Residue Concentrations of Cloxacillin in Milk after Intramammary Dry Cow Treatment Considering Dry Period Length
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals, Housing and Eligibility Criteria
2.2. Prepartum Study Protocol
2.3. Postpartum Study Protocol
2.4. Sample Collection and Analysis
2.5. Statistical Analysis
3. Results
3.1. Analytics
3.2. Residue Depletion
3.3. Effect of Dry Period Length
3.4. Untreated Udder Quarters
4. Discussion
Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Capuco, A.V.; Wood, D.L.; Baldwin, R.; Mcleod, K.; Paape, M.J. Mammary Cell Number, Proliferation, and Apoptosis during a Bovine Lactation: Relation to Milk Production and Effect of bST. J. Dairy Sci. 2001, 84, 2177–2187. [Google Scholar] [CrossRef] [PubMed]
- Collier, R.J.; Annen, E.L.; Fitzgerald, A.C. Prospects for zero days dry. Vet. Clin. N. Am. Food Anim. Pract. 2004, 20, 687–701. [Google Scholar] [CrossRef] [PubMed]
- Grummer, R.R.; Rastani, R.R. Why Reevaluate Dry Period Length? J. Dairy Sci. 2004, 87, E77–E85. [Google Scholar] [CrossRef] [Green Version]
- Rowe, S.M.; Godden, S.M.; Nydam, D.V.; Gorden, P.J.; Lago, A.; Vasquez, A.K.; Royster, E.; Timmerman, J.; Thomas, M.J. Randomized controlled non-inferiority trial investigating the effect of 2 selective dry-cow therapy protocols on antibiotic use at dry-off and dry period intramammary infection dynamics. J. Dairy Sci. 2020, 103, 6473–6492. [Google Scholar] [CrossRef] [PubMed]
- NMC. Recommended Mastitis Control Program; National Mastitis Council: New Prague, MN, USA, 2006. [Google Scholar]
- Halasa, T.; Osterås, O.; Hogeveen, H.; van Werven, T.; Nielen, M. Meta-analysis of dry cow management for dairy cattle. Part 1. Protection against new intramammary infections. J. Dairy Sci. 2009, 92, 3134–3149. [Google Scholar] [CrossRef] [Green Version]
- Van Hoeij, R.J.; Lam, T.J.G.M.; de Koning, D.B.; Steeneveld, W.; Kemp, B.; van Knegsel, A.T.M. Cow characteristics and their association with udder health after different dry period lengths. J. Dairy Sci. 2016, 99, 8330–8340. [Google Scholar] [CrossRef] [Green Version]
- Winder, C.B.; Sargeant, J.M.; Hu, D.; Wang, C.; Kelton, D.F.; Leblanc, S.J.; Duffield, T.F.; Glanville, J.; Wood, H.; Churchill, K.J.; et al. Comparative efficacy of antimicrobial treatments in dairy cows at dry-off to prevent new intramammary infections during the dry period or clinical mastitis during early lactation: A systematic review and network meta-analysis. Anim. Health Res. Rev. 2019, 20, 199–216. [Google Scholar] [CrossRef]
- Lombard, J.E.; Zobel, G.; Adams, A.E.; Fossler, C.P.; Shivley, C.B.; Urie, N.J.; Kopral, C.A. Dry-off procedures on US dairy operations. J. Dairy Sci. 2015, 98, 238. [Google Scholar]
- Bertulat, S.; Fischer-Tenhagen, C.; Heuwieser, W. A survey of drying-off practices on commercial dairy farms in northern Germany and a comparison to science-based recommendations. Vet. Rec. 2015, 2, e000068. [Google Scholar] [CrossRef] [Green Version]
- Saini, V.; McClure, J.T.; Léger, D.; Dufour, S.; Sheldon, A.G.; Scholl, D.T.; Barkema, H.W. Antimicrobial use on Canadian dairy farms. J. Dairy Sci. 2012, 95, 1209–1221. [Google Scholar] [CrossRef]
