Tissue Specific Distribution and Activation of Sapindaceae Toxins in Horses Suffering from Atypical Myopathy
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Horses
2.2. Preparation and Use of Tissue Extracts
2.3. Quantification of Toxins, Toxin Metabolites, and Several Acyl Metabolites
3. Results
3.1. Toxins and Toxin Metabolites
3.2. Acylcarnitines and Acylglycines
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Baise, E.; Habyarimana, J.A.; Amory, H.; Boemer, F.; Douny, C.; Gustin, P.; Marcillaud-Pitel, C.; Patarin, F.; Weber, M.; Votion, D.M. Samaras and seedlings of Acer pseudoplatanus are potential sources of hypoglycin A intoxication in atypical myopathy without necessarily inducing clinical signs. Equine Vet. J. 2016, 48, 414–417. [Google Scholar] [CrossRef]
- Unger, L.; Nicholson, A.; Jewitt, E.M.; Gerber, V.; Hegeman, A.; Sweetman, L.; Valberg, S. Hypoglycin a concentrations in seeds of acer pseudoplatanus trees growing on atypical myopathy-affected and control pastures. J. Vet. Intern. Med. 2014, 28, 1289–1293. [Google Scholar] [CrossRef] [Green Version]
- Votion, D.M.; Habyarimana, J.A.; Scippo, M.L.; Richard, E.A.; Marcillaud-Pitel, C.; Erpicum, M.; Gustin, P. Potential new sources of hypoglycin A poisoning for equids kept at pasture in spring: A field pilot study. Vet. Rec. 2019, 184, 740. [Google Scholar] [CrossRef]
- Votion, D.M.; Francois, A.C.; Kruse, C.; Renaud, B.; Farinelle, A.; Bouquieaux, M.C.; Marcillaud-Pitel, C.; Gustin, P. Answers to the Frequently Asked Questions Regarding Horse Feeding and Management Practices to Reduce the Risk of Atypical Myopathy. Animals 2020, 10, 365. [Google Scholar] [CrossRef] [Green Version]
- Westermann, C.M.; van Leeuwen, R.; van Raamsdonk, L.W.; Mol, H.G. Hypoglycin A Concentrations in Maple Tree Species in the Netherlands and the Occurrence of Atypical Myopathy in Horses. J. Vet. Intern. Med. 2016, 30, 880–884. [Google Scholar] [CrossRef]
- Zuraw, A.; Dietert, K.; Kuhnel, S.; Sander, J.; Klopfleisch, R. Equine atypical myopathy caused by hypoglycin A intoxication associated with ingestion of sycamore maple tree seeds. Equine Vet. J. 2016, 48, 418–421. [Google Scholar] [CrossRef]
- Renaud, B.; Kruse, C.J.; François, A.C.; Grund, L.; Bunert, C.; Brisson, L.; Boemer, F.; Gault, G.; Ghislain, B.; Petitjean, T.; et al. Acer pseudoplatanus: A Potential Risk of Poisoning for Several Herbivore Species. Toxins 2022, 14, 512. [Google Scholar] [CrossRef]
- Bochnia, M.; Ziemssen, E.; Sander, J.; Stief, B.; Zeyner, A. Methylenecyclopropylglycine and hypoglycin A intoxication in three Pere David’s Deers (Elaphurus davidianus) with atypical myopathy. Vet. Med. Sci. 2021, 7, 998–1005. [Google Scholar] [CrossRef]
- Hirz, M.; Gregersen, H.A.; Sander, J.; Votion, D.M.; Schanzer, A.; Kohler, K.; Herden, C. Atypical myopathy in 2 Bactrian camels. J. Vet. Diagn. Investig. 2021, 33, 961–965. [Google Scholar] [CrossRef]
