Body Composition Estimation in Breeding Ewes Using Live Weight and Body Parameters Utilizing Image Analysis
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Protocol and Approach
2.2. Data Collection
2.2.1. CT Scans
2.2.2. Image Capturing
2.3. Statistical Analysis
3. Results
3.1. Descriptive Statistics
3.2. Application Accuracy
3.3. Factor Analysis
3.4. Fat
3.5. Muscle
3.6. Bone
3.7. Summary of Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Silva, S.; Cadavez, V. Real-time ultrasound (RTU) imaging methods for quality control of meats. In Computer Vision Technology in the Food and Beverage Industries; Woodhead Publishing: Sawston, UK, 2012; pp. 277–329. [Google Scholar]
- Keinprecht, H.; Pichler, M.; Pothmann, H.; Huber, J.; Iwersen, M.; Drillich, M. Short term repeatability of body fat thickness measurement and body condition scoring in sheep as assessed by a relatively small number of assessors. Small Rumin. Res. 2016, 139, 30–38. [Google Scholar] [CrossRef]
- Kenyon, P.R.; Maloney, S.K.; Blache, D. Review of sheep body condition score in relation to production characteristics. N. Z. J. Agric. Res. 2014, 57, 38–64. [Google Scholar] [CrossRef]
- Russel, A. Body condition scoring of sheep. Practice 1984, 6, 91. [Google Scholar] [CrossRef]
- Tait, I.M.; Kenyon, P.R.; Garrick, D.J.; Lopez-Villalobos, N.; Pleasants, A.B.; Hickson, R.E. Associations of body condition score and change in body condition score with lamb production in New Zealand Romney ewes. N. Z. J. Anim. Sci. Prod. 2019, 79, 91–94. [Google Scholar]
- Van Burgel, A.J.; Oldham, C.M.; Behrendt, R.; Curnow, M.; Gordon, D.J.; Thompson, A.N. The merit of condition score and fat score as alternatives to liveweight for managing the nutrition of ewes. Anim. Prod. Sci. 2011, 51, 834–841. [Google Scholar] [CrossRef] [Green Version]
- McHugh, N.; McGovern, F.; Creighton, P.; Pabiou, T.; McDermott, K.; Wall, E.; Berry, D.P. Mean difference in live-weight per incremental difference in body condition score estimated in multiple sheep breeds and crossbreds. Animal 2019, 13, 549–553. [Google Scholar] [CrossRef] [PubMed]
- Termatzidou, S.A.; Siachos, N.; Valergakis, G.E.; Georgakopoulos, A.; Patsikas, M.N.; Arsenos, G. Association of body condition score with ultrasound backfat and longissimus dorsi muscle depth in different breeds of dairy sheep. Livest. Sci. 2020, 236, 104019. [Google Scholar] [CrossRef]
- Moro, A.B.; Pires, C.C.; da Silva, L.P.; Menegon, A.M.; Venturini, R.S.; Martins, A.A.; Galvani, D.B. Prediction of physical characteristics of the lamb carcass using in vivo bioimpedance analysis. Animal 2019, 13, 1744–1749. [Google Scholar] [CrossRef]
- Miller, D.; Ellen, J.B.; Joanne, L.H.; Fiona, A.; Clare, L.A. Dual-energy X-ray absorptiometry scans accurately predict differing body fat content in live sheep. J. Anim. Sci. Biotechnol. 2019, 10, 248–253. [Google Scholar] [CrossRef]
- Cam, M.A.; Garipoglu, A.V.; Koray, K. Body condition status at mating affects gestation length, offspring yield and return rate in ewes. Arch. Für Tierz. 2018, 61, 221–228. [Google Scholar] [CrossRef]
