Effect of a High-Starch or a High-Fat Diet on the Milk Performance, Apparent Nutrient Digestibility, Hindgut Fermentation Parameters and Microbiota of Lactating Cows
Abstract
:Simple Summary
Abstract
1. Implications
2. Introduction
3. Materials and Methods
3.1. Management of Cows
3.2. Experimental Design and Treatments
3.3. Feed Intake, Apparent Nutrient Digestibility
3.4. Milk Collection and Analysis
3.5. Fecal Samples Collection and Analysis
4. Statistical Analysis
5. Results
5.1. DMI, Milk Yield and Milk Components
5.2. Apparent Nutrient Digestibility
5.3. Fecal Fermentation Parameters Effectiveness of Different Diet Treatments
5.4. Feces Bacteria Abundance Effectiveness of Different Diet Treatments
5.5. Diversity of Fecal Microbial Communities
5.6. Correlation of Feces Bacterial Differentiation with Milk Components and Nutrient Digestibility
6. Discussion
6.1. DMI, Milk Yield and Milk Components
6.2. Apparent Nutrient Digestibility
6.3. Fecal Fermentation Parameters
6.4. Fecal Bacteria Abundance
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Miciński, J.; Zwierzchowski, G.; Kowalski, I.M.; Szarek, J.; Pierożyński, B.; Raistenskis, J. The effects of bovine milk fat on human health. Pol. Ann. Med. 2012, 19, 170–175. [Google Scholar] [CrossRef]
- Baldin, M.; Garcia, D.; Zanton, G.I.; Hao, F.; Patterson, A.D.; Harvatine, K.J. Effect of 2-hydroxy-4-(methylthio)butanoate (HMTBa) on milk fat, rumen environment and biohydrogenation, and rumen protozoa in lactating cows fed diets with increased risk for milk fat depression. J. Dairy Sci. 2022, 105, 7446–7461. [Google Scholar] [CrossRef]
- Bauman, D.E.; Griinari, J.M. Regulation and nutritional manipulation of milk fat: Low-fat milk syndrome. Livest. Prod. Sci. 2001, 70, 15–29. [Google Scholar] [CrossRef]
- Bauman, D.E.; Griinari, J.M. Nutritional regulation of milk fat synthesis. Annu. Rev. Nutr. 2003, 23, 203–227. [Google Scholar] [CrossRef] [Green Version]
- Maxin, G.; Glasser, F.; Hurtaud, C.; Peyraud, J.L.; Rulquin, H. Combined effects of trans-10,cis-12 conjugated linoleic acid, propionate, and acetate on milk fat yield and composition in dairy cows. J. Dairy Sci. 2011, 94, 2051–2059. [Google Scholar] [CrossRef]
- Bernard, L.; Bonnet, M.; Leroux, C.; Shingfield, K.J.; Chilliard, Y. Effect of sunflower-seed oil and linseed oil on tissue lipid metabolism, gene expression, and milk fatty acid secretion in Alpine goats fed maize silage–based diets. J. Dairy Sci. 2009, 92, 6083–6094. [Google Scholar] [CrossRef] [Green Version]
- Zebeli, Q.; Ametaj, B.N. Relationships between rumen lipopolysaccharide and mediators of inflammatory response with milk fat production and efficiency in dairy cows. J. Dairy Sci. 2009, 92, 3800–3809. [Google Scholar] [CrossRef] [Green Version]
- Baumgard, L.H.; Matitashvili, E.; Corl, B.A.; Dwyer, D.A.; Bauman, D.E. trans-10, cis-12 Conjugated Linoleic Acid Decreases Lipogenic Rates and Expression of Genes Involved in Milk Lipid Synthesis in Dairy Cows1. J. Dairy Sci. 2002, 85, 2155–2163. [Google Scholar] [CrossRef] [Green Version]