- Bunert, C.; Langer, S.; Votion, D.M.; Boemer, F.; Muller, A.; Ternes, K.; Liesegang, A. Atypical myopathy in Pere David’s deer (Elaphurus davidianus) associated with ingestion of hypoglycin A. J. Anim. Sci. 2018, 96, 3537–3547. [Google Scholar] [CrossRef]
- John, T.; Das, M. Acute encephalitis syndrome in children in Muzaffarpur: Hypothesis of toxic origin. Curr. Sci. 2014, 106, 1184–1185. [Google Scholar]
- Joskow, R.; Belson, M.; Vesper, H.; Backer, L.; Rubin, C. Ackee fruit poisoning: An outbreak investigation in Haiti 2000–2001, and review of the literature. Clin. Toxicol. 2006, 44, 267–273. [Google Scholar] [CrossRef]
- Shah, A.B.; John, T.J. Recurrent Outbreaks of Hypoglycaemic Encephalopathy in Muzaffarpur, Bihar. Curr. Sci. 2014, 107, 570–571. [Google Scholar]
- Shrivastava, A.; Kumar, A.; Thomas, J.D.; Laserson, K.F.; Bhushan, G.; Carter, M.D.; Chhabra, M.; Mittal, V.; Khare, S.; Sejvar, J.J.; et al. Association of acute toxic encephalopathy with litchi consumption in an outbreak in Muzaffarpur, India, 2014: A case-control study. Lancet Glob. Health 2017, 5, e458–e466. [Google Scholar] [CrossRef] [Green Version]
- Fowden, L.; Pratt, H.M. Cyclopropylamino acids of the genus Acer: Distribution and biosynthesis. Phytochemistry 1973, 12, 1677–1681. [Google Scholar] [CrossRef]
- Melde, K.; Buettner, H.; Boschert, W.; Wolf, H.P.; Ghisla, S. Mechanism of hypoglycaemic action of methylenecyclopropylglycine. Biochem. J. 1989, 259, 921–924. [Google Scholar] [CrossRef]
- Melde, K.; Jackson, S.; Bartlett, K.; Sherratt, H.S.; Ghisla, S. Metabolic consequences of methylenecyclopropylglycine poisoning in rats. Biochem. J. 1991, 274 Pt 2, 395–400. [Google Scholar] [CrossRef] [Green Version]
- Ghisla, S.; Melde, K.; Zeller, H.D.; Boschert, W. Mechanisms of enzyme inhibition by hypoglycin, methylenecyclopropylglycine and their metabolites. Prog. Clin. Biol. Res. 1990, 321, 185–192. [Google Scholar]
- Osmundsen, H.; Sherratt, H.S. A novel mechanism for inhibition of beta-oxidation by methylenecyclopropylacetyl-CoA, a metabolite of hypoglycin. FEBS Lett. 1975, 55, 38–41. [Google Scholar] [CrossRef] [Green Version]
- Adeva-Andany, M.M.; López-Maside, L.; Donapetry-García, C.; Fernández-Fernández, C.; Sixto-Leal, C. Enzymes involved in branched-chain amino acid metabolism in humans. Amino Acids 2017, 49, 1005–1028. [Google Scholar] [CrossRef]
- Holeček, M. Branched-chain amino acids in health and disease: Metabolism, alterations in blood plasma, and as supplements. Nutr. Metab. 2018, 15, 33. [Google Scholar] [CrossRef] [Green Version]
- Mann, G.; Mora, S.; Madu, G.; Adegoke, O.A.J. Branched-chain Amino Acids: Catabolism in Skeletal Muscle and Implications for Muscle and Whole-body Metabolism. Front. Physiol. 2021, 12, 702826. [Google Scholar] [CrossRef]