- MacLaughlin, S.M.; Walker, S.K.; Roberts, C.T.; Kleemann, D.O.; McMillen, I.C. Periconceptional nutrition and the relationship between maternal body weight changes in the periconceptional period and feto-placental growth in the sheep. J. Physiol. 2005, 565, 111–124. [Google Scholar] [CrossRef] [PubMed]
- Borg, R.C.; Notter, D.R.; Kott, R.W. Phenotypic and genetic associations between lamb growth traits and adult ewe body weights in western range sheep. J. Anim. Sci. 2009, 87, 3506–3514. [Google Scholar] [CrossRef] [PubMed]
- Fthenakis, G.C.; Mavrogianni, V.S.; Gallidis, E.; Papadopoulos, E. Interactions between parasitic infections and reproductive efficiency in sheep. Vet. Parasitol. 2015, 208, 56–66. [Google Scholar] [CrossRef] [PubMed]
- Manly, H.; Shackell, G.; Greer, G.J.; Everett-Hincks, J. The association of ewe body condition with weight of lamb weaned. Proc. N. Z. Soc. Anim. Prod. 2011, 71, 62–65. [Google Scholar]
- Ribeiro, F.; Thompson, A.; Aragon, S.; Hosford, A.; Hergenreder, J.; Jennings, M.; Johnson, B. Comparison of real-time ultrasound measurements for body composition traits to carcass and camera data in feedlot steers. Prof. Anim. Sci. 2014, 30, 597–601. [Google Scholar] [CrossRef]
- Dias, L.; Silva, S.; Teixeira, A. Simultaneously prediction of sheep and goat carcass composition and body fat depots using in vivo ultrasound measurements and live weight. Res. Vet. Sci. 2020, 133, 180–187. [Google Scholar] [CrossRef]
- Morales-Martinez, M.A.; Arce-Recinos, C.; Mendoza-Taco, M.M.; Luna-Palomera, C.; Ramirez-Bautista, M.A.; Piñeiro-Vazquez, Á.T.; Vicente-Perez, R.; Tedeschi, L.O.; Chay-Canul, A.J. Developing equations for predicting internal body fat in Pelibuey sheep using ultrasound measurements. Small Rumin. Res. 2020, 183, 106031. [Google Scholar] [CrossRef]
- Kvame, T.; Vangen, O. Selection for lean weight based on ultrasound and CT in a meat line of sheep. Livest. Sci. 2007, 106, 232–242. [Google Scholar] [CrossRef]
- Macfarlane, J.M.; Lewis, R.M.; Emmans, G.C.; Young, M.J.; Simm, G. Predicting carcass composition of terminal sire sheep using X-ray computed tomography. Anim. Sci. 2007, 82, 289–300. [Google Scholar] [CrossRef]
- Johnson, P.; Juengel, J.; Bain, W. Predicting internal adipose from selected computed tomography images in sheep. N. Z. J. Anim. Sci. Prod. 2020, 80, 113–116. [Google Scholar]
- Bain, W.; Hickey, S.; Clarke, S.; McEwan, J. Estimation of Computed Tomography (CT) Predicted Meat Yield in New Zealand Lamb. In Proceedings of the 11th World Congress on Genetics Applied to Livestock Production, Auckland, New Zealand, 11–16 February 2018. [Google Scholar]
- Riva, J.; Rizzi, R.; Marelli, S.; Cavalchini, L.G. Body measurements in Bergamasca sheep. Small Rumin. Res. 2004, 55, 221–227. [Google Scholar] [CrossRef]
