Stem Cell Therapy for Aging Related Diseases and Joint Diseases in Companion Animals
Abstract
:Simple Summary
Abstract
1. Introduction
2. Type of Stem Cells
3. Stem Cells for Age-Related Diseases
4. Stem Cells for Joint Diseases
5. Adverse Events
6. Challenges
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Thomas, E.D.; Lochte, H.L.; Lu, W.C.; Ferrebee, J.W. Intravenous infusion of bone marrow in patients receiving radiation and chemotherapy. N. Engl. J. Med. 1957, 257, 491–496. [Google Scholar] [CrossRef]
- Dulak, J.; Szade, K.; Szade, A.; Nowak, W.; Józkowicz, A. Adult stem cells: Hopes and hypes of regenerative medicine. Acta Biochim. Pol. 2015, 62, 329–337. [Google Scholar] [CrossRef] [Green Version]
- Raghav, P.K.; Mann, Z.; Ahlawat, S.; Mohanty, S. Mesenchymal stem cell-based nanoparticles and scaffolds in regenerative medicine. Eur. J. Pharmacol. 2022, 918, 174657. [Google Scholar] [CrossRef]
- Fu, X.; Liu, G.; Halim, A.; Ju, Y.; Luo, Q.; Song, G. Mesenchymal Stem Cell Migration and Tissue Repair. Cells 2019, 8, 784. [Google Scholar] [CrossRef] [Green Version]
- Stem Cell Basics|STEM Cell Information. Available online: https://stemcells.nih.gov/info/basics/stc-basics (accessed on 8 May 2023).
- Klokol, D.; Tulina, D.; Teppone, M.; Chan, M.; Wong, M.; Pong, H. Application of Cell Extracts from Skin, Placenta, Mesenchyme with Collagen and Elastin in Aesthetic Dermatology and Skin Revitalization: Evaluation of Outcomes in Cohort Study. Am. J. Adv. Drug Deliv. 2016, 4, 69–77. [Google Scholar] [CrossRef] [Green Version]
- Chan, M.K.S.; Wong, M.B.F.; Béguin, A.; Teppone, M.; Tukhvatullina, D.; Klokol, D. Efficacy of the MFIII placenta extracts softgels supplementation: A randomized double-blind placebo-controlled study. Basic. Res. J. Med. Clin. Sci. 2016, 5, 86–95. [Google Scholar]
- Moya, R.; Chan, M.K.S.; Wong, M.B.F.; Klokol, D. Integration of active specific immunotherapy and cell therapy into the protocols of biomedical management of interstitial pneumonia with autoimmune features—A case study. Clin. Med. Rep. 2020, 3, 1–5. [Google Scholar] [CrossRef]
- Klokol, D.; Chan, M.K.S.; Wong, M.B.F. European Wellness–The Evidenced Rationale behind the Biological Medicine: Ad Astra Per Aspera. J. Pharm. Biomed. Sci. 2017, 7, 19–22. [Google Scholar]
- Klokol, D.; Nallenthiran, L.; Chan, M.K.; Wong, M.B.; Chernykh, V.; Yefimov, S. Cell Therapy as The Main Stratagem of Anti-aging and Regenerative Medicine. Eur. J. Pharm. Med. Res. 2019, 6, 295–299. [Google Scholar]
- Moya, R.; Chan, M.K.; Wong, M.B.; Klokol, D.; Chia, Y.C.; Pan, S.Y. Active Specific Immunotherapy (ASI) in Cancer Treatment: Five Case Reports. J. Cancer Sci. Ther. 2019, 11, 256–259. [Google Scholar]
- Quimby, J.M.; Borjesson, D.L. Mesenchymal stem cell therapy in cats: Current knowledge and future potential. J. Feline Med. Surg. 2018, 20, 208–216. [Google Scholar] [CrossRef] [Green Version]
- MacDonald, E.S.; Barrett, J.G. The Potential of Mesenchymal Stem Cells to Treat Systemic Inflammation in Horses. Front. Vet. Sci. 2020, 6, 507. [Google Scholar] [CrossRef] [Green Version]
- Kang, M.H.; Park, H.M. Challenges of stem cell therapies in companion animal practice. J. Vet. Sci. 2020, 21, e42. [Google Scholar] [CrossRef]
- Kuncorojakti, S.; Srisuwatanasagul, S.; Kradangnga, K.; Sawangmake, C. Insulin-Producing Cell Transplantation Platform for Veterinary Practice. Front. Vet. Sci. 2020, 7, 4. [Google Scholar] [CrossRef] [Green Version]
- Lo, B.; Parham, L. Ethical Issues in Stem Cell Research. Endocr. Rev. 2009, 30, 204–213. [Google Scholar] [CrossRef]
- Yamamoto, T.; Sato, Y.; Yasuda, S.; Shikamura, M.; Tamura, T.; Takenaka, C. Correlation between Genetic Abnormalities in Induced Pluripotent Stem Cell-Derivatives and Abnormal Tissue Formation in Tumorigenicity Tests. Stem Cells Transl. Med. 2022, 11, 527–538. [Google Scholar] [CrossRef]
- Pittenger, M.F.; Mackay, A.M.; Beck, S.C.; Jaiswal, R.K.; Douglas, R.; Mosca, J.D.; Moorman, M.A.; Simonetti, D.W.; Craig, S.; Marshak, D.R. Multilineage potential of adult human mesenchymal stem cells. Science 1999, 284, 143–147. [Google Scholar] [CrossRef] [Green Version]
- Voga, M.; Adamic, N.; Vengust, M.; Majdic, G. Stem Cells in Veterinary Medicine-Current State and Treatment Options. Front. Vet. Sci. 2020, 7, 278. [Google Scholar] [CrossRef]
- Han, Y.; Li, X.; Zhang, Y.; Han, Y.; Chang, F.; Ding, J. Mesenchymal Stem Cells for Regenerative Medicine. Cells 2019, 8, 886. [Google Scholar] [CrossRef] [Green Version]
- Volk, S.W.; Wang, Y.; Hankenson, K.D. Effects of donor characteristics and ex vivo expansion on canine mesenchymal stem cell properties: Implications for MSC-based therapies. Cell Transplant. 2012, 21, 2189–2200. [Google Scholar] [CrossRef] [Green Version]