- Brandt, K.; Hinrichs, U.; Glitz, F.; Landes, E.; Schulze, C.; Deegen, E.; Pohlenz, J.; Coenen, M. Atypische Myoglobinurie der Weidepferde. Pferdeheilkunde 1997, 13, 27–34. [Google Scholar] [CrossRef] [Green Version]
- Votion, D.-M.; Linden, A.; Saegerman, C.; Engels, P.; Erpicum, M.; Thiry, E.; Delguste, C.; Rouxhet, S.; Demoulin, V.; Navet, R.; et al. History and clinical features of atypical myopathy in horses in Belgium (2000–2005). J. Vet. Intern. Med. 2007, 21, 1380–1391. [Google Scholar] [CrossRef]
- Fabius, L.S.; Westermann, C.M. Evidence-based therapy for atypical myopathy in horses. Equine Vet. Educ. 2018, 30, 616–622. [Google Scholar] [CrossRef]
- Boemer, F.; Detilleux, J.; Cello, C.; Amory, H.; Marcillaud-Pitel, C.; Richard, E.; van Galen, G.; van Loon, G.; Lefere, L.; Votion, D.M. Acylcarnitines profile best predicts survival in horses with atypical myopathy. PLoS ONE 2017, 12, e0182761. [Google Scholar] [CrossRef] [Green Version]
- Cassart, D.; Baise, E.; Cherel, Y.; Delguste, C.; Antoine, N.; Votion, D.; Amory, H.; Rollin, F.; Linden, A.; Coignoul, F.; et al. Morphological alterations in oxidative muscles and mitochondrial structure associated with equine atypical myopathy. Equine Vet. J. 2007, 39, 26–32. [Google Scholar] [CrossRef]
- Palencia, P.; Rivero, J.L. Atypical myopathy in two grazing horses in northern Spain. Vet. Rec. 2007, 161, 346–348. [Google Scholar] [CrossRef]
- Westermann, C.M.; de Sain-van der Velden, M.G.; van der Kolk, J.H.; Berger, R.; Wijnberg, I.D.; Koeman, J.P.; Wanders, R.J.; Lenstra, J.A.; Testerink, N.; Vaandrager, A.B.; et al. Equine biochemical multiple acyl-CoA dehydrogenase deficiency (MADD) as a cause of rhabdomyolysis. Mol. Genet. Metab. 2007, 91, 362–369. [Google Scholar] [CrossRef]
- Verheyen, T.; Decloedt, A.; De Clercq, D.; van Loon, G. Cardiac changes in horses with atypical myopathy. J. Vet. Intern. Med. 2012, 26, 1019–1026. [Google Scholar] [CrossRef]
- Jackson, R.H.; Singer, T.P. Inactivation of the 2-ketoglutarate and pyruvate dehydrogenase complexes of beef heart by branched chain keto acids. J. Biol. Chem. 1983, 258, 1857–1865. [Google Scholar] [CrossRef]
- Entman, M.; Bressler, R. The mechanism of action of hypoglycin on long-chain fatty acid oxidation. Mol. Pharmacol. 1967, 3, 333–340. [Google Scholar]
- Brooks, S.E.; Audretsch, J.J. Studies on hypoglycin toxicity in rats. I. Changes in hepatic ultrastructure. Am. J. Pathol. 1970, 59, 161–180. [Google Scholar]
- van Galen, G.; Marcillaud Pitel, C.; Saegerman, C.; Patarin, F.; Amory, H.; Baily, J.D.; Cassart, D.; Gerber, V.; Hahn, C.; Harris, P.; et al. European outbreaks of atypical myopathy in grazing equids (2006–2009): Spatiotemporal distribution, history and clinical features. Equine Vet. J. 2012, 44, 614–620. [Google Scholar] [CrossRef]