- Yan, Q.; Ding, L.; Wei, H.; Wang, X.; Jiang, C.; Degen, A. Body weight estimation of yaks using body measurements from image analysis. Measurement 2019, 140, 76–80. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, Z.; Zhang, C.; Yin, S.; Wang, W.; Song, R. Body Weight Estimation of Yak Based on Cloud Edge Computing. EURASIP J. Wirel. Commun. Netw. 2021, 1–20. [Google Scholar] [CrossRef]
- Yilmaz, O.; Cemal, I.; Karaca, O. Estimation of mature live weight using some body measurements in Karya sheep. Trop. Anim. Health Prod. 2013, 45, 397–403. [Google Scholar] [CrossRef]
- Topai, M.; Macit, M. Prediction of Body Weight from Body Measurements in Morkaraman Sheep. J. Appl. Anim. Res. 2004, 25, 97–100. [Google Scholar] [CrossRef]
- Iqbal, F.; Ali, M.; Huma, Z.; Raziq, A. Predicting Live Body Weight Of Harnai Sheep Through Penalized Regression Models. J. Anim. Plant Sci. 2019, 29, 1541–1548. [Google Scholar]
- Sabbioni, A.; Beretti, V.; Superchi, P.; Ablondi, M. Body weight estimation from body measures in Cornigliese sheep breed. Ital. J. Anim. Sci. 2020, 19, 25–30. [Google Scholar] [CrossRef]
- Burke, J.; Nuthall, P.L.; McKinnon, A.E. An Analysis of the Feasibility Of Using Image Processing To Estimate the Live Weight of Sheep; Farm Hortic. Farm and Horticultural Management Group Applied Management and Computing Division Lincoln University: Canterbury, New Zealand, 2004. [Google Scholar]
- Zhang, A.L.N.; Wu, B.P.; Jiang, C.X.H.; Xuan, D.C.Z.; Ma, E.Y.H.; Zhang, F.Y.A. Development and validation of a visual image analysis for monitoring the body size of sheep. J. Appl. Anim. Res. 2018, 46, 1004–1015. [Google Scholar] [CrossRef]
- Abdelhady, A.; Hassanien, A.E.; Awad, Y.; El-Gayar, M.; Fahmy, A. Automatic Sheep Weight Estimation Based on K-Means Clustering and Multiple Linear Regression. In Proceedings of the International Conference on Advanced Intelligent Systems and Informatics 2018; Springer International: Manila, Philippines, 2019; pp. 546–555. [Google Scholar]
- Zhang, A.; Wu, B.; Wuyun, C.; Jiang, D.; Xuan, E.; Ma, F. Algorithm of sheep body dimension measurement and its applications based on image analysis. Comput. Electron. Agric. 2018, 153, 33–45. [Google Scholar] [CrossRef]
- Puth, M.-T.; Neuhäuser, M.; Ruxton, G.D. Effective use of Spearman’s and Kendall’s correlation coefficients for association between two measured traits. Anim. Behav. 2015, 102, 77–84. [Google Scholar] [CrossRef] [Green Version]
- Khojastehkey, M.; Aslaminejad, A.A.; Shariati, M.M.; Dianat, R. Body size estimation of new born lambs using image processing and its effect on the genetic gain of a simulated population. J. Appl. Anim. Res. 2016, 44, 326–330. [Google Scholar] [CrossRef] [Green Version]
- Doeschl, A.B.; Green, D.M.; Whittemore, C.T.; Schofield, C.P.; Fisher, A.V.; Knap, P.W. The relationship between the body shape of living pigs and their carcass morphology and composition. Anim. Sci. 2004, 79, 73–83. [Google Scholar] [CrossRef] [Green Version]
- Bautista-Díaz, E.; Mezo-Solis, J.A.; Herrera-Camacho, J.; Cruz-Hernández, A.; Gomez-Vazquez, A.; Tedeschi, L.O.; Lee-Rangel, H.A.; Vargas-Bello-Pérez, E.; Chay-Canul, A.J. Prediction of Carcass Traits of Hair Sheep Lambs Using Body Measurements. Animals 2020, 10, 1276. [Google Scholar] [CrossRef] [PubMed]