- Kuipers, A.; Koops, W.J.; Wemmenhove, H. Antibiotic use in dairy herds in the Netherlands from 2005 to 2012. J. Dairy Sci. 2016, 99, 1632–1648. [Google Scholar] [CrossRef] [Green Version]
- Krömker, V.; Leimbach, S. Mastitis treatment-Reduction in antibiotic usage in dairy cows. Reprod. Dom. Anim. 2017, 52 (Suppl. S3), 21–29. [Google Scholar] [CrossRef] [Green Version]
- Sachi, S.; Ferdous, J.; Sikder, M.H.; Azizul Karim Hussani, S.M. Antibiotic residues in milk: Past, present, and future. J. Adv. Vet. Anim. Res. 2019, 6, 315–332. [Google Scholar] [CrossRef] [PubMed]
- Santschi, D.E.; Lefebvre, D.M. Review: Practical concepts on short dry period management. Can. J. Anim. Sci. 2014, 94, 381–390. [Google Scholar] [CrossRef]
- Van Knegsel, A.T.M.; van der Drift, S.G.A.; Cermáková, J.; Kemp, B. Effects of shortening the dry period of dairy cows on milk production, energy balance, health, and fertility: A systematic review. Vet. J. 2013, 198, 707–713. [Google Scholar] [CrossRef]
- Kok, A.; van Hoeij, R.J.; Kemp, B.; van Knegsel, A.T.M. Evaluation of customized dry-period strategies in dairy cows. J. Dairy Sci. 2021, 104, 1887–1899. [Google Scholar] [CrossRef] [PubMed]
- Andrée O’Hara, E.; Båge, R.; Emanuelson, U.; Holtenius, K. Effects of dry period length on metabolic status, fertility, udder health, and colostrum production in 2 cow breeds. J. Dairy Sci. 2019, 102, 595–606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borchardt, S.; Sutter, F.; Heuwieser, W.; Venjakob, P. Management-related factors in dry cows and their associations with colostrum quantity and quality on a large commercial dairy farm. J. Dairy Sci. 2022, 105, 1589–1602. [Google Scholar] [CrossRef] [PubMed]
- Pezeshki, A.; Capuco, A.V.; de Spiegeleer, B.; Peelman, L.; Stevens, M.; Collier, R.J.; Burvenich, C. An integrated view on how the management of the dry period length of lactating cows could affect mammary biology and defence. J. Anim. Physiol. Anim. Nutr. 2010, 94, e7–e30. [Google Scholar] [CrossRef]
- Deutsche Veterinärmedizinische Gesellschaft e. V. (DVG); Arbeitsgruppe Sachverständigenausschuss “Subklinische Mastitis”. Zur Prävalenz von Mastitiserregern in Milchproben in Deutschland 2015. 2015. Available online: https://www.dvg.net/fileadmin/Bilder/DVG/PDF/19-03-18_220327_DVG_Fachgruppe_korrigiert__002_.pdf (accessed on 11 June 2023).
- Salmon, S.A.; Watts, J.L.; Aarestrup, F.M.; Pankey, J.W.; Yancey, R.J. Minimum inhibitory concentrations for selectede antimicrobial agents against oranisms isolated from the mammary glands of dairy heifers in New Zealand and Denmark. J. Dairy Sci. 1998, 81, 570–578. [Google Scholar] [CrossRef]
- Commission Regulation. No 37/2010 of 22 December 2009 on pharmacologically active substances and their classification regarding maximum residue limits in foodstuffs of animal origin. Off. J. Eur. Union. 2010. Available online: http://data.europa.eu/eli/reg/2010/37 (accessed on 11 June 2023).
- United States Food and Drug Administration; Department of Health and Human Services. Animals Drugs, Feeds, and Related Products: “Cloxacillin”, Code of Federal Regulations; Title 21, Chapter I, Subchapter E, Part 556, Subpart B, 556.165 (2023). Available online: https://www.ecfr.gov/current/title-21/chapter-I/subchapter-E/part-556/subpart-B (accessed on 11 June 2023).