- Dewanckele, L.; Toral, P.G.; Vlaeminck, B.; Fievez, V. Invited review: Role of rumen biohydrogenation intermediates and rumen microbes in diet-induced milk fat depression: An update. J. Dairy Sci. 2020, 103, 7655–7681. [Google Scholar] [CrossRef]
- van Gastelen, S.; Dijkstra, J.; Alferink, S.J.J.; Binnendijk, G.; Nichols, K.; Zandstra, T.; Bannink, A. Abomasal infusion of corn starch and β-hydroxybutyrate in early-lactation Holstein-Friesian dairy cows to induce hindgut and metabolic acidosis. J. Dairy Sci. 2021, 104, 12520–12539. [Google Scholar] [CrossRef]
- Neubauer, V.; Petri, R.M.; Humer, E.; Kröger, I.; Reisinger, N.; Baumgartner, W.; Wagner, M.; Zebeli, Q. Starch-Rich Diet Induced Rumen Acidosis and Hindgut Dysbiosis in Dairy Cows of Different Lactations. Animals 2020, 10, 1727. [Google Scholar] [CrossRef]
- Gressley, T.F.; Hall, M.B.; Armentano, L.E. Ruminant Nutrition Symposium: Productivity, digestion, and health responses to hindgut acidosis in ruminants. J. Anim. Sci. 2011, 89, 1120–1130. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Khafipour, E.; Krause, D.O.; Kroeker, A.; Rodriguez-Lecompte, J.C.; Gozho, G.N.; Plaizier, J.C. Effects of subacute ruminal acidosis challenges on fermentation and endotoxins in the rumen and hindgut of dairy cows. J. Dairy Sci. 2012, 95, 294–303. [Google Scholar] [CrossRef] [Green Version]
- NRC. Nutrient Requirements of Dairy Cattle: Seventh Revised Edition, 2001; The National Academies Press: Washington, DC, USA, 2001; p. 405. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Van Keulen, J.; Young, B.A. Evaluation of Acid-Insoluble Ash as a Natural Marker in Ruminant Digestibility Studies. J. Anim. Sci. 1977, 44, 282–287. [Google Scholar] [CrossRef]
- Guo, Y.; Xu, X.; Zou, Y.; Yang, Z.; Li, S.; Cao, Z. Changes in feed intake, nutrient digestion, plasma metabolites, and oxidative stress parameters in dairy cows with subacute ruminal acidosis and its regulation with pelleted beet pulp. J. Anim. Sci. Biotechnol. 2013, 4, 31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Broderick, G.A.; Kang, J.H. Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media. J. Dairy Sci. 1980, 63, 64–75. [Google Scholar] [CrossRef]
- Erwin, E.S.; Marco, G.J.; Emery, E.M. Volatile Fatty Acid Analyses of Blood and Rumen Fluid by Gas Chromatography. J. Dairy Sci. 1961, 44, 1768–1771. [Google Scholar] [CrossRef]
- Wu, Z.Z.; Peng, W.C.; Liu, J.X.; Xu, G.Z.; Wang, D.M. Effect of chromium methionine supplementation on lactation performance, hepatic respiratory rate and anti-oxidative capacity in early-lactating dairy cows. Animal 2021, 15, 100326. [Google Scholar] [CrossRef]
- Kliem, K.E.; Humphries, D.J.; Kirton, P.; Givens, D.I.; Reynolds, C.K. Differential effects of oilseed supplements on methane production and milk fatty acid concentrations in dairy cows. Animal 2019, 13, 309–317. [Google Scholar] [CrossRef]
- Razzaghi, A.; Vakili, A.R.; Khorrami, B.; Ghaffari, M.H.; Rico, D.E. Effect of dietary supplementation or cessation of magnesium-based alkalizers on milk fat output in dairy cows under milk fat depression conditions. J. Dairy Sci. 2022, 105, 2275–2287. [Google Scholar] [CrossRef] [PubMed]