- Lonergan, S.M.; Topel, D.G.; Marple, D.N. Chapter 8–Methods to measure body composition of domestic animals. In The Science of Animal Growth and Meat Technology, 2nd ed.; Lonergan, S.M., Topel, D.G., Marple, D.N., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 125–146. [Google Scholar]
- Cottle, D. International Sheep and Wool Handbook, 1st ed.; Nottingham University Press: Nottingham, UK, 2010; p. 766. [Google Scholar]
- Maeno, H.; Oishi, K.; Hirooka, H. Interspecies differences in the empty body chemical composition of domestic animals. Animal 2013, 7, 1148–1157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Item | Minimum | Maximum | Mean | Std Deviation |
---|---|---|---|---|
Fat (kg) | 0.88 | 17.65 | 5.26 | 3.00 |
Muscle (kg) | 12.65 | 20.78 | 16.22 | 1.49 |
Bone (kg) | 2.03 | 3.77 | 2.68 | 0.32 |
BCS | 2.0 | 4.5 | 2.72 | 0.52 |
LW (kg) | 44.00 | 88.50 | 58.92 | 7.83 |
Chest width (mm) | 220.3 | 360.2 | 270.2 | 20.8 |
Angle length (mm) | 670.1 | 870.6 | 770.9 | 40.2 |
Body length (mm) | 600.7 | 810.6 | 710.7 | 40.5 |
Side length (mm) | 640.7 | 870.1 | 760.6 | 40.4 |
Front height (mm) | 540.9 | 670.8 | 620.2 | 20.7 |
back height (mm) | 560.1 | 710.6 | 640.0 | 30.0 |
Depth (mm) | 320.6 | 470.0 | 380.2 | 20.6 |
Top length (mm) | 670.5 | 950.7 | 780.6 | 50.4 |
Width (mm) | 270.8 | 370.3 | 310.9 | 20.1 |
Back width (mm) | 200.0 | 380.5 | 300.7 | 20.9 |
Top area (mm2) | 13,543 | 288,061 | 197,304.6 | 28,909.4 |
Side area (mm2) | 216,830 | 316,730 | 283,703.6 | 31,401.9 |
Values | Angle Length | Body Length | Height | Depth | Top Length | Width | Side Length |
---|---|---|---|---|---|---|---|
Weaning | 5% | 4% | 4% | 3% | 5% | 4% | n/a |
Pre-mating | 7% | 3% | 3% | 4% | 6% | 5% | 4% |
Component Matrix | |||
---|---|---|---|
Component | |||
1 | 2 | 3 | |
BCS | 0.789 | ||
LW | 0.707 | ||
Chest width | 0.827 | ||
Angle length | 0.805 | ||
Body length | 0.834 | ||
Side length | 0.859 | ||
Height | 0.779 | ||
Back height | 0.769 | ||
Depth | 0.708 | ||
Top length | 0.736 | ||
Width | 0.745 | ||
Rump width | 0.726 | ||
Top area | 0.916 | ||
Side area | 0.935 |
Independent Variables | r2 | Equation | RMSE |
---|---|---|---|
LW, Chest width | 0.79 | −20.043 + 0.244LW + 0.401CH | 1.34 |
LW, Angle length | 0.71 | −23.159 + 0.296LW + 0.141AL | 1.59 |
LW, Body length | 0.72 | −21.733 + 0.301LW + 0.129BL | 1.59 |
LW, Side length | 0.71 | −21.119 + 0.293LW + 0.119SL | 1.62 |
LW, Front height | 0.68 | −14.670 + 0.315LW + 0.022FH | 1.69 |
LW, Back height | 0.68 | −13.195 + 0.318LW + −0.004BH | 1.69 |
LW, Depth | 0.70 | −18.764 + 0.288LW + 0.185D | 1.64 |
LW, Top length | 0.69 | −17.092 + 0.310LW + 0.052TL | 1.67 |
LW, Width | 0.73 | −22.113 + 0.247LW + 0.402W | 1.56 |
LW, Rump width | 0.71 | −17.949 + 0.303LW + 0.175RW | 1.62 |
LW, Top area | 0.73 | −16.688 + 0.291LW + 0.002TA | 1.55 |
LW, Side area | 0.72 | −17.402 + 0.285LW + 0.002SA | 1.58 |