- Newton, H.T.; Green, M.J.; Benchaoui, H.; Cracknell, V.; Rowan, T.; Bradley, A.J. Comparison of the efficacy of cloxacillin alone and cloxacillin combined with an internal teat sealant for dry-cow therapy. Vet. Rec. 2008, 162, 678–684. [Google Scholar] [CrossRef] [PubMed]
- Runciman, D.J.; Malmo, J.; Deighton, M. The use of an internal teat sealant in combination with cloxacillin dry cow therapy for the prevention of clinical and subclinical mastitis in seasonal calving dairy cows. J. Dairy Sci. 2010, 93, 4582–4591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burmańczuk, A.; Grabowski, T.; Osypiuk, M.; Polska, B.; Kowalski, C. Determination of cloxacillin residues in dairy cows after intramammary administration. J. Vet. Pharmacol. Ther. 2017, 40, 552–560. [Google Scholar] [CrossRef] [PubMed]
- Pérez, B.; Prats, C.; Castells, E.; Arboix, M. Determination of cloxacillin in milk and blood of dairy cows by high-performance liquid chromatography. J. Chromatogr. B Biomed. Sci. Appl. 1997, 698, 155–160. [Google Scholar] [CrossRef]
- Schukken, Y.H.; Vanvliet, J.; Vandegeer, D.; Grommers, F.J. A Randomized Blind Trial on Dry Cow Antibiotic Infusion in a Low Somatic Cell Count Herd. J. Dairy Sci. 1993, 76, 2925–2930. [Google Scholar] [CrossRef]
- Lindmark-Månsson, H.; Bränning, C.; Aldén, G.; Paulsson, M. Relationship between somatic cell count, individual leukocyte populations and milk components in bovine udder quarter milk. Int. Dairy J. 2006, 16, 717–727. [Google Scholar] [CrossRef]
- Bachmann, J.; Helmschrodt, C.; Richter, A.; Heuwieser, W.; Bertulat, S. Residue concentration of cefquinome after intramammary dry cow therapy and short dry periods. J. Dairy Sci. 2018, 101, 7540–7550. [Google Scholar] [CrossRef] [Green Version]
- Hellmann, K.; Radeloff, I. Guidance for Industry: Good Clinical Practice; VICH: Brussels, Belgium, 2000. [Google Scholar]
- Mein, G.A.; Neijenhuis, F.; Morgan, W.F.; Reinemann, D.J.; Hillerton, J.E.; Baines, J.R.; Ohnstad, I.; Rasmussen, M.D.; Timms, J.; Britt, J.S.; et al. Evaluation of bovine teat condition in commercial dairy herds: 1. Non-infectious factors. In Proceedings of the 2nd International Symposium on Mastitis and Milk Quality, Vancouver, BC, Canada, 13–15 September 2001; pp. 347–351. [Google Scholar]
- Neijenhuis, F.; Barkema, H.W.; Hogeveen, H.; Noordhuizen, J. Classification and Longitudinal Examination of Callused Teat Ends in Dairy Cows. J. Dairy Sci. 2000, 83, 2795–2804. [Google Scholar] [CrossRef]
- IDF 148–2:2006; Milk—Enumeration of Somatic Cells—Part 2: Guidance on the Operation of Fluoro-Opto-Electronic Counters. International Dairy Federation: Brussels, Belgium, 2006.
- IDF 141:2013; Milk and Liquid Milk Products—Guidelines for the Application of Mid-Infrared Spectrometry. International Dairy Federation: Brussels, Belgium, 2013.