- Gonzalez-Medina, S.; Ireland, J.L.; Piercy, R.J.; Newton, J.R.; Votion, D.M. Equine Atypical Myopathy in the UK: Epidemiological characteristics of cases reported from 2011 to 2015 and factors associated with survival. Equine Vet. J. 2017, 49, 746–752. [Google Scholar] [CrossRef] [Green Version]
- Wimmer-Scherr, C.; Taminiau, B.; Renaud, B.; van Loon, G.; Palmers, K.; Votion, D.; Amory, H.; Daube, G.; Cesarini, C. Comparison of Fecal Microbiota of Horses Suffering from Atypical Myopathy and Healthy Co-Grazers. Animals 2021, 11, 506. [Google Scholar] [CrossRef]
- van Galen, G.; Saegerman, C.; Marcillaud Pitel, C.; Patarin, F.; Amory, H.; Baily, J.D.; Cassart, D.; Gerber, V.; Hahn, C.; Harris, P.; et al. European outbreaks of atypical myopathy in grazing horses (2006-2009): Determination of indicators for risk and prognostic factors. Equine Vet. J. 2012, 44, 621–625. [Google Scholar] [CrossRef]
- Sander, J.; Cavalleri, J.M.; Terhardt, M.; Bochnia, M.; Zeyner, A.; Zuraw, A.; Sander, S.; Peter, M.; Janzen, N. Rapid diagnosis of hypoglycin A intoxication in atypical myopathy of horses. J. Vet. Diagn. Investig. 2016, 28, 98–104. [Google Scholar] [CrossRef] [Green Version]
- Sander, J.; Terhardt, M.; Sander, S.; Aboling, S.; Janzen, N. A new method for quantifying causative and diagnostic markers of methylenecyclopropylglycine poisoning. Toxicol. Rep. 2019, 6, 803–808. [Google Scholar] [CrossRef]
- Sander, J.; Terhardt, M.; Sander, S.; Janzen, N. Quantification of Methylenecyclopropyl Compounds and Acyl Conjugates by UPLC-MS/MS in the Study of the Biochemical Effects of the Ingestion of Canned Ackee (Blighia sapida) and Lychee (Litchi chinensis). J. Agric. Food Chem. 2017, 65, 2603–2608. [Google Scholar] [CrossRef]
- Sander, J.; Terhardt, M.; Janzen, N. Study on the Metabolic Effects of Repeated Consumption of Canned Ackee. J. Agric. Food Chem. 2020, 68, 14603–14609. [Google Scholar] [CrossRef]
- El-Khatib, A.H.; Engel, A.M.; Weigel, S. Co-Occurrence of Hypoglycin A and Hypoglycin B in Sycamore and Box Elder Maple Proved by LC-MS/MS and LC-HR-MS. Toxins 2022, 14, 608. [Google Scholar] [CrossRef]
- Lieu, Y.K.; Hsu, B.Y.; Price, W.A.; Corkey, B.E.; Stanley, C.A. Carnitine effects on coenzyme A profiles in rat liver with hypoglycin inhibition of multiple dehydrogenases. Am. J. Physiol. 1997, 272, E359–E366. [Google Scholar] [CrossRef]
- Gold, J.R.; Grubb, T.L.; Cox, S.; Malavasi, L.; Villarino, N.L. Pharmacokinetics and pharmacodynamics of repeat dosing of gabapentin in adult horses. J. Vet. Intern. Med. 2022, 36, 792–797. [Google Scholar] [CrossRef]
- Krageloh, T.; Cavalleri, J.M.V.; Ziegler, J.; Sander, J.; Terhardt, M.; Breves, G.; Cehak, A. Identification of hypoglycin A binding adsorbents as potential preventive measures in co-grazers of atypical myopathy affected horses. Equine Vet. J. 2018, 50, 220–227. [Google Scholar] [CrossRef]