- Villatoro, A.J.; Alcoholado, C.; Martin-Astorga, M.C.; Fernandez, V.; Cifuentes, M.; Becerra, J. Comparative analysis and characterization of soluble factors and exosomes from cultured adipose tissue and bone marrow mesenchymal stem cells in canine species. Vet. Immunol. Immunopathol. 2019, 208, 6–15. [Google Scholar] [CrossRef]
- Gao, F.; Chiu, S.M.; Motan, D.A.L.; Zhang, Z.; Chen, L.; Ji, H.-L.; Tse, H.-F.; Fu, Q.-L.; Lian, Q. Mesenchymal stem cells and immunomodulation: Current status and future prospects. Cell Death Dis. 2016, 7, e2062. [Google Scholar] [CrossRef] [Green Version]
- Andia, I.; Maffulli, N.; Burgos-Alonso, N. Stromal vascular fraction technologies and clinical applications. Expert. Opin. Biol. Ther. 2019, 19, 1289–1305. [Google Scholar] [CrossRef]
- Purita, J.; Lana, J.F.S.D.; Kolber, M.; Rodrigues, B.L.; Mosaner, T.; Santos, G.S.; Caliari-Oliveira, C.; Huber, S.C. Bone marrow-derived products: A classification proposal—bone marrow aspirate, bone marrow aspirate concentrate or hybrid? World J. Stem Cells 2020, 12, 241–250. [Google Scholar] [CrossRef]
- Wits, M.I.; Tobin, G.C.; Silveira, M.D.; Baja, K.G.; Braga, L.M.M.; Sesterheim, P.; Camassola, M.; Nardi, N.B. Combining canine mesenchymal stromal cells and hyaluronic acid for cartilage repair. Genet. Mol. Biol. 2020, 43, e20190275. [Google Scholar] [CrossRef] [Green Version]
- Okamoto-Okubo, C.E.; Cassu, R.N.; Joaquim, J.G.F.; Mesquita, L.D.R.; Rahal, S.C.; Oliveira, H.S.S.; Takahira, R.; Arruda, I.; Maia, L.; Landim, F.D.C.; et al. Chronic pain and gait analysis in dogs with degenerative hip joint disease treated with repeated intra-articular injections of platelet-rich plasma or allogeneic adipose-derived stem cells. J. Vet. Med. Sci. 2021, 83, 881–888. [Google Scholar] [CrossRef]
- Sanghani-Kerai, A.; Black, C.; Cheng, S.O.; Collins, L.; Schneider, N.; Blunn, G.; Watson, F.; Fitzpatrick, N. Clinical outcomes following intra-articular injection of autologous adipose-derived mesenchymal stem cells for the treatment of osteoarthritis in dogs characterized by weight-bearing asymmetry. Bone Jt. Res. 2021, 10, 650–658. [Google Scholar] [CrossRef]
- Alagesan, S.; Griffin, M.D. Autologous and allogeneic mesenchymal stem cells in organ transplantation: What do we know about their safety and efficacy? Curr. Opin. Organ. Transplant. 2014, 19, 65–72. [Google Scholar] [CrossRef]
- Azkona, G.; García-Belenguer, S.; Chacón, G.; Rosado, B.; León, M.; Palacio, J. Prevalence and risk factors of behavioural changes associated with age-related cognitive impairment in geriatric dogs. J. Small Anim. Pract. 2009, 50, 87–91. [Google Scholar] [CrossRef]
- Sanches, F.J.; de Melo, J.C.; Ferreira, S.P.; Trinca, L.A.; Arambula, O.G.; Padovani, F.H.P.; Schelp, A.O.; Amorim, R.M. Aging-related episodic-like memory decline in dogs. Behav. Brain Res. 2022, 422, 113762. [Google Scholar] [CrossRef]
- Urfer, S.R.; Kaeberlein, T.L.; Mailheau, S.; Bergman, P.J.; Creevy, K.E.; Promislow, D.E.L.; Kaeberlein, M. Asymptomatic heart valve dysfunction in healthy middle-aged companion dogs and its implications for cardiac aging. GeroScience 2017, 39, 43–50. [Google Scholar] [CrossRef] [Green Version]
- Childs, B.G.; Durik, M.; Baker, D.J.; Van Deursen, J.M. Cellular senescence in aging and age-related disease: From mechanisms to therapy. Nat. Med. 2015, 21, 1424–1435. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.; Huang, X.; Dou, L.; Yan, M.; Shen, T.; Tang, W.; Li, J. Aging and aging-related diseases: From molecular mechanisms to interventions and treatments. Signal Transduct. Target. Ther. 2022, 7, 391. [Google Scholar] [CrossRef]
- Dewey, C.W.; Davies, E.S.; Xie, H.; Wakshlag, J.J. Canine Cognitive Dysfunction: Pathophysiology, Diagnosis, and Treatment. Vet. Clin. North. Am. Small Anim. Pract. 2019, 49, 477–499. [Google Scholar] [CrossRef]
- Landsberg, G.M.; Nichol, J.; Araujo, J.A. Cognitive dysfunction syndrome: A disease of canine and feline brain aging. Vet. Clin. North. Am. Small Anim. Pract. 2012, 42, 749–768. [Google Scholar] [CrossRef]
- Kandlur, A.; Satyamoorthy, K.; Gangadharan, G. Oxidative Stress in Cognitive and Epigenetic Aging: A Retrospective Glance. Front. Mol. Neurosci. 2020, 13, 41. [Google Scholar] [CrossRef] [Green Version]
- Sartori, A.C.; Vance, D.E.; Slater, L.Z.; Crowe, M. The impact of inflammation on cognitive function in older adults: Implications for healthcare practice and research. J. Neurosci. Nurs. 2012, 44, 206–217. [Google Scholar] [CrossRef] [Green Version]
