Reducing Stocking Densities and Using Cooling Systems for More Adapted Pigs to High Temperatures When Reared in Intensive Conditions
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Treatments
2.2. Thermal Conditions
2.3. Animal-Based Indicators
2.4. Blood and Hair Samples
2.5. Statistical Analysis
3. Results
3.1. Thermal Conditions
3.2. Animal-Based Indicators
3.3. Blood and Hair Samples
4. Discussion
4.1. Thermal Conditions
4.2. Animal-Based Indicators
4.3. Blood and Hair Samples
4.4. Sex Effect
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baumgard, L.H.; Rhoads, R.P., Jr. Effects of heat stress on postabsorptive metabolism and energetics. Annu. Rev. Anim. Biosci. 2013, 1, 311–337. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez-Rivas, P.A.; Chauhan, S.S.; Ha, M.; Fegan, N.; Dunshea, F.R.; Warner, R.D. Effects of heat stress on animal physiology, metabolism, and meat quality: A review. Meat Sci. 2020, 162, 108025. [Google Scholar] [CrossRef]
- Collier, R.J.; Gebremedhin, K.G. Thermal biology of domestic animals. Annu. Rev. Anim. Biosci. 2015, 3, 513–532. [Google Scholar] [CrossRef] [PubMed]
- Huynh, T.T.T. Heat Stress in Growing Pigs. Ph.D. Thesis, Wageningen University, Wageningen, The Netherlands, 2005. Available online: https://edepot.wur.nl/121639 (accessed on 13 March 2023).
- Quiniou, N.; Dubois, S.; Noblet, J. Voluntary feed intake and feeding behavior of group housed growing pigs are affected by ambient temperature and body weight. Livest. Prod. Sci. 2000, 3, 245–253. [Google Scholar] [CrossRef]
- Pearce, S.C.; Gabler, N.K.; Ross, J.W.; Escobar, J.; Patience, J.F.; Rhoads, R.P.; Baumgard, L.H. The effects of heat stress and plane of nutrition on metabolism in growing pigs. J. Anim. Sci. 2013, 91, 2108–2118. [Google Scholar] [CrossRef] [Green Version]
- Sanz-Fernandez, M.V.; Stoakes, S.K.; Abuajamieh, M.; Seibert, J.T.; Johnson, J.S.; Horst, E.A.H.; Rhoads, R.P.; Baumgard, L.H. Heat stress increases insulin sensitivity in pigs. Physiol. Rep. 2015, 3, e12478. [Google Scholar] [CrossRef]
- Godyń, D.; Herbut, P.; Angrecka, S.; Corrêa Vieira, F.M. Use of different cooling methods in pig facilities to alleviate the effects of heat stress—A review. Animals 2020, 10, 1459. [Google Scholar] [CrossRef]
- Santos, L.S.D.; Pomar, C.; Campos, P.H.R.F.; da Silva, W.C.; Gobi, J.P.; Veira, A.M.; Fraga, A.Z.; Hauschild, L. Precision feeding strategy for growing pigs under heat stress conditions. J. Anim. Sci. 2018, 96, 4789–4801. [Google Scholar] [CrossRef] [PubMed]
- Cottrell, J.J.; Liu, F.; Hung, A.T.; DiGiacomo, K.; Chauhan, S.S.; Leury, B.J.; Furness, J.B.; Celi, P.; Dunshea, F.R. Nutritional strategies to alleviate heat stress in pigs. Anim. Prod. Sci. 2015, 55, 1391–1402. [Google Scholar] [CrossRef]
- Huynh, T.T.T.; Aarnink, A.J.A.; Truong, C.T.; Kemp, B.; Verstegen, M.W.A. Effects of tropical climate and water cooling methods on growing pigs’ responses. Livest. Sci. 2006, 104, 278–291. [Google Scholar] [CrossRef]
- Guevara, R.D.; Pastor, J.J.; Manteca, X.; Tedo, G.; Llonch, P. Systematic review of animal-based indicators to measure thermal, social, and immune-related stress in pigs. PLoS ONE 2022, 17, e0266524. [Google Scholar] [CrossRef] [PubMed]
- National Weather Service Central Region (NWSCR). Livestock Hot Weather Stress: Regional Operations Manual Letter C-31-76; NWSCR: Kansas City, MO, USA, 1976.