- Koch, L.E.; Jenkins, T.C.; Bridges, W.C.; Koch, B.M.; Lascano, G.J. Changes in fermentation and animal performance during recovery from classical diet-induced milk fat depression using corn with differing rates of starch degradability. J. Dairy Sci. 2019, 102, 5079–5093. [Google Scholar] [CrossRef] [PubMed]
- He, M.; Perfield, K.L.; Green, H.B.; Armentano, L.E. Effect of dietary fat blend enriched in oleic or linoleic acid and monensin supplementation on dairy cattle performance, milk fatty acid profiles, and milk fat depression. J. Dairy Sci. 2012, 95, 1447–1461. [Google Scholar] [CrossRef] [PubMed]
- Mu, Y.Y.; Qi, W.P.; Zhang, T.; Zhang, J.Y.; Mei, S.J.; Mao, S.Y. Changes in rumen fermentation and bacterial community in lactating dairy cows with subacute rumen acidosis following rumen content transplantation. J. Dairy Sci. 2021, 104, 10780–10795. [Google Scholar] [CrossRef] [PubMed]
- Shingfield, K.J.; Bernard, L.; Leroux, C.; Chilliard, Y. Role of trans fatty acids in the nutritional regulation of mammary lipogenesis in ruminants. Animal 2010, 4, 1140–1166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jenkins, T.C.; Harvatine, K.J. Lipid feeding and milk fat depression. Vet. Clin. N. Am. Food Anim. Pract. 2014, 30, 623–642. [Google Scholar] [CrossRef]
- Weimer, P.J.; Stevenson, D.M.; Mertens, D.R. Shifts in bacterial community composition in the rumen of lactating dairy cows under milk fat-depressing conditions. J. Dairy Sci. 2010, 93, 265–278. [Google Scholar] [CrossRef] [Green Version]
- Leddin, C.M.; Stockdale, C.R.; Hill, J.; Heard, J.W.; Doyle, P.T. Increasing amounts of crushed wheat fed with pasture hay reduced dietary fiber digestibility in lactating dairy cows. J. Dairy Sci. 2009, 92, 2747–2757. [Google Scholar] [CrossRef] [Green Version]
- Zebeli, Q.; Dunn, S.M.; Ametaj, B.N. Perturbations of plasma metabolites correlated with the rise of rumen endotoxin in dairy cows fed diets rich in easily degradable carbohydrates. J. Dairy Sci. 2011, 94, 2374–2382. [Google Scholar] [CrossRef] [Green Version]
- Pirondini, M.; Colombini, S.; Mele, M.; Malagutti, L.; Rapetti, L.; Galassi, G.; Crovetto, G.M. Effect of dietary starch concentration and fish oil supplementation on milk yield and composition, diet digestibility, and methane emissions in lactating dairy cows. J. Dairy Sci. 2015, 98, 357–372. [Google Scholar] [CrossRef] [Green Version]
- Bayat, A.R.; Ventto, L.; Kairenius, P.; Stefański, T.; Leskinen, H.; Tapio, I.; Negussie, E.; Vilkki, J.; Shingfield, K.J. Dietary forage to concentrate ratio and sunflower oil supplement alter rumen fermentation, ruminal methane emissions, and nutrient utilization in lactating cows. Transl. Anim. Sci. 2017, 1, 277–286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weld, K.A.; Armentano, L.E. The effects of adding fat to diets of lactating dairy cows on total-tract neutral detergent fiber digestibility: A meta-analysis. J. Dairy Sci. 2017, 100, 1766–1779. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Onetti, S.G.; Shaver, R.D.; McGuire, M.A.; Grummer, R.R. Effect of Type and Level of Dietary Fat on Rumen Fermentation and Performance of Dairy Cows Fed Corn Silage-Based Diets. J. Dairy Sci. 2001, 84, 2751–2759. [Google Scholar] [CrossRef]