- Huber, N.; Korhonen, S.; Hoffmann, D.; Leskelä, S.; Rostalski, H.; Remes, A.M.; Honkakoski, P.; Solje, E.; Haapasalo, A. Deficient neurotransmitter systems and synaptic function in frontotemporal lobar degeneration-Insights into disease mechanisms and current therapeutic approaches. Mol. Psychiatry 2022, 27, 1300–1309. [Google Scholar] [CrossRef]
- Han, F.; Bi, J.; Qiao, L.; Arancio, O. Stem Cell Therapy for Alzheimer’s Disease. Adv. Exp. Med. Biol. 2020, 1266, 39–55. [Google Scholar] [CrossRef]
- Jung, H.; Youn, D.H.; Park, J.J.; Jeon, J.P. Bone-Marrow-Derived Mesenchymal Stem Cells Attenuate Behavioral and Cognitive Dysfunction after Subarachnoid Hemorrhage via HMGB1-RAGE Axis Mediation. Life 2023, 13, 881. [Google Scholar] [CrossRef]
- Valenzuela, M.; Duncan, T.; Abey, A.; Johnson, A.; Boulamatsis, C.; Dalton, M.A.; Jacobson, E.; Brunel, L.; Child, G.; Simpson, D.; et al. Autologous skin-derived neural precursor cell therapy reverses canine Alzheimer dementia-like syndrome in a proof of concept veterinary trial. Stem Cell Res. Ther. 2022, 13, 261. [Google Scholar] [CrossRef]
- Yang, V.K.; Meola, D.M.; Davis, A.; Barton, B.; Hoffman, A.M. Intravenous administration of allogeneic Wharton jelly-derived mesenchymal stem cells for treatment of dogs with congestive heart failure secondary to myxomatous mitral valve disease. Am. J. Vet. Res. 2021, 82, 487–493. [Google Scholar] [CrossRef]
- Borgarelli, M.; Buchanan, J.W. Historical review, epidemiology and natural history of degenerative mitral valve disease. J. Vet. Cardiol. 2012, 14, 93–101. [Google Scholar] [CrossRef]
- Petchdee, S.; Sompeewong, S. Intravenous administration of puppy deciduous teeth stem cells in degenerative valve disease. Vet. World 2016, 9, 1429–1434. [Google Scholar] [CrossRef] [Green Version]
- Brown, C.A.; Elliott, J.; Schmiedt, C.W.; Brown, S.A. Chronic Kidney Disease in Aged Cats: Clinical Features, Morphology, and Proposed Pathogeneses. Vet. Pathol. 2016, 53, 309–326. [Google Scholar] [CrossRef]
- Thomson, A.L.; Berent, A.C.; Weisse, C.; Langston, C.E. Intra-arterial renal infusion of autologous mesenchymal stem cells for treatment of chronic kidney disease in cats: Phase I clinical trial. J. Vet. Intern. Med. 2019, 33, 1353–1361. [Google Scholar] [CrossRef]
- Quimby, J.M.; Webb, T.L.; Gibbons, D.S.; Dow, S.W. Evaluation of intrarenal mesenchymal stem cell injection for treatment of chronic kidney disease in cats: A pilot study. J. Feline Med. Surg. 2011, 13, 418–426. [Google Scholar] [CrossRef]
- Quimby, J.M.; Webb, T.L.; Habenicht, L.M.; Dow, S.W. Safety and efficacy of intravenous infusion of allogeneic cryopreserved mesenchymal stem cells for treatment of chronic kidney disease in cats: Results of three sequential pilot studies. Stem Cell Res. Ther. 2013, 4, 48. [Google Scholar] [CrossRef] [Green Version]
- Quimby, J.M.; Webb, T.L.; Randall, E.; Marolf, A.; Valdes-Martinez, A.; Dow, S.W. Assessment of intravenous adipose-derived allogeneic mesenchymal stem cells for the treatment of feline chronic kidney disease: A randomized, placebo-controlled clinical trial in eight cats. J. Feline Med. Surg. 2016, 18, 165–171. [Google Scholar] [CrossRef]
- Vidane, A.S.; Pinheiro, A.O.; Casals, J.B.; Passarelli, D.; Hage, M.C.F.N.S.; Bueno, R.S.; Martins, D.S.; Ambrósio, C.E. Transplantation of amniotic membrane-derived multipotent cells ameliorates and delays the progression of chronic kidney disease in cats. Reprod. Domest. Anim. 2017, 52 (Suppl. 2), 316–326. [Google Scholar] [CrossRef] [Green Version]
- Bland, S.D. Canine osteoarthritis and treatments: A review. Vet. Sci. Dev. 2015, 5, 5931. [Google Scholar] [CrossRef]
- Sellon, D.C.; Marcellin-Little, D.J. Risk factors for cranial cruciate ligament rupture in dogs participating in canine agility. BMC Vet. Res. 2022, 18, 39. [Google Scholar] [CrossRef]
- Nurul, A.A.; Azlan, M.; Ahmad Mohd Zain, M.R.; Sebastian, A.A.; Fan, Y.Z.; Fauzi, M.B. Mesenchymal Stem Cells: Current Concepts in the Management of Inflammation in Osteoarthritis. Biomedicines 2021, 9, 785. [Google Scholar] [CrossRef]
- Harrell, C.R.; Markovic, B.S.; Fellabaum, C.; Arsenijevic, A.; Volarevic, V. Mesenchymal stem cell-based therapy of osteoarthritis: Current knowledge and future perspectives. Biomed. Pharmacother. 2019, 109, 2318–2326. [Google Scholar] [CrossRef]
- Kwon, D.G.; Kim, M.K.; Jeon, Y.S.; Nam, Y.C.; Park, J.S.; Ryu, D.J. State of the Art: The Immunomodulatory Role of MSCs for Osteoarthritis. Int. J. Mol. Sci. 2022, 23, 1618. [Google Scholar] [CrossRef]
- Bogers, S.H. Cell-Based Therapies for Joint Disease in Veterinary Medicine: What We Have Learned and What We Need to Know. Front. Vet. Sci. 2018, 5, 70. [Google Scholar] [CrossRef]