- Welfare Quality. Welfare Quality Assessment Protocol for Pigs (Sows and Piglets, Growing and Finishing Pigs); Welfare Quality Consortium: Lelystad, The Netherlands, 2009. [Google Scholar]
- Escribano, D.; Contreras-Jodar, A.; López-Arjona, M.; Cerón, J.J.; Fàbrega, E.; Aymerich, P.; Dalmau, A. Changes in cortisol and cortisone in hair of pigs reared under heat stress conditions. Front. Vet. Sci. 2023, 10, 1156480. [Google Scholar] [CrossRef]
- Puppe, B.; Tuchscherer, M.; Tuchscherer, A. The effect of housing conditions and social environment immediately after weaning on the agonistic behaviour, neutrophil/lymphocyte ratio, and plasma glucose levels in pigs. Livest. Prod. Sci. 1997, 48, 157–164. [Google Scholar] [CrossRef]
- Davenport, M.D.; Tiefenbacher, S.; Lutz, C.K.; Novak, M.A.; Meyer, J.S. Analysis of endogenous cortisol concentrations in the hair of rhesus macaques. Gen. Comp. Endocrinol. 2006, 147, 255–261. [Google Scholar] [CrossRef]
- López-Arjona, M.; Tecles, F.; Mateo, S.V.; Contreras-Aguilar, M.D.; Martínez-Miró, S.; Cerón, J.J.; Martínez-Subiela, S. Measurement of cortisol, cortisone and 11β-hydroxysteroid dehydrogenase type 2 activity in hair of sows during different phases of the reproductive cycle. Vet. J. 2020, 259–260, 105458. [Google Scholar] [CrossRef] [PubMed]
- Wegner, K.; Lambertz, C.; Das, G.; Reiner, G.; Gauly, M. Climatic effects on sow fertility and piglet survival under influence of a moderate climate. Animal 2014, 8, 1526–1533. [Google Scholar] [CrossRef] [Green Version]
- Xin, H.; Harmon, J. Livestock Industry Facilities and Environment: Heat Stress Indices for Livestock; Iowa State University: Ames, IA, USA, 1998. [Google Scholar]
- EFSA. Panel on Animal Health and Welfare (AHAW). Welfare of pigs at slaughter. EFSA J. 2020, 18, 6148. [Google Scholar] [CrossRef]
- Contreras-Jodar, A.; Salama, A.A.K.; Hamzaoui, S.; Vailati-Riboni, M.; Caja, G.; Loor, J.J. Effects of chronic heat stress on lactational performance and the transcriptomic profile of blood cells in lactating dairy goats. J. Dairy Res. 2018, 85, 423–430. [Google Scholar] [CrossRef]
- Oliveira, A.C.F.; González, J.; Asmar, S.E.; Batllori, N.P.; Vera, I.Y.; Valencia, U.R.; Lizardo, R.; Borges, T.D.; Esteve-Garcia, E.; Panella, N.; et al. The effect of feeder system and diet on welfare, performance and meat quality, of growing—Finishing Iberian x Duroc pigs under high environmental temperatures. Livest. Sci. 2020, 234, 103972. [Google Scholar] [CrossRef]
- Duarte-Borges, T.; Huerta-Jimenez, M.; Casal, N.; Gonzalez, J.; Panella-Riera, N.; Dalmau, A. To provide a double feeder in growing pigs housed under high environmental temperatures reduces social interactions but does not improve weight gains. Animals 2020, 10, 2248. [Google Scholar] [CrossRef]
- Dalmau, A.; Duarte Borges, T.; de Mercado, E.; Gonzalez, J.; Mateos-San Juan, A.; Huerta-Jiménez, M.; Gómez-Izquierdo, E.; Lizardo, R.; Pallisera, J.; Borrisser-Pairó, F.; et al. Effect of environmental temperature, floor type and breed on skatole and indole concentrations in fat of females, immune-castrated and entire males. Livest. Sci. 2019, 220, 46–51. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Contreras-Jodar, A.; Escribano, D.; Cerón, J.J.; López-Arjona, M.; Aymerich, P.; Soldevila, C.; Fàbrega, E.; Dalmau, A. Reducing Stocking Densities and Using Cooling Systems for More Adapted Pigs to High Temperatures When Reared in Intensive Conditions. Animals 2023, 13, 2424. https://doi.org/10.3390/ani13152424
Contreras-Jodar A, Escribano D, Cerón JJ, López-Arjona M, Aymerich P, Soldevila C, Fàbrega E, Dalmau A. Reducing Stocking Densities and Using Cooling Systems for More Adapted Pigs to High Temperatures When Reared in Intensive Conditions. Animals. 2023; 13(15):2424. https://doi.org/10.3390/ani13152424
Chicago/Turabian StyleContreras-Jodar, Alexandra, Damián Escribano, José Joaquin Cerón, Marina López-Arjona, Pau Aymerich, Carme Soldevila, Emma Fàbrega, and Antoni Dalmau. 2023. "Reducing Stocking Densities and Using Cooling Systems for More Adapted Pigs to High Temperatures When Reared in Intensive Conditions" Animals 13, no. 15: 2424. https://doi.org/10.3390/ani13152424
APA StyleContreras-Jodar, A., Escribano, D., Cerón, J. J., López-Arjona, M., Aymerich, P., Soldevila, C., Fàbrega, E., & Dalmau, A. (2023). Reducing Stocking Densities and Using Cooling Systems for More Adapted Pigs to High Temperatures When Reared in Intensive Conditions. Animals, 13(15), 2424. https://doi.org/10.3390/ani13152424