 5.469 b | 0.031 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hashim, M.; Gonzalez-Sanchez, D.; Wealleans, A.; Abdelkader, M.; El-Safty, S.A.R.; Abdelhady, A.R.Y. Effects of Different Doses of Multienzyme Supplementation on Growth Performance, Duodenal pH and Morphology, and Carcass Traits in Broilers Fed Diets with an Increasing Reduction in Energy. Animals 2023, 13, 2378. https://doi.org/10.3390/ani13142378
Hashim M, Gonzalez-Sanchez D, Wealleans A, Abdelkader M, El-Safty SAR, Abdelhady ARY. Effects of Different Doses of Multienzyme Supplementation on Growth Performance, Duodenal pH and Morphology, and Carcass Traits in Broilers Fed Diets with an Increasing Reduction in Energy. Animals. 2023; 13(14):2378. https://doi.org/10.3390/ani13142378
Chicago/Turabian StyleHashim, Mosaad, David Gonzalez-Sanchez, Alexandra Wealleans, Mohamed Abdelkader, Salah Abdel Rahman El-Safty, and Abdel Rahman Y. Abdelhady. 2023. "Effects of Different Doses of Multienzyme Supplementation on Growth Performance, Duodenal pH and Morphology, and Carcass Traits in Broilers Fed Diets with an Increasing Reduction in Energy" Animals 13, no. 14: 2378. https://doi.org/10.3390/ani13142378
APA StyleHashim, M., Gonzalez-Sanchez, D., Wealleans, A., Abdelkader, M., El-Safty, S. A. R., & Abdelhady, A. R. Y. (2023). Effects of Different Doses of Multienzyme Supplementation on Growth Performance, Duodenal pH and Morphology, and Carcass Traits in Broilers Fed Diets with an Increasing Reduction in Energy. Animals, 13(14), 2378. https://doi.org/10.3390/ani13142378