- Anderson, K.L.; Zulch, H.; O’Neill, D.G.; Meeson, R.L.; Collins, L.M. Risk Factors for Canine Osteoarthritis and Its Predisposing Arthropathies: A Systematic Review. Front. Vet. Sci. 2020, 7, 220. [Google Scholar] [CrossRef]
- Bliddal, H.; Leeds, A.R.; Christensen, R. Osteoarthritis, obesity and weight loss: Evidence, hypotheses and horizons—A scoping review. Obes. Rev. 2014, 15, 578–586. [Google Scholar] [CrossRef] [Green Version]
- Shepherd, M. Canine and Feline Obesity Management. Vet. Clin. North. Am. Small Anim. Pract. 2021, 51, 653–667. [Google Scholar] [CrossRef]
- Brondeel, C.; Pauwelyn, G.; de Bakker, E.; Saunders, J.; Samoy, Y.; Spaas, J.H. Review: Mesenchymal Stem Cell Therapy in Canine Osteoarthritis Research: “Experientia Docet” (Experience Will Teach Us). Front. Vet. Sci. 2021, 8, 668881. [Google Scholar] [CrossRef]
- Hielm-Björkman, A.K.; Rita, H.; Tulamo, R.M. Psychometric testing of the Helsinki chronic pain index by completion of a questionnaire in Finnish by owners of dogs with chronic signs of pain caused by osteoarthritis. Am. J. Vet. Res. 2009, 70, 727–734. [Google Scholar] [CrossRef]
- Bennett, D.; Zainal Ariffin, S.M.B.Z.; Johnston, P. Osteoarthritis in the cat: 1. how common is it and how easy to recognise? J. Feline Med. Surg. 2012, 14, 65–75. [Google Scholar] [CrossRef]
- Slingerland, L.I.; Hazewinkel, H.A.W.; Meij, B.P.; Picavet, P.; Voorhout, G. Cross-sectional study of the prevalence and clinical features of osteoarthritis in 100 cats. Vet. J. 2011, 187, 304–309. [Google Scholar] [CrossRef]
- Masson, A.O.; Krawetz, R.J. Understanding cartilage protection in OA and injury: A spectrum of possibilities. BMC Musculoskelet. Disord. 2020, 21, 432. [Google Scholar] [CrossRef]
- Shah, K.; Drury, T.; Roic, I.; Hansen, P.; Malin, M.; Boyd, R.; Sumer, H.; Ferguson, R. Outcome of Allogeneic Adult Stem Cell Therapy in Dogs Suffering from Osteoarthritis and Other Joint Defects. Stem Cells Int. 2018, 2018, 7309201. [Google Scholar] [CrossRef] [Green Version]
- Cabon, Q.; Febre, M.; Gomez, N.; Cachon, T.; Pillard, P.; Carozzo, C.; Saulnier, N.; Robert, C.; Livet, V.; Rakic, R.; et al. Long-Term Safety and Efficacy of Single or Repeated Intra-Articular Injection of Allogeneic Neonatal Mesenchymal Stromal Cells for Managing Pain and Lameness in Moderate to Severe Canine Osteoarthritis without Anti-inflammatory Pharmacological Support: Pilot Clinical Study. Front. Vet. Sci. 2019, 6, 10. [Google Scholar] [CrossRef]
- Kriston-Pál, É.; Haracska, L.; Cooper, P.; Kiss-Tóth, E.; Szukacsov, V.; Monostori, É. A Regenerative Approach to Canine Osteoarthritis Using Allogeneic, Adipose-Derived Mesenchymal Stem Cells. Safety Results of a Long-Term Follow-Up. Front. Vet. Sci. 2020, 7, e510. [Google Scholar] [CrossRef]
- Vilar, J.M.; Batista, M.; Morales, M.; Santana, A.; Cuervo, B.; Rubio, M.; Cugat, R.; Sopena, J.; Carrillo, J.M. Assessment of the effect of intraarticular injection of autologous adipose-derived mesenchymal stem cells in osteoarthritic dogs using a double blinded force platform analysis. BMC Vet. Res. 2014, 10, 143. [Google Scholar] [CrossRef] [Green Version]
- Black, L.L.; Gaynor, J.; Gahring, D.; Adams, C.; Aron, D.; Harman, S.; A Gingerich, D.; Harman, R. Effect of adipose-derived mesenchymal stem and regenerative cells on lameness in dogs with chronic osteoarthritis of the coxofemoral joints: A randomized, double-blinded, multicenter, controlled trial. Vet. Ther. 2007, 8, 272–284. [Google Scholar]
- Cuervo, B.; Rubio, M.; Sopena, J.; Dominguez, J.M.; Vilar, J.; Morales, M.; Cugat, R.; Carrillo, J.M. Hip osteoarthritis in dogs: A randomized study using mesenchymal stem cells from adipose tissue and plasma rich in growth factors. Int. J. Mol. Sci. 2014, 15, 13437–13460. [Google Scholar] [CrossRef] [Green Version]
- Harman, R.J.; Carlson, K.; Gaynor, J.; Gustafson, S.; Dhupa, S.; Clement, K.; Hoelzler, M.; McCarthy, T.; Schwartz, P.; Adams, C. A Prospective, Randomized, Masked, and Placebo-Controlled Efficacy Study of Intraarticular Allogeneic Adipose Stem Cells for the Treatment of Osteoarthritis in Dogs. Front. Vet. Sci. 2016, 3, 81. [Google Scholar] [CrossRef]
- Maki, C.B.; Beck, A.; Wallis, C.-B.C.C.; Choo, J.; Ramos, T.; Tong, R.; Borjesson, D.L.; Izadyar, F. Intra-articular Administration of Allogeneic Adipose Derived MSCs Reduces Pain and Lameness in Dogs With Hip Osteoarthritis: A Double Blinded, Randomized, Placebo Controlled Pilot Study. Front. Vet. Sci. 2020, 7, e570. [Google Scholar] [CrossRef]