- Martin, C.; Rouel, J.; Jouany, J.P.; Doreau, M.; Chilliard, Y. Methane output and diet digestibility in response to feeding dairy cows crude linseed, extruded linseed, or linseed oil. J. Anim. Sci. 2008, 86, 2642–2650. [Google Scholar] [CrossRef] [Green Version]
- Khafipour, E.; Krause, D.O.; Plaizier, J.C. A grain-based subacute ruminal acidosis challenge causes translocation of lipopolysaccharide and triggers inflammation. J. Dairy Sci. 2009, 92, 1060–1070. [Google Scholar] [CrossRef] [Green Version]
- Freitas, J.E.; Takiya, C.S.; Del Valle, T.A.; Barletta, R.V.; Venturelli, B.C.; Vendramini, T.H.A.; Mingoti, R.D.; Calomeni, G.D.; Gardinal, R.; Gandra, J.R.; et al. Ruminal biohydrogenation and abomasal flow of fatty acids in lactating cows fed diets supplemented with soybean oil, whole soybeans, or calcium salts of fatty acids. J. Dairy Sci. 2018, 101, 7881–7891. [Google Scholar] [CrossRef] [PubMed]
- Aguerre, M.J.; Wattiaux, M.A.; Hunt, T.; Lobos, N.E. Effect of nitrogen content and additional straw on changes in chemical composition, volatile losses, and ammonia emissions from dairy manure during long-term storage. J. Dairy Sci. 2012, 95, 3454–3466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, S.L.; Bu, D.P.; Wang, J.Q.; Hu, Z.Y.; Li, D.; Wei, H.Y.; Zhou, L.Y.; Loor, J.J. Soybean oil and linseed oil supplementation affect profiles of ruminal microorganisms in dairy cows. Animal 2009, 3, 1562–1569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacobs, A.A.A.; Dijkstra, J.; Liesman, J.S.; VandeHaar, M.J.; Lock, A.L.; van Vuuren, A.M.; Hendriks, W.H.; van Baal, J. Effects of short- and long-chain fatty acids on the expression of stearoyl-CoA desaturase and other lipogenic genes in bovine mammary epithelial cells. Animal 2013, 7, 1508–1516. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Wang, Z.H.; Li, F.C.; Lin, X.Y. Milk fat content was changed by ruminal infusion of mixed VFAs solutions with different acetate/propionate ratios in lactating goats. Small Rumin. Res. 2007, 72, 11–17. [Google Scholar] [CrossRef]
- Hassanat, F.; Benchaar, C. Corn silage-based diet supplemented with increasing amounts of linseed oil: Effects on methane production, rumen fermentation, nutrient digestibility, nitrogen utilization, and milk production of dairy cows. J. Dairy Sci. 2021, 104, 5375–5390. [Google Scholar] [CrossRef] [PubMed]
- Russell, J.B. The importance of pH in the regulation of ruminal acetate to propionate ratio and methane production in vitro. J. Dairy Sci. 1998, 81, 3222–3230. [Google Scholar] [CrossRef]
- Kholif, A.E.; Morsy, T.A.; Abdo, M.M. Crushed flaxseed versus flaxseed oil in the diets of Nubian goats: Effect on feed intake, digestion, ruminal fermentation, blood chemistry, milk production, milk composition and milk fatty acid profile. Anim. Feed Sci. Technol. 2018, 244, 66–75. [Google Scholar] [CrossRef]
- Patra, A.K.; Yu, Z. Effects of essential oils on methane production and fermentation by, and abundance and diversity of, rumen microbial populations. Appl. Environ. Microbiol. 2012, 78, 4271–4280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lascano, G.J.; Alende, M.; Koch, L.E.; Jenkins, T.C. Changes in fermentation and biohydrogenation intermediates in continuous cultures fed low and high levels of fat with increasing rates of starch degradability. J. Dairy Sci. 2016, 99, 6334–6341. [Google Scholar] [CrossRef] [PubMed]