All variables | 0.80 | −21.115 + 0.235LW + 0.522CH + 0.101AL + −0.042BL + 0.008SL + 0.034FH + 0.013BH + −0.067D + −0.053TL + −0.021W + −0.090RW | 1.34 |
Independent Variables | r2 | RMSE |
---|---|---|
LW, Chest width | 0.88 | 1.17 |
LW, Angle length | 0.84 | 1.61 |
LW, Body length | 0.83 | 1.36 |
LW, Side length | 0.82 | 1.33 |
LW, Front height | 0.80 | 1.81 |
LW, Back height | 0.81 | 1.78 |
LW, Depth | 0.85 | 1.47 |
LW, Top length | 0.85 | 1.44 |
LW, Width | 0.84 | 2.18 |
LW, Rump width | 0.84 | 2.21 |
LW, Top area | 0.84 | 2.21 |
LW, Side area | 0.85 | 1.28 |
All variables | 0.95 | 1.22 |
Independent Variables | r2 | Equation | RMSE |
---|---|---|---|
LW, Chest width | 0.51 | 10.773 + 0.156LW + −0.138CH | 1.04 |
LW, Angle length | 0.47 | 9.564 + 0.134LW + −0.015AL | 1.09 |
LW, Body length | 0.47 | 9.700 + 0.134LW + −0.019BL | 1.09 |
LW, Side length | 0.47 | 9.778 + 0.135LW + −0.045SL | 1.09 |
LW, Front height | 0.47 | 5.919 + 0.127LW + 0.045FH | 1.08 |
LW, Back height | 0.47 | 7.476 + 0.129LW + 0.018BH | 1.09 |
LW, Depth | 0.47 | 10.112 + 0.140LW + −0.056D | 1.08 |
LW, Top length | 0.47 | 8.345 + 0.131LW + 0.002TL | 1.09 |
LW, Width | 0.52 | 12.588 + 0.164LW + −0.189W | 1.03 |
LW, Rump width | 0.48 | 10.146 + 0.137LW + −0.064BW | 1.07 |
LW, Top area | 0.49 | 9.500 + 0.139LW + −0.001TA | 1.07 |
LW, Side area | 0.47 | 9.303 + 0.138LW + 0.000SA | 1.58 |
All variables | 0.52 | −5.109 + 0.151LW + −0.082CH + −0.004AL + 0.020BL + −0.044SL + 0.010FH + −0.004BH + −0.046D + −0.102TL + −0.004W + 0.072RW + −0.003TA + 0.001SA | 1.4 |
Independent Variables | r2 | RMSE |
---|---|---|
LW, Chest width | 0.76 | 1.13 |
LW, Angle length | 0.63 | 1.87 |
LW, Body length | 0.62 | 1.01 |
LW, Side length | 0.73 | 1.11 |
LW, Front height | 0.74 | 1.03 |
LW, Back height | 0.73 | 1.33 |
LW, Depth | 0.71 | 2.42 |
LW, Top length | 0.63 | 1.09 |
LW, Width | 0.65 | 1.11 |
LW, Rump width | 0.66 | 1.07 |
LW, Top area | 0.71 | 1.01 |
LW, Side area | 0.72 | 1.09 |
All variables | 0.79 | 1.20 |
LW, Rump width, Front height | 0.77 | 1.26 |
Independent Variables | r2 | Equation | RMSE |
---|---|---|---|
LW, Chest width | 0.22 | 1.616 + 0.021LW + −0.006CH | 0.89 |
LW, Angle length | 0.24 | 0.861 + 0.018LW + 0.010AL | 0.88 |
LW, Body length | 0.24 | 0.952 + 0.019LW + 0.009BL | 0.88 |
LW, Side length | 0.24 | 0.947 + 0.018LW + 0.009SL | 0.88 |
LW, Front height | 0.23 | 1.133 + 0.019LW + 0.007FH | 0.89 |
LW, Back height | 0.22 | 1.317 + 0.019LW + 0.004BH | 0.89 |
LW, Depth | 0.25 | 2.152 + 0.023LW + −0.022D | 0.88 |
LW, Top length | 0.25 | 0.808 + 0.018LW + 0.010TL | 0.88 |
LW, Width | 0.26 | 2.321 + 0.026LW + −0.037W | 0.87 |
LW, Rump width | 0.22 | 1.553 + 0.020LW + −0.001BW | 0.89 |
LW, Top area | 0.22 | 1.474 + 0.019LW + −0.005TA | 0.89 |
LW, Side area | 0.22 | 1.458 + 0.019LW + 0.005SA | 0.89 |
All variables | 0.36 | 1.678 + 0.029LW + −0.035CH + −0.008AL + 0.0006BL + −0.013SL + −0.017FH + 0.019BH + −0.063D + −0.026TL + −0.067W + 0.023RW + −0.001TA + 0.000SA | 0.25 |
Independent Variables | r2 | RMSE |
---|---|---|
LW, Chest width | 0.45 | 2.3 |
LW, Angle length | 0.50 | 2.31 |