- Kim, S.E.; Pozzi, A.; Yeh, J.-C.; Lopez-Velazquez, M.; Yong, J.A.A.; Townsend, S.; Dunlap, A.E.; Christopher, S.A.; Lewis, D.D.; Johnson, M.D.; et al. Intra-Articular Umbilical Cord Derived Mesenchymal Stem Cell Therapy for Chronic Elbow Osteoarthritis in Dogs: A Double-Blinded, Placebo-Controlled Clinical Trial. Front. Vet. Sci. 2019, 6, 474. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.-Y.; Wang, B.-Y.; Li, S.-C.; Luo, D.-Z.; Zhan, X.; Chen, S.-F.; Chen, Z.-S.; Liu, C.-Y.; Ji, H.-Q.; Bai, Y.-S.; et al. Evaluation of the Curative Effect of Umbilical Cord Mesenchymal Stem Cell Therapy for Knee Arthritis in Dogs Using Imaging Technology. Stem Cells Int. 2018, 2018, 1983025. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Duan, X.; Fan, Z.; Chen, L.; Xing, F.; Xu, Z.; Chen, Q.; Xiang, Z. Mesenchymal Stem Cells in Combination with Hyaluronic Acid for Articular Cartilage Defects. Sci. Rep. 2018, 8, 9900. [Google Scholar] [CrossRef] [Green Version]
- Kriston-Pál, E.; Czibula, A.; Gyuris, Z.; Balka, G.; Seregi, A.; Sükösd, F.; Süth, M.; Kiss-Tóth, E.; Haracska, L.; Uher, F.; et al. Characterization and therapeutic application of canine adipose mesenchymal stem cells to treat elbow osteoarthritis. Can. J. Vet. Res. 2017, 81, 73–78. [Google Scholar]
- Pfahler, S.; Distl, O. Identification of quantitative trait loci (QTL) for canine hip dysplasia and canine elbow dysplasia in Bernese mountain dogs. PLoS ONE 2012, 7, e49782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marx, C.; Silveira, M.D.; Selbach, I.; da Silva, A.S.; Braga, L.M.G.d.M.; Camassola, M.; Nardi, N.B. Acupoint injection of autologous stromal vascular fraction and allogeneic adipose-derived stem cells to treat hip dysplasia in dogs. Stem Cells Int. 2014, 2014, 391274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muir, P.; Hans, E.C.; Racette, M.; Volstad, N.; Sample, S.J.; Heaton, C.; Holzman, G.; Schaefer, S.L.; Bloom, D.D.; Bleedorn, J.A.; et al. Autologous Bone Marrow-Derived Mesenchymal Stem Cells Modulate Molecular Markers of Inflammation in Dogs with Cruciate Ligament Rupture. PLoS ONE 2016, 11, e0159095. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taroni, M.; Cabon, Q.; Fèbre, M.; Cachon, T.; Saulnier, N.; Carozzo, C.; Maddens, S.; Labadie, F.; Robert, C.; Viguier, E. Evaluation of the Effect of a Single Intra-articular Injection of Allogeneic Neonatal Mesenchymal Stromal Cells Compared to Oral Non-Steroidal Anti-inflammatory Treatment on the Postoperative Musculoskeletal Status and Gait of Dogs over a 6-Month Period after Tibial Plateau Leveling Osteotomy: A Pilot Study. Front. Vet. Sci. 2017, 4, 83. [Google Scholar] [CrossRef] [Green Version]
- Dos Santos, C.R.; Filgueiras, R.D.R.; Malard, P.F.; Barreto-Vianna, A.R.D.C.; Nogueira, K.; Leite, C.D.S.; De Lima, E.M.M. Mesenchymal stem cells in osteotomy repair after tibial tuberosity advancement in dogs with cranial cruciate ligament injury. J. Exp. Orthop. 2018, 5, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Linon, E.; Spreng, D.; Rytz, U.; Forterre, S. Engraftment of autologous bone marrow cells into the injured cranial cruciate ligament in dogs. Vet. J. 2014, 202, 448–454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Canapp, S.O.; Leasure, C.S.; Cox, C.; Ibrahim, V.; Carr, B.J. Partial Cranial Cruciate Ligament Tears Treated with Stem Cell and Platelet-Rich Plasma Combination Therapy in 36 Dogs: A Retrospective Study. Front. Vet. Sci. 2016, 3, 112. [Google Scholar] [CrossRef] [Green Version]
- Canapp, S.O.; Canapp, D.A.; Ibrahim, V.; Carr, B.J.; Cox, C.; Barrett, J.G. The use of adipose-derived progenitor cells and platelet-rich plasma combination for the treatment of supraspinatus tendinopathy in 55 dogs: A retrospective study. Front. Vet. Sci. 2016, 3, 61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Case, J.B.; Palmer, R.; Valdes-Martinez, A.; Egger, E.L.; Haussler, K.K. Gastrocnemius tendon strain in a dog treated with autologous mesenchymal stem cells and a custom orthosis. Vet. Surg. 2013, 42, 355–360. [Google Scholar] [CrossRef]
- Daems, R.; Van Hecke, L.; Schwarzkopf, I.; Depuydt, E.; Broeckx, S.Y.; David, M.; Beerts, C.; Vandekerckhove, P.; Spaas, J.H. A Feasibility Study on the Use of Equine Chondrogenic Induced Mesenchymal Stem Cells as a Treatment for Natural Occurring Osteoarthritis in Dogs. Stem Cells Int. 2019, 2019, 4587594. [Google Scholar] [CrossRef]
- Kang, M.H.; Park, H.M. Evaluation of adverse reactions in dogs following intravenous mesenchymal stem cell transplantation. Acta Vet. Scand. 2014, 56, 16. [Google Scholar] [CrossRef] [Green Version]
- Vulliet, P.R.; Greeley, M.; Halloran, S.M.; MacDonald, K.A.; Kittleson, M.D. Intra-coronary arterial injection of mesenchymal stromal cells and microinfarction in dogs. Lancet 2004, 363, 783–784. [Google Scholar] [CrossRef]