- Ali, A.; Shook, G.E. An Optimum Transformation for Somatic Cell Concentration in Milk. J. Dairy Sci. 1980, 63, 487–490. [Google Scholar] [CrossRef]
- CVMP. Committee for Veterinary Medicinal Products: Guideline on Determination of Withdrawal Periods for Milk; EMA/CVMP/SWP/735418/2012 Rev.1*; Veterinary Medicines and Inspections; European Medicines Agency: London, UK, 2022. [Google Scholar]
- Holstege, D.M.; Puschner, B.; Whitehead, G.; Galey, F.D. Screening and Mass Spectral Confirmation of β-Lactam Antibiotic Residues in Milk Using LC-MS/MS. J. Agric. Food Chem. 2002, 50, 406–411. [Google Scholar] [CrossRef]
- Ehinger, A.M.; Kietzmann, M. Pharmacological aspects of mastitis therapy. Berl. Münch. Tierärztl. Wschr. 1998, 111, 337–343. [Google Scholar]
- Kietzmann, M.; Niedorf, F.; Gossellin, J. Tissue distribution of cloxacillin after intramammary administration in the isolated perfused bovine udder. BMC Vet. Res. 2010, 6, 46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valenca, L.M.; Paiva, J.E.; Barbosa, S.B.P.; Pinheiro, I.O.; Batista, Â.M.V.; Da Silva, M.J.F.B.; Medeiros, E.S. Evaluation of residues of β-lactam, sulfonamide, tetracycline, quinolone, fluoroquinolone e pyrimidine in raw milk. Food Sci. Technol. 2021, 41, 603–606. [Google Scholar] [CrossRef]
- Ruegg, P.L.; Tabone, T.J. The Relationship Between Antibiotic Residue Violations and Somatic Cell Counts in Wisconsin Dairy Herds. J. Dairy Sci. 2000, 83, 2805–2809. [Google Scholar] [CrossRef] [PubMed]
- Andrew, S.M. Effect of composition of colostrum and transition milk from Holstein heifers on specificity rates of antibiotic residue tests. J. Dairy Sci. 2001, 84, 100–106. [Google Scholar] [CrossRef]
- Sanford, C.J.; Keefe, G.P.; Dohoo, I.R.; Leslie, K.E. Assessment of antimicrobial transfer from treated to untreated mammary gland quarters by use of high-pressure liquid chromatography for detection of cloxacillin in milk samples from nonlactating dairy cows. Am. J. Vet. Res. 2006, 67, 1140–1144. [Google Scholar] [CrossRef]
- Li, Y.-F.; Wang, L.; Gu, X.-Y.; Zeng, Z.-L.; He, L.-M.; Yang, F.; Yuan, B.; Shu, J.-H.; Ding, H.-Z. Pharmacokinetics and Residues of Cefquinome in Milk of Lactating Chinese Dairy Cows After Intramammary Administration. J. Integr. Agric. 2014, 13, 2750–2757. [Google Scholar] [CrossRef]
Cloxacillin Concentration in µg/kg | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Number of Milking | G14d 1 | G21d 2 | G28d 3 | Untreated Udder Quarter 4 | ||||||||
Mean | Median | Range | Mean | Median | Range | Mean | Median | Range | Mean | Median | Range | |
1 | 93.64 | 0.87 | 0.00–1203.12 | 1.12 | 0.01 | 0.00–10.94 | 1.55 | 0.01 | 0.00–5.76 | 0.01 | 0.01 | 0.00–0.06 |
2 | 77.77 | 0.09 | 0.00–1132.94 | 1.19 | 0.02 | 0.00–12.14 | 3.55 | 0.01 | 0.00–34.70 | 0.03 | 0.02 | 0.00–0.11 |