- Côrtes, C.; da Silva-Kazama, D.C.; Kazama, R.; Gagnon, N.; Benchaar, C.; Santos, G.T.D.; Zeoula, L.M.; Petit, H.V. Milk composition, milk fatty acid profile, digestion, and ruminal fermentation in dairy cows fed whole flaxseed and calcium salts of flaxseed oil1. J. Dairy Sci. 2010, 93, 3146–3157. [Google Scholar] [CrossRef] [Green Version]
- Mirzaei-Alamouti, H.; Akbari-Pabandi, K.; Mansouryar, M.; Sirjani, M.A.; Cieslak, A.; Szumacher-Strabel, M.; Patra, A.K.; Vazirigohar, M. Effects of feeding frequency and oil supplementation on feeding behavior, ruminal fermentation, digestibility, blood metabolites, and milk performance in late-lactation cows fed a high-forage diet. J. Dairy Sci. 2020, 103, 11424–11438. [Google Scholar] [CrossRef]
- Fecteau, M.E.; Pitta, D.W.; Vecchiarelli, B.; Indugu, N.; Kumar, S.; Gallagher, S.C.; Fyock, T.L.; Sweeney, R.W. Dysbiosis of the Fecal Microbiota in Cattle Infected with Mycobacterium avium subsp. paratuberculosis. PLoS ONE 2016, 11, e0160353. [Google Scholar] [CrossRef] [Green Version]
- Tao, S.; Tian, P.; Luo, Y.; Tian, J.; Hua, C.; Geng, Y.; Cong, R.; Ni, Y.; Zhao, R. Microbiome-Metabolome Responses to a High-Grain Diet Associated with the Hind-Gut Health of Goats. Front. Microbiol. 2017, 8, 1764. [Google Scholar] [CrossRef]
- Ley, R.E.; Hamady, M.; Lozupone, C.; Turnbaugh, P.J.; Ramey, R.R.; Bircher, J.S.; Schlegel, M.L.; Tucker, T.A.; Schrenzel, M.D.; Knight, R.; et al. Evolution of mammals and their gut microbes. Science 2008, 320, 1647–1651. [Google Scholar] [CrossRef] [Green Version]
- Hernández, R.; Chaib De Mares, M.; Jimenez, H.; Reyes, A.; Caro-Quintero, A. Functional and Phylogenetic Characterization of Bacteria in Bovine Rumen Using Fractionation of Ruminal Fluid. Front. Microbiol. 2022, 13, 813002. [Google Scholar] [CrossRef] [PubMed]
- Derrien, M.; Van Baarlen, P.; Hooiveld, G.; Norin, E.; Müller, M.; de Vos, W.M. Modulation of Mucosal Immune Response, Tolerance, and Proliferation in Mice Colonized by the Mucin-Degrader Akkermansia muciniphila. Front. Microbiol. 2011, 2, 166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, X.; Zhang, H.; Lin, A.; Su, Y. Antagonization of Ghrelin Suppresses Muscle Protein Deposition by Altering Gut Microbiota and Serum Amino Acid Composition in a Pig Model. Biology 2022, 11, 840. [Google Scholar] [CrossRef]
- Konikoff, T.; Gophna, U. Oscillospira: A Central, Enigmatic Component of the Human Gut Microbiota. Trends Microbiol. 2016, 24, 523–524. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Ding, L.; Zhu, W.; Hang, S. Effects of the increased protein level in small intestine on the colonic microbiota, inflammation and barrier function in growing pigs. BMC Microbiol. 2022, 22, 172. [Google Scholar] [CrossRef]
- Huws, S.A.; Kim, E.J.; Lee, M.R.; Scott, M.B.; Tweed, J.K.; Pinloche, E.; Wallace, R.J.; Scollan, N.D. As yet uncultured bacteria phylogenetically classified as Prevotella, Lachnospiraceae incertae sedis and unclassified Bacteroidales, Clostridiales and Ruminococcaceae may play a predominant role in ruminal biohydrogenation. Environ. Microbiol. 2011, 13, 1500–1512. [Google Scholar] [CrossRef]