Horse | Breed | Sex | Age (in Years) | Date of First Signs | Date of Death | Cause of Death |
---|---|---|---|---|---|---|
1 | Quarter-horse | Female | >24 | unknow | 3 November 2020 | Found dead |
2 | Spanish Purebred | Stallion | 7 | 31 October 2020 | 3 November 2020 | Euthanasia |
3 | Belgian Draft Horse | Stallion | 3.5 | 31 October 2020 | 1 November 2020 | Euthanasia |
4 | Half-blood | Stallion | 1.5 | 27 October 2020 | 31 October 2020 | Euthanasia |
5 | Percheron | Gelding | 4 | 24 October 2020 | 26 October 2020 | Euthanasia |
Organ | Concentration | HGA | MCPA-Carnitine | MCPA-Glycine | MCPF-Carnitine | MCPF-Glycine |
---|---|---|---|---|---|---|
M. semitendinosus. | Mean | 496 | 2078 | 35 | 7710 | 20 |
Range | 103–1379 | 156–3690 | 6.5–47 | 539–23,416 | 0.8–43 | |
M. triceps brachii. | Mean | 536 | 1884 | 43 | 7260 | 22 |
Range | 111–1473 | 86–4108 | 1.3–75 | 10–16,100 | 0.1–38 | |
M. gluteus medius | Mean | 528 | 2883 | 70 | 9595 | 35 |
Range | 195–1259 | 40–7482 | 16–109 | 78–25,782 | 5.1–80 | |
Diaphragm | Mean | 606 | 639 | 123 | 4824 | 33 |
Range | 307–1360 | 5–1431 | 14–318 | 6.9–19,056 | 3.3–83 | |
Myocardium | Mean | 1115 | 15 | 99 | 27 | 33 |
Range | 346–3527 | 0.7–54 | 13–165 | 2.1–109 | 6.8–47 | |
Liver | Mean | 1340 | 98 | 244 | 240 | 109 |
Range | 606–3578 | 0.8–460 | 39–542 | 2.6–1142 | 14–307 | |
Kidney | Mean | 775 | 71 | 1655 | 696 | 309 |
Range | 198–2029 | 3.0–208 | 96–3231 | 3.3–2495 | 35–629 | |
Pancreas | Mean | 2209 | 75 | 70 | 246 | 33 |
Range | 184–5237 | 1.6–162 | 21–145 | 14–795 | 21–55 | |
Serum | Mean | 1831 | 50 | 253 | 716 | 91 |
Range | 909–2948 | 36–64 | 154–296 | 541–958 | 54–114 | |
Cerebral. fluid | Mean | 269 | 42 | 50 | 398 | 23 |
Range | 213–356 | 2–61 | <1–67 | 26–503 | <1–26 |
Horse | Days between Death and Necropsy | HGA | MCPA-Carnitine | Butyryl-Carnitine | Hexanoyl-Carnitine | Octanoyl-Carnitine |
---|---|---|---|---|---|---|
2 | 2 | 1.1 | 2.9 | 2.6 | 5.1 | 6.3 |
3 | 2 | 1.2 | 2.1 | 1.9 | 2.1 | 3.5 |
4 | 3 | 1.2 | 2.6 | 1.2 | 1.9 | 2.1 |
5 | 1 | 1.1 | 2.3 | 1.9 | 4.4 | 4.0 |
(A) | |||||||||
---|---|---|---|---|---|---|---|---|---|
Organ | Concentration | C4-C | C6-C | C6-G | C8-C | C10:1-C | Isobutyryl-C | Isovaleryl-C | 2-MB-C |
M. semitendinosus. | Mean | 1464 | 66 | 0.6 | 14 | 2.2 | 49 | 515 | 225 |
Range | 157–3548 | 13–201 | 0.1–0.9 | 2.9–42 | 0.2–6.3 | 22–92 | 12–1010 | 16–480 | |
M. triceps brachii. | Mean | 1232 | 68 | 0.7 | 13 | 2 | 52 | 401 | 166 |
Range | 1.8–2241 | 8.9–130 | 0.5–1.2 | 1.1–33 | 0.2–4.1 | <0.1–114 | 22–703 | 47–450 | |
M. gluteus medius | Mean | 1479 | 70 | 1.1 | 18 | 6.8 | 45 | 489 | 233 |
Range | 38–4369 | 7.3–169 | 0.2–2.1 | 0.6–55 | <0.1–28 | 0.2–123 | 19–1103 | 22–430 | |
Diaphragm | Mean | 1203 | 47 | 1.3 | 6.2 | 0.3 | 23 | 260 | 78 |
Range | 0.7–3920 | 2.7–107 | 0.2–2.4 | 0.1–10 | <0.1–0.5 | <0.1–65 | 8.7–653 | 17–218 | |