LW, Body length | 0.43 | 1.03 |
LW, Side length | 0.41 | 1.05 |
LW, Front height | 0.60 | 1.82 |
LW, Back height | 0.42 | 1.04 |
LW, Depth | 0.57 | 1.94 |
LW, Top length | 0.65 | 1.15 |
LW, Width | 0.65 | 1.05 |
LW, Rump width | 0.50 | 1.03 |
LW, Top area | 0.58 | 1.01 |
LW, Side area | 0.56 | 2.22 |
All variables | 0.75 | 2.40 |
LW, Chest width, Front height | 0.59 | 1.2 |
LW, Angle length, Front height | 0.46 | 1.12 |
LW, Body length, Front height | 0.53 | 1.19 |
LW, Side length, Front height | 0.52 | 2.17 |
LW, Depth, Front height | 0.61 | 1.0 |
LW, Top length, Front height | 0.53 | 2.36 |
LW, Width, Front height | 0.72 | 1.11 |
Dependent Variables | Independent Variables | ||
---|---|---|---|
MLR − r2 | ANN − r2 | RT − r2 | |
Fat | 0.87 (LW, chest width) | 0.90 (LW, chest width) | 0.74 (LW, chest width) |
Muscle | 0.41 (LW and width) | 0.72 (LW, rump width, front height) | 0.21 (LW, width and chest width) |
Bone | 0.34 (LW and width) | 0.50 (LW, width, front height) | 0.03 (LW, rump width and chest width) |
CT Fat | MLR | ANN | RT | BCS |
---|---|---|---|---|
13.867 | 11.240 | 14.062 | 6.92 | 3 |
12.479 | 9.588 | 10.800 | 6.5 | 2.5 |
7.249 | 7.680 | 7.196 | 5.93 | 3 |
4.390 | 3.631 | 3.639 | 11.51 | 4 |
6.674 | 6.035 | 6.105 | 8.59 | 3 |
9.066 | 7.157 | 6.372 | 3.5 | 2.5 |
6.209 | 6.974 | 6.125 | 5.53 | 2.5 |
7.919 | 6.230 | 5.608 | 14.12 | 3.5 |
12.329 | 9.850 | 11.521 | 3.98 | 2.5 |
7.242 | 6.364 | 5.874 | 3.83 | 2.5 |
5.117 | 4.656 | 4.324 | 4.05 | 3 |
5.943 | 6.084 | 5.790 | 8.99 | 3 |
13.034 | 9.876 | 11.809 | 6.1 | 2.5 |
4.451 | 4.185 | 4.036 | 6.63 | 2.5 |
3.742 | 4.141 | 4.007 | 8.27 | 2.5 |
4.513 | 4.518 | 4.379 | 5.16 | 2.5 |
10.940 | 10.129 | 11.774 | 6.62 | 3 |
7.403 | 6.486 | 5.627 | 6.66 | 2.5 |
6.301 | 7.687 | 6.893 | 5.71 | 2.5 |
5.148 | 5.177 | 5.114 | 10.34 | 3.5 |
5.595 | 5.771 | 5.176 | 8.41 | 3 |
7.114 | 7.567 | 6.620 | 8.12 | 2.5 |
6.616 | 7.314 | 6.411 | 2.67 | 2.5 |
3.525 | 3.653 | 3.666 | 7.687 | 2.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shalaldeh, A.; Page, S.; Anthony, P.; Charters, S.; Safa, M.; Logan, C. Body Composition Estimation in Breeding Ewes Using Live Weight and Body Parameters Utilizing Image Analysis. Animals 2023, 13, 2391. https://doi.org/10.3390/ani13142391
Shalaldeh A, Page S, Anthony P, Charters S, Safa M, Logan C. Body Composition Estimation in Breeding Ewes Using Live Weight and Body Parameters Utilizing Image Analysis. Animals. 2023; 13(14):2391. https://doi.org/10.3390/ani13142391
Chicago/Turabian StyleShalaldeh, Ahmad, Shannon Page, Patricia Anthony, Stuart Charters, Majeed Safa, and Chris Logan. 2023. "Body Composition Estimation in Breeding Ewes Using Live Weight and Body Parameters Utilizing Image Analysis" Animals 13, no. 14: 2391. https://doi.org/10.3390/ani13142391
APA StyleShalaldeh, A., Page, S., Anthony, P., Charters, S., Safa, M., & Logan, C. (2023). Body Composition Estimation in Breeding Ewes Using Live Weight and Body Parameters Utilizing Image Analysis. Animals, 13(14), 2391. https://doi.org/10.3390/ani13142391