- Schaefer, S.; Werner, J.; Lange, S.; Machka, C.; Knuebel, G.; Sekora, A.; Roolf, C.; Winkler, T.; Escobar, H.M.; Nolte, I.; et al. Graft-versus-Host Disease in a Dog After Reduced-intensity Hematopoietic Stem Cell Transplantation from a DLA-identical Littermate. In Vivo 2016, 30, 427–432. [Google Scholar]
- Jeon, B.S.; Yi, H.; Ku, H.O. International regulatory considerations pertaining to the development of stem cell-based veterinary medicinal products. J. Vet. Sci. 2021, 22, e6. [Google Scholar] [CrossRef]
Therapeutic Indication | Authors | Patients | Stem Cell Therapy | Control Group | Follow-Up Duration | Major Outcome Measures | Key Efficacy Results of Stem Cell Therapy |
---|---|---|---|---|---|---|---|
Cognitive Dysfunction Syndrome | Valenzuela et al. [42] | 6 dogs, 10–16 years old | Autologous skin-derived neural precursor cells, 0.25 × 106 cells, bilateral hippocampus injection | No treatment (media-only) | 3 months | Canine Cognitive Dysfunction Rating Scale (CCDR), pathology | Improvement in CCDR, increase in synaptic makers |
Congestive heart failure secondary to myxomatous mitral valvular disease | Yang et al. [43] | 10 dogs, 12.8 ± 0.8 years old | Allogeneic wharton jelly derived mesenchymal stem cells (MSCs) in a 1% solution of autologous serum, 2 × 106 cells/kg, three intravenous injections | Autologous serum | 6 months | Echocardiograph, electrocardiogram (ECG), serum cardiac biomarkers, complete blood count (CBC), serum biochemical analysis, survival time, and time to first diuretic drug dosage escalation | Decreases in lymphocyte, eosinophil, and monocytes; no significant differences between groups in echocardiographic variables, ECG results, serum cardiac biomarker concentrations, survival time, and time to first diuretic drug dosage escalation |
Myxomatous mitral valvular disease | Petchdee and Sompeewong [45] | 20 dogs, 8–15 years old | Allogeneic puppy deciduous teeth stem cells, 1 × 106 cells/kg, two intravenous injections | Standard treatment and PBS injection | 2 months | Electrocardiography, complete transthoracic echocardiography, thoracic radiography, and blood pressure | Improvements in left ventricular ejection fraction, American College of Veterinary Internal Medicine functional class, and quality of life |
Chronic kidney disease | Thomson et al. [47] | 5 cats, 8.5–17 years old | Autologous adipose tissue derived MSCs, 1.5–6 × 106 cells, two intra-arterial injections to the kidney | None | 3 months | CBC, serum biochemistry, urinalysis, urine culture, urine protein: creatinine (UPC) ratio, blood pressure, iohexol clearance, and evaluation forms | Improvements in overall condition, decrease in polydipsia, improvements in energy and activity levels |
Quimby et al. [48] | 10 cats, 6–17 years old | Autologous adipose tissue-derived MSCs, bone marrow-derived MSCs, different doses (1 × 105 cells, or 1 × 106 cells, or 2 × 106 cells, or 4 × 106 cells), unilateral intrarenal injection into kidney | 2 young healthy cats | Up to 4 months | Glomerular filtration rate (GFR), CBC, serum biochemistry, urinalysis, UPC ratio, and histopathology | Increase in GFR and decrease in serum creatinine in some animals | |
Quimby et al. [49] | 21 cats, 7–18 years old | Allogeneic adipose tissue derived MSCs, 2 × 106 cells or 4 × 106 cells, three intravenous injections | No treatment | 4–8 weeks | Serum biochemistry, CBC, urinalysis, urine protein, GFR, and urinary cytokine | Decrease in serum creatinine concentrations in some animals, but not clinically relevant | |
Quimby et al. [50] | 8 cats, 9–15 years old | Allogeneic adipose tissue derived MSCs, 2 × 106 cells/kg, three intravenous injections | Placebo | 8 weeks | Serum biochemistry, complete blood count, urinalysis, urine protein, GFR, and UPC ratio | No significant change in serum creatinine, blood urea nitrogen, potassium, phosphorus, GFR, UPC ratio, or packed cell volume | |
Vidane et al. [51] | 9 cats, 8–16 years old | Allogeneic amniotic membrane derived MSCs, 2 × 106 cells, two intravenous injections | 1 healthy cat | 2 months | CBC, serum biochemistry parameters, urinalysis, UPC, blood gases and electrolytes | Decreases in UPC ratio and serum creatinine concentration, increases in food intake and social behavior | |
Osteoarthritis | Wits et al. [26] | 12 dogs, 0.6–5 years old | Allogeneic adipose- tissue-derived MSCs with or without hyaluronic acid, 5 × 106 cells, intra-articular injection | Placebo | 3 months | Lameness, pain on manipulation, articular edema, range of motion, muscle atrophy, detection of crepitus on hip rotation and abduction, radiographic examination, Norberg angle measurements | Decreases in lameness at walk and pain on manipulation, improvements in range of motion and detection of crepitus on hip rotation and abduction |