Myocardium | Mean | 29 | 0.8 | 1 | 0.3 | - | 0.4 | 8.9 | 6.6 |
Range | 3.1–54 | 0.1–2.9 | 0.1–1.8 | <0.1–0.5 | <0.1–0.8 | 0.4–18 | 1.9–9.4 | ||
Liver | Mean | 139 | 4.7 | 2.2 | 1.4 | 0.4 | 1.7 | 33 | 7.9 |
Range | 0.7–680 | 0.2–21 | 1.1–4.4 | <0.1–5 | <0.1–0.6 | <0.1–5.3 | 0.8–130 | <0.1–28 | |
Kidney | Mean | 119 | 5.3 | 6.3 | 0.6 | 0.4 | 4.1 | 43 | 13 |
Range | 1.9–492 | 0.3–20 | 0.4–18 | 0.1–2.1 | <0.1–0.5 | <0.1–8.1 | 2.1–123 | 3–36 | |
Pancreas | Mean | 47 | 4.1 | 1 | 1 | 0.2 | 1.2 | 20 | 6.3 |
Range | 3–149 | 0.2–9.3 | 0.1–1.3 | 0.1–3 | <0.1–0.3 | 0.3–2.6 | 3.3–43 | 0.7–9.8 | |
Serum | Mean | 41 | 3.6 | 4.4 | 0.8 | 0.6 | 2.9 | 13 | 6.2 |
Range | 27–58 | 2.8–4.4 | 2.2–6.1 | 0.7–1 | 0.4–0.6 | 1.2–4.3 | 9.9–20 | 3.4–8.3 | |
(B) unaffected controls (means of 5 samples each) | |||||||||
Organ | Concentration | C4-C | C6-C | C6-G | C8-C | C10:1-C | Isobutyryl-C | Isovaleryl-C | 2-MB-C |
Skeletal muscles | Mean | 0.2 | 0.5 | 0.1 | <0.1 | <0.1 | <0.1 | 2.8 | 11.4 |
Myocardium | Mean | 8.2 | 0.7 | - | 0.1 | <0.1 | 0.4 | 0.4 | 1 |
Liver | Mean | 0.9 | 0.4 | 0.3 | <0.1 | <0.1 | 1.7 | 26 | 5.3 |
Kidney | Mean | 2.6 | 2.3 | 0.1 | 0.1 | <0.1 | 0.7 | 0.5 | 0.6 |
Serum | Mean | 0.2 | <0.1 | <0.1 | <0.1 | <0.1 | 0.9 | 0.1 | 0.2 |
Organ | C4-C /C4-G | Isobutyryl-C /Isobutyryl-G | 2-MB-C /2-MB-G | Isovaleryl-C /Isovaleryl-G |
---|---|---|---|---|
M. semitendinosus | 2343 | 9383 | 20262 | 4320 |
Liver | 183 | 144 | 82 | 121 |
Kidney | 10 | 55 | 17 | 9 |
Myocardium | 14 | 40 | 68 | 22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sander, J.; Terhardt, M.; Janzen, N.; Renaud, B.; Kruse, C.-J.; François, A.-C.; Wouters, C.P.; Boemer, F.; Votion, D.-M. Tissue Specific Distribution and Activation of Sapindaceae Toxins in Horses Suffering from Atypical Myopathy. Animals 2023, 13, 2410. https://doi.org/10.3390/ani13152410
Sander J, Terhardt M, Janzen N, Renaud B, Kruse C-J, François A-C, Wouters CP, Boemer F, Votion D-M. Tissue Specific Distribution and Activation of Sapindaceae Toxins in Horses Suffering from Atypical Myopathy. Animals. 2023; 13(15):2410. https://doi.org/10.3390/ani13152410
Chicago/Turabian StyleSander, Johannes, Michael Terhardt, Nils Janzen, Benoît Renaud, Caroline-Julia Kruse, Anne-Christine François, Clovis P. Wouters, François Boemer, and Dominique-Marie Votion. 2023. "Tissue Specific Distribution and Activation of Sapindaceae Toxins in Horses Suffering from Atypical Myopathy" Animals 13, no. 15: 2410. https://doi.org/10.3390/ani13152410
APA StyleSander, J., Terhardt, M., Janzen, N., Renaud, B., Kruse, C. -J., François, A. -C., Wouters, C. P., Boemer, F., & Votion, D. -M. (2023). Tissue Specific Distribution and Activation of Sapindaceae Toxins in Horses Suffering from Atypical Myopathy. Animals, 13(15), 2410. https://doi.org/10.3390/ani13152410