- Mu, Y.Y.; Qi, W.P.; Zhang, T.; Zhang, J.Y.; Mao, S.Y. Gene function adjustment for carbohydrate metabolism and enrichment of rumen microbiota with antibiotic resistance genes during subacute rumen acidosis induced by a high-grain diet in lactating dairy cows. J. Dairy Sci. 2021, 104, 2087–2105. [Google Scholar] [CrossRef]
- Wenner, B.A.; Park, T.; Mitchell, K.; Kvidera, S.K.; Griswold, K.E.; Horst, E.A.; Baumgard, L.H. Effect of zinc source (zinc sulfate or zinc hydroxychloride) on relative abundance of fecal Treponema spp. in lactating dairy cows. JDS Commun. 2022, 3, 334–338. [Google Scholar] [CrossRef]
- Monteiro, H.F.; Lelis, A.L.J.; Fan, P.; Calvo Agustinho, B.; Lobo, R.R.; Arce-Cordero, J.A.; Dai, X.; Jeong, K.C.; Faciola, A.P. Effects of lactic acid-producing bacteria as direct-fed microbials on the ruminal microbiome. J. Dairy Sci. 2022, 105, 2242–2255. [Google Scholar] [CrossRef]
- Yang, C.; Tsedan, G.; Liu, Y.; Hou, F. Shrub coverage alters the rumen bacterial community of yaks (Bos grunniens) grazing in alpine meadows. J. Anim. Sci. Technol. 2020, 62, 504–520. [Google Scholar] [CrossRef]
- Cendron, F.; Niero, G.; Carlino, G.; Penasa, M.; Cassandro, M. Characterizing the fecal bacteria and archaea community of heifers and lactating cows through 16S rRNA next-generation sequencing. J. Appl. Genet. 2020, 61, 593–605. [Google Scholar] [CrossRef]
Ingredients (% of DM 2) | Diet 1, % | ||
---|---|---|---|
CON | IS | IO | |
Whole corn silage | 25.55 | 17.42 | 25.07 |
Alfalfa hay | 15.26 | 10.38 | 14.97 |
Oat hay | 6.28 | 4.25 | 6.18 |
Ground corn | 13.27 | 13.27 | 13.02 |
Steam-flaked corn | 6.02 | 6.02 | 5.91 |
Fine ground wheat | - | 15.01 | - |
Sunflower oil | - | - | 5.86 |
Soybean meal | 15.42 | 14.09 | 17.01 |
Sunflower seed meal | 0.73 | 0.73 | 0.71 |
Extruded soybean | 0.84 | 0.84 | 0.82 |
Sugar beet pulp | 1.68 | 1.68 | - |
Soybean hull | 4.29 | 5.65 | - |
Whole cottonseed | 6.14 | 6.14 | 6.02 |
Cane molasses | 1.55 | 1.55 | 1.53 |
Mineral–vitamin premix 3 | 0.42 | 0.42 | 0.42 |
Dicalcium phosphate | 0.43 | 0.43 | 0.42 |
Limestone | 0.87 | 0.87 | 0.85 |
Sodium bicarbonate | 0.75 | 0.75 | 0.73 |
Magnesium oxide | 0.22 | 0.22 | 0.21 |
Salt | 0.28 | 0.28 | 0.27 |
Nutritional levels 4, % DM | |||
OM | 93.71 | 94.43 | 93.95 |
CP | 16.47 | 16.52 | 16.52 |
NEL, MJ/kg 5 | 6.71 | 7.03 | 7.70 |
NDF | 32.17 | 30.41 | 28.31 |
ADF | 15.84 | 13.84 | 13.15 |
Starch | 23.51 | 31.93 | 22.97 |
EE | 2.60 | 2.53 | 8.13 |
Calcium | 0.87 | 0.79 | 0.82 |
Total phosphorus | 0.40 | 0.41 | 0.40 |
Assignment | Pre-Experiment | Period 1 | Period 2 | Period 3 |
---|---|---|---|---|
1 | CON | IS | Wash period | IO |
2 | CON | IO | Wash period | IS |
Items 1 | Treatments 2 | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|
CON | IS | IO | C vs. IS | C vs. IO | IS vs. IO | ||
DMI, kg/d | 22.79 | 22.83 | 23.12 | 0.286 | 0.999 | 0.913 | 0.917 |
Milk, kg/d | 29.52 | 28.26 | 30.92 | 0.509 | 0.601 | 0.534 | 0.065 |
Milk components, % | |||||||