Okamoto-Okubo [27] | 16 dogs, aged 6.3 ± 3.9 and 4.6 ± 2.3 years in stem cell group and the other group | Allogeneic adipose- tissue-derived MSCs, 18 × 106 cells, two intra-articular injections | Platelet-rich plasma | 2 months | Canine Brief Pain Inventory (CBPI), the Helsinki Chronic Pain Index (HCPI), Visual Analogue Scales (VAS) for pain and locomotion, force plate gait analysis, response to palpation, descriptive numerical scale for pain | Decreases in HCPI, CBPI, VAS-pain, VAS-palp scores, as well as pain interference score and pain severity score, at 2 months | |
Sanghani-Kerai [28] | 25 dogs, 1.5–11.5 years old | Autologous adipose tissue-derived MSCs and platelet-rich plasma, intra-articular injection | None | 6 months | Liverpool Osteoarthritis in Dogs (LOAD) score, Modified Canine Osteoarthritis Staging Tool (mCOAST), kinetic gait analysis, and diagnostic imaging | Decreases in LOAD score and Asymmmetry indices, improvements in mCOAST and quality of life | |
Shah et al. [66] | 203 dogs, 0.7–16 years old | Allogeneic adipose- tissue-derived MSCs, single intra-articular injection and/or single intravenous injection | None | 10 weeks | Symptoms (lameness and pain scores) and quality of life | Improvements in pain, mobility, daily activity, and quality of life | |
Cabon et al. [67] | 22 dogs, 1–10 years old | Allogeneic neonatal tissues derived MSCs, 2 × 106 cells or more, 1 or 2 intra-articular injections | None | 2 years | Clinical symptoms and questionnaires | Clinical benefits | |
Kriston-Pál et al. [68] | 58 dogs, 0.4–10 years old | Allogeneic adipose tissue derived MSCs, 12 × 106 ± 3.2 × 106 cells, intra-articular injection | None | Up to 5 years | Questionnaire (including degree of lameness) | Improvement in lameness | |
Vilar et al. [69] | 10 dogs, 4–8 years old | Autologous adipose tissue derived MSCs, intra-articular injection | 5 healthy dogs | 6 months | Gait analysis (peak vertical force and vertical impulse) | Increases in peak vertical force and vertical impulse, but only within the first 3 months | |
Black et al. [70] | 21 dogs, 1–11 years old | Autologous adipose-derived stem cells, 4.2 × 106 cells, intra-articular injection | Placebo | 3 months | Scores for lameness, pain, range of motion, and functional disability | Improvements in lameness, pain, and range of motion | |
Cuervo et al. [71] | 39 dogs, 0.7–11.3 years old | Autologous adipose-derived MSCs, 30 × 106 cells, intra-articular injection | Plasma rich in growth factors | 6 months | Pain Assessment (VAS), degree of osteoarthritis, Bioarth scale assessment, quality of life | Improvements in function, pain, range of motion, and quality of life | |
Harman et al. [72] | 74 dogs, aged 7.98 ± 3.56 and 8.59 ± 3.53 years in treatment and control groups | Allogeneic adipose-derived MSCs, 12 × 106 cells, intra-articular injection | Placebo | 2 months | Client-specific outcome measurement scoring, pain on manipulation, veterinary and owner assessment of clinical outcomes | Improvements in client-specific outcome measurement scoring, pain on manipulation, and veterinary global score | |
Maki et al. [73] | 20 dogs, 1–14 years old | Allogeneic adipose-derived MSCs, different doses (5 × 106, or 25 × 106, or 50 × 106 cells), intra-articular injection | Placebo | 3 months | Lameness and pain; serum levels of interleukin-1 receptor antagonist protein and interleukin-10 | Improvement in lameness scores and pain in all doses; increase in serum interleukin-10 | |
Kim et al. [74] | 55 dogs, 1–11 years old | Allogeneic umbilical- cord-derived MSCs, 7 × 106 cells, intra-articular injection | Placebo | 6 months | Force-platform gait analysis, Hudson Visual Analog Scale (HVAS) | Improvements in CBPI and HVAS scores | |
Kriston-Pal et al. [77] | 30 dogs | Allogeneic adipose- tissue-derived MSCs in hyaluronic acid, 12 × 106 ± 3.2 × 106 cells, intra-articular injection | None | 1 year | Questionnaire (lameness), arthroscopy, histological analysis | Improvement in lameness, increase in cartilage regeneration | |
Daems et al. [87] | 6 dogs, 5–10 years old | Xenogeneic chondrogenic induced MSCs, 1 × 106 cells, intra-articular injection | Placebo | 12 weeks | Pressure plate analysis, orthopedic examination, synovial fluid analysis, radiographic examination, owner surveys | Improvements in pain and lameness; no significant differences in the orthopedic examination parameters, the radiographic examination, synovial fluid sampling, and pressure plate analysis between groups | |
Elbow dysplasia | Kriston-Pal et al. [77] | 30 dogs | Allogeneic adipose- tissue-derived MSCs, 12 × 106 ± 3.2 × 106 cells, in hyaluronic acid, intra-articular injection | None | 1 year | Questionnaire (lameness), arthroscopy, histological analysis | Improvement in lameness, increase in cartilage regeneration |