3 | 64.33 | 0.02 | 0.00–1026.19 | 5.39 | 0.09 | 0.00–58.15 | 0.63 | 0.04 | 0.01–5.83 | 0.05 | 0.01 | 0.00–0.32 |
5 | 14.94 | 0.03 | 0.00–238.46 | 0.37 | 0.06 | 0.00–4.64 | 0.41 | 0.03 | 0.00–2.61 | 0.03 | 0.02 | 0.00–0.07 |
7 | 6.31 | 0.00 | 0.00–83.22 | 0.69 | 0.00 | 0.00–6.65 | 2.14 | 0.00 | 0.00–19.29 | 0.04 | 0.00 | 0.00–0.54 |
9 | 2.87 | 0.00 | 0.00–41.25 | 2.18 | 0.00 | 0.00–28.16 | 0.55 | 0.00 | 0.00–3.12 | 0.00 | 0.00 | 0.00–0.01 |
Cloxacillin Benzathine (1:1) Concentration in µg/kg | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Number of Milking | G14d 1 | G21d 2 | G28d 3 | Untreated Udder Quarter 4 | ||||||||
Mean | Median | Range | Mean | Median | Range | Mean | Median | Range | Mean | Median | Range | |
1 | 731.27 | 216.20 | 39.08–3599.80 | 220.22 | 50.83 | 5.05–1142.09 | 407.49 | 12.52 | 0.12–4751.66 | 0.22 | 0.03 | 0.00–1.05 |
2 | 347.55 | 101.13 | 5.27–1869.67 | 106.09 | 28.95 | 2.63–572.06 | 239.59 | 13.13 | 0.78–2714.07 | 0.07 | 0.00 | 0.00–0.35 |
3 | 154.83 | 26.05 | 2.00–1405.05 | 37.81 | 20.43 | 0.00–151.57 | 50.15 | 18.95 | 2.79–343.80 | 2.78 | 1.90 | 0.00–19.21 |
5 | 34.67 | 6.41 | 0.31–436.96 | 4.95 | 2.87 | 0.00–18.04 | 8.55 | 1.20 | 0.30–79.97 | 0.12 | 0.01 | 0.00–1.72 |
7 | 10.49 | 2.51 | 0.00–90.50 | 3.05 | 2.33 | 0.00–8.28 | 5.74 | 1.01 | 0.00–50.34 | 0.24 | 0.00 | 0.00–2.30 |
9 | 2.21 | 0.74 | 0.00–12.23 | 3.64 | 0.90 | 0.00–36.81 | 1.48 | 0.79 | 0.00–7.15 | 0.00 | 0.00 | 0.00–0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fischer-Tenhagen, C.; Bohm, D.; Finnah, A.; Arlt, S.; Schlesinger, S.; Borchardt, S.; Sutter, F.; Tippenhauer, C.M.; Heuwieser, W.; Venjakob, P.L. Residue Concentrations of Cloxacillin in Milk after Intramammary Dry Cow Treatment Considering Dry Period Length. Animals 2023, 13, 2558. https://doi.org/10.3390/ani13162558
Fischer-Tenhagen C, Bohm D, Finnah A, Arlt S, Schlesinger S, Borchardt S, Sutter F, Tippenhauer CM, Heuwieser W, Venjakob PL. Residue Concentrations of Cloxacillin in Milk after Intramammary Dry Cow Treatment Considering Dry Period Length. Animals. 2023; 13(16):2558. https://doi.org/10.3390/ani13162558
Chicago/Turabian StyleFischer-Tenhagen, Carola, Detlev Bohm, Anke Finnah, Sebastian Arlt, Samira Schlesinger, Stefan Borchardt, Franziska Sutter, Christie M. Tippenhauer, Wolfgang Heuwieser, and Peter L. Venjakob. 2023. "Residue Concentrations of Cloxacillin in Milk after Intramammary Dry Cow Treatment Considering Dry Period Length" Animals 13, no. 16: 2558. https://doi.org/10.3390/ani13162558
APA StyleFischer-Tenhagen, C., Bohm, D., Finnah, A., Arlt, S., Schlesinger, S., Borchardt, S., Sutter, F., Tippenhauer, C. M., Heuwieser, W., & Venjakob, P. L. (2023). Residue Concentrations of Cloxacillin in Milk after Intramammary Dry Cow Treatment Considering Dry Period Length. Animals, 13(16), 2558. https://doi.org/10.3390/ani13162558