Milk fat | 3.96 a | 3.26 b | 2.69 c | 0.115 | <0.001 | <0.001 | <0.001 |
Milk protein | 3.11 | 3.16 | 3.16 | 0.018 | 0.284 | 0.316 | 0.997 |
Milk lactose | 4.72 | 4.84 | 4.82 | 0.025 | 0.150 | 0.206 | 0.979 |
Yield, kg/d | |||||||
Milk fat | 1.17 a | 0.91 | 0.82 b | 0.037 | 0.069 | 0.022 | 0.363 |
Milk protein | 0.92 | 0.89 | 0.98 | 0.016 | 0.927 | 0.642 | 0.078 |
Milk lactose | 1.39 | 1.37 | 1.49 | 0.026 | 0.893 | 0.213 | 0.101 |
3.5%FCM | 31.68 a | 26.72 b | 26.72 b | 0.633 | 0.004 | 0.004 | 1.000 |
ECM | 31.36 a | 27.25 b | 27.80 b | 0.526 | 0.002 | 0.006 | 0.829 |
Milk urea nitrogen, mg/dL | 17.06 | 19.25 | 20.42 | 0.821 | 0.419 | 0.153 | 0.772 |
Feed efficiency 3 | 1.38 a | 1.19 b | 1.21 b | 0.025 | 0.005 | 0.007 | 0.977 |
Items 1 | Treatments 2 | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|
CON | IS | IO | C vs. IS | C vs. IO | IS vs. IO | ||
Nutrient intake, kg/d | |||||||
DM | 22.79 | 22.83 | 23.12 | 0.286 | 0.999 | 0.913 | 0.917 |
OM | 21.69 | 20.94 | 20.45 | 0.231 | 0.260 | 0.042 | 0.543 |
CP | 3.74 | 3.93 | 3.98 | 0.061 | 0.422 | 0.269 | 0.941 |
NDF | 7.27 | 6.94 | 6.55 | 0.104 | 0.295 | 0.014 | 0.215 |
ADF | 3.45 a | 3.16 b | 3.04 b | 0.046 | 0.034 | 0.004 | 0.224 |
EE | 0.85 b | 0.86 b | 2.01 a | 0.115 | 0.932 | <0.001 | <0.001 |
Starch | 4.86 b | 7.16 a | 5.18 b | 0.227 | <0.001 | 0.473 | <0.001 |
Nutrient digestibility, % | |||||||
DM | 75.48 | 73.47 | 73.67 | 0.403 | 0.108 | 0.154 | 0.975 |
OM | 74.83 | 72.72 | 72.87 | 0.410 | 0.091 | 0.122 | 0.984 |
CP | 66.89 | 64.49 | 69.56 | 1.252 | 0.710 | 0.658 | 0.248 |
NDF | 55.06 a | 46.50 b | 47.93 b | 1.064 | <0.001 | 0.004 | 0.700 |
ADF | 60.05 a | 49.30 b | 51.15 b | 1.228 | <0.001 | 0.001 | 0.605 |
EE | 81.73 a | 79.43 a | 70.16 b | 1.332 | 0.597 | 0.001 | 0.001 |
Starch | 92.85 | 92.31 | 93.46 | 0.540 | 0.917 | 0.897 | 0.683 |
Items 1 | Treatments 2 | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|
CON | IS | IO | C vs. IS | C vs. IO | IS vs. IO | ||
pH | 6.76 | 6.59 | 6.75 | 0.023 | 0.025 | 0.969 | 0.038 |
NH3-N, mg/100 mL | 3.53 a | 2.96 b | 3.04 b | 0.067 | 0.011 | 0.028 | 0.689 |
Acetate, mmol/L | 14.86 b | 18.51 a | 18.03 a | 0.442 | 0.023 | 0.049 | 0.741 |
Propionate, mmol/L | 2.93 b | 3.86 a | 4.23 a | 0.131 | 0.004 | 0.033 | 0.061 |
Valerate, mmol/L | 0.22 b | 0.20 b | 0.27 a | 0.011 | 0.613 | 0.049 | 0.008 |
Butyrate, mmol/L | 2.80 | 3.18 | 3.29 | 0.118 | 0.260 | 0.116 | 0.876 |
Isobutyrate, mmol/L | 0.19 | 0.19 | 0.25 | 0.013 | 1.000 | 0.128 | 0.128 |
Acetate: Propionate | 5.12 a | 4.39 b | 4.69 ab | 0.105 | 0.013 | 0.155 | 0.369 |
TVFA | 21.00 | 25.72 | 25.91 | 0.626 | 0.079 | 0.095 | 0.9771 |
Items | Treatments 1 | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|
CON | IS | IO | C vs. IS | C vs. IO | IS vs. IO | ||
Firmicutes | 56.12 | 53.61 | 54.89 | 1.258 | 0.447 | 0.677 | 0.712 |
Bacteroidota | 33.40 | 36.41 | 36.29 | 1.097 | 0.332 | 0.249 | 0.966 |
Spirochaetota | 2.84 | 1.16 | 2.35 | 0.354 | 0.084 | 0.619 | 0.050 |
Actinobacteriota | 0.44 | 2.33 | 1.01 | 0.479 | 0.172 | 0.310 | 0.363 |
Proteobacteria | 1.96 | 3.13 | 1.84 | 0.424 | 0.355 | 0.894 | 0.224 |
Euryarchaeota | 1.18 | 0.15 | 0.20 | 0.235 | 0.143 | 0.162 | 0.530 |