Hip dysplasia | Marx et al. [79] | 9 dogs, 0.5–12 years old | Autologous adipose-derived stem cells, 2–8 × 105 cells, or vascular stromal fractions, 2–5 × 106 cells, acupoint injection | None | 1 month | Range of motion, lameness at trot, pain on manipulation | Improvements in range of motion and lameness, decrease in pain on manipulation |
Cranial cruciate ligament rupture | Muir et al. [80] | 12 dogs, 1.6–9.6 years old | Autologous bone- marrow-derived MSCs, 2 × 106 cells intravenous and 5 × 106 cells intra-articular injection, after tibial plateau leveling osteotomy | None | 8 weeks | Circulating T lymphocyte subsets, C-reactive protein (CRP) and cytokine concentrations in serum and synovial fluid, total nucleated cell count in synovial fluid, radiography | Decrease in serum CRP, synovial CRP, synovial interferon-gamma-Υ; increase in serum chemokine ligand 8 |
Taroni et al. [81] | 14 dogs, 1–13 years old | Allogeneic neonatal tissues derived MSCs, 10 × 106 cells or more, intra-articular injection, after tibial plateau leveling osteotomy | Standard treatment | 6 months | Clinical score, bone healing radiographic score, semiquantitative gait evaluation | Increase in bone healing scores at 1 month; no significant difference in clinical scores and gait evaluation between the two groups at 1, 3, 6 months | |
Santos et al. [82] | 9 dogs, 1–12 years old | Autologous adipose- tissue-derived MSCs, 1.5 × 106 cells, percutaneous injection at the osteotomy site, after tibial tuberosity advancement | No treatment (media-only) | 4 months | Radiographs (scores and analysis of the density of bone trabeculae in the spongy substance) | Increase in ossification at 1 month, but no difference for the other period | |
Linon et al. [83] | 7 dogs | Autologous bone marrow cells, 1 × 107 cells, intra-articular injection, before tibial plateau levelling osteotomy | None | 1 year | Fluorescence microscopy of synovial membrane, synovial fluid analyses, clinical assessment | Increase in numbers of engrafted cells; improvements in lameness, function, activity, and pain on manipulation | |
Canapp et al. [84] | 36 dogs, 1–9.5 years old | Autologous bone marrow aspirate concentrate or adipose tissue-derived progenitor cells, combined with platelet-rich plasma, intra-articular injection | None | 3 months | Orthopedic evaluation, radiograph, objective gait analysis, diagnostic stifle arthroscopy, and functional questionnaire | Improvements in stifle arthroscopy findings, total pressure index percent, and quality of life; surgery needed in some animals | |
Supraspinatus tendinopathy | Canapp et al. [85] | 55 dogs aged 1–14 years | Autologous adipose tissue-derived progenitor cells, 5 × 106 cells, combined with platelet-rich plasma, injected into the tendon lesion | None | 3 months | Orthopedic evaluation, radiograph, magnetic resonance imaging, musculoskeletal ultrasonography, objective gait analysis, and arthroscopy | Increase in total pressure index percentage, reduction in tendon size, improvement in fiber patterns |
Gastrocnemius tendon strain | Case et al. [86] | 1 dog, 4 years old | Autologous MSCs and orthosis, >20 × 106 cells, injected into the tendon core lesion | None | 631 days | Serial orthopedic examinations, ultrasonography, force-plate gait analysis | Improvement in lameness, increase in peak vertical force, improvement in fiber pattern |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Alexander, M.; Scott, T.; Cox, D.C.T.; Wellington, A.; Chan, M.K.S.; Wong, M.B.F.; Adalsteinsson, O.; Lakey, J.R.T. Stem Cell Therapy for Aging Related Diseases and Joint Diseases in Companion Animals. Animals 2023, 13, 2457. https://doi.org/10.3390/ani13152457
Wang Y, Alexander M, Scott T, Cox DCT, Wellington A, Chan MKS, Wong MBF, Adalsteinsson O, Lakey JRT. Stem Cell Therapy for Aging Related Diseases and Joint Diseases in Companion Animals. Animals. 2023; 13(15):2457. https://doi.org/10.3390/ani13152457
Chicago/Turabian StyleWang, Yanmin, Michael Alexander, Todd Scott, Desiree C. T. Cox, Augusta Wellington, Mike K. S. Chan, Michelle B. F. Wong, Orn Adalsteinsson, and Jonathan R. T. Lakey. 2023. "Stem Cell Therapy for Aging Related Diseases and Joint Diseases in Companion Animals" Animals 13, no. 15: 2457. https://doi.org/10.3390/ani13152457
APA StyleWang, Y., Alexander, M., Scott, T., Cox, D. C. T., Wellington, A., Chan, M. K. S., Wong, M. B. F., Adalsteinsson, O., & Lakey, J. R. T. (2023). Stem Cell Therapy for Aging Related Diseases and Joint Diseases in Companion Animals. Animals, 13(15), 2457. https://doi.org/10.3390/ani13152457