unidentified_Bacteria | 2.11 | 1.64 | 1.82 | 0.096 | 0.037 | 0.262 | 0.416 |
Desulfobacterota | 0.11 | 0.08 | 0.10 | 0.018 | 0.419 | 0.935 | 0.504 |
Fibrobacterota | 0.01 | 0.01 | 0.04 | 0.012 | 0.820 | 0.447 | 0.407 |
Verrucomicrobiota | 0.17 a | 0.03 b | 0.02 b | 0.018 | 0.003 | <0.001 | 0.442 |
Items | Treatments 1 | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|
CON | IS | IO | C vs. IS | C vs. IO | IS vs. IO | ||
Oscillospiraceae_UCG-005 | 15.28 b | 18.54 | 18.76 a | 0.751 | 0.104 | 0.028 | 0.905 |
Rikenellaceae_RC9_gut_group | 9.67 | 10.06 | 10.56 | 0.468 | 0.783 | 0.311 | 0.695 |
Prevotella | 1.20 | 2.44 | 1.01 | 0.570 | 0.486 | 0.813 | 0.373 |
Treponema | 2.81 | 1.16 | 2.31 | 0.354 | 0.088 | 0.612 | 0.058 |
Bifidobacterium | 0.20 | 2.16 | 0.90 | 0.479 | 0.155 | 0.218 | 0.385 |
Bacteroides | 5.34 | 5.07 | 5.44 | 0.335 | 0.744 | 0.923 | 0.642 |
Succinivibrio | 0.91 | 2.29 | 1.03 | 0.364 | 0.203 | 0.770 | 0.237 |
Prevotellaceae_UCG-003 | 2.98 b | 4.39 a | 4.52 | 0.307 | 0.004 | 0.069 | 0.879 |
Paeniclostridium | 2.46 | 1.21 | 1.50 | 0.290 | 0.131 | 0.256 | 0.446 |
Romboutsia | 2.53 | 1.60 | 2.12 | 0.277 | 0.213 | 0.615 | 0.324 |
Alistipes | 3.57 a | 2.63 b | 3.25 | 0.190 | 0.031 | 0.484 | 0.201 |
Clostridium_sensu_stricto_1 | 2.23 | 1.70 | 2.37 | 0.252 | 0.395 | 0.834 | 0.270 |
Agathobacter | 2.21 | 2.50 | 2.20 | 0.188 | 0.580 | 0.997 | 0.525 |
Methanobrevibacter | 1.09 | 0.14 | 0.18 | 0.217 | 0.142 | 0.161 | 0.515 |
Turicibacter | 1.29 | 0.84 | 1.09 | 0.141 | 0.206 | 0.627 | 0.397 |
Christensenellaceae_R-7_group | 1.92 | 1.87 | 1.98 | 0.075 | 0.815 | 0.779 | 0.544 |
Monoglobus | 1.48 | 1.11 | 1.46 | 0.083 | 0.096 | 0.919 | 0.055 |
Lachnospiraceae_AC2044_group | 1.18 a | 0.90 | 0.86 b | 0.054 | 0.053 | 0.027 | 0.651 |
Others | 27.64 | 28.26 | 27.46 | 1.079 | 0.831 | 0.954 | 0.745 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.; Wei, Z.; Deng, M.; Xian, Z.; Liu, D.; Liu, G.; Li, Y.; Sun, B.; Guo, Y. Effect of a High-Starch or a High-Fat Diet on the Milk Performance, Apparent Nutrient Digestibility, Hindgut Fermentation Parameters and Microbiota of Lactating Cows. Animals 2023, 13, 2508. https://doi.org/10.3390/ani13152508
Liu S, Wei Z, Deng M, Xian Z, Liu D, Liu G, Li Y, Sun B, Guo Y. Effect of a High-Starch or a High-Fat Diet on the Milk Performance, Apparent Nutrient Digestibility, Hindgut Fermentation Parameters and Microbiota of Lactating Cows. Animals. 2023; 13(15):2508. https://doi.org/10.3390/ani13152508
Chicago/Turabian StyleLiu, Suran, Ziwei Wei, Ming Deng, Zhenyu Xian, Dewu Liu, Guangbin Liu, Yaokun Li, Baoli Sun, and Yongqing Guo. 2023. "Effect of a High-Starch or a High-Fat Diet on the Milk Performance, Apparent Nutrient Digestibility, Hindgut Fermentation Parameters and Microbiota of Lactating Cows" Animals 13, no. 15: 2508. https://doi.org/10.3390/ani13152508
APA StyleLiu, S., Wei, Z., Deng, M., Xian, Z., Liu, D., Liu, G., Li, Y., Sun, B., & Guo, Y. (2023). Effect of a High-Starch or a High-Fat Diet on the Milk Performance, Apparent Nutrient Digestibility, Hindgut Fermentation Parameters and Microbiota of Lactating Cows. Animals, 13(15), 2508. https://doi.org/10.3390/ani13152508