Forage:Concentrate Ratio Effects on In Vivo Digestibility and In Vitro Degradability of Horse’s Diet
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Diets
2.2. Chemical Composition
2.3. In Vivo Digestibility
2.4. In Vitro Degradability
2.5. Statistical Analyses
3. Results
3.1. In Vivo Results
3.2. In Vitro Results
4. Discussion
4.1. In Vivo Digestibility
4.2. In Vitro Fermentation
4.3. Correlations between Vivo and Vitro
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Martínez Marín, A.L.; Valle, E.; Bergero, D.; Requena, F.; Forte, C.; Schiavone, A. Evaluation of Two Equations for Prediction of Digestible Energy in Mixed Feeds and Diets for Horses. Animals 2022, 12, 1628. [Google Scholar] [CrossRef] [PubMed]
- Fergus, L. Mould Predicting feed quality—Chemical analysis and in vitro evaluation. Field Crops Res. 2003, 84, 31–44. [Google Scholar] [CrossRef]
- Harris, P.A.; Nelson, S.; Carslake, H.B.; Argo, C.M.; Wolf, R.; Fabri, F.B.; Brolsma, K.M.; van Oostrum, M.J.; Ellis, A.D. Comparison of NIRS and wet chemistry methods for the nutritional analysis of haylages for horses. J. Eq. Vet. Sci. 2018, 71, 13–20. [Google Scholar] [CrossRef]
- Zicarelli, F.; Sarubbi, F.; Iommelli, P.; Grossi, M.; Lotito, D.; Lombardi, P.; Tudisco, R.; Infascelli, F.; Musco, N. Nutritional Characterization of Hay Produced in Campania Region: Analysis by the near Infrared Spectroscopy (NIRS) Technology. Animals 2022, 12, 3035. [Google Scholar] [CrossRef] [PubMed]
- De Fombelle, A.; Veiga, L.; Drogoul, C.; Julliand, V. Effect of diet composition and feeding pattern on the prececal digestibility of starches from diverse botanical origins measured with the mobile nylon bag technique in horses. J. Anim. Sci. 2004, 82, 3625–3634. [Google Scholar] [CrossRef] [Green Version]
- Abdouli, H.; Ben Attia, S. Evaluation of a two-stage in vitro technique for estimating digestibility of equine feeds using horse faeces as the source of microbial inoculum. Anim. Feed Sci. Technol. 2007, 132, 155–162. [Google Scholar] [CrossRef]
- Calabrò, S.; Cutrignelli, M.I.; Bovera, F.; Piccolo, G.; Infascelli, F. In vitro fermentation kinetics of carbohydrate fractions of fresh forage, silage and hay of Avena sativa. J. Sci. Food Agric. 2005, 85, 1838–1844. [Google Scholar] [CrossRef]
- Calabrò, S.; Cutrignelli, M.I.; Piccolo, G.; Bovera, F.; Zicarelli, F.; Gazaneo, M.P.; Infascelli, F. In vitro fermentation kinetics of fresh and dried silage. Anim. Feed Sci. Technol. 2005, 123, 129–137. [Google Scholar] [CrossRef]
- Calabrò, S.; Tudisco, R.; Balestrieri, A.; Piccolo, G.; Infascelli, F.; Cutrignelli, M.I. Fermentation characteristics of different grain legumes cultivars with the in vitro gas production technique. Ital. J. Anim. Sci. 2009, 8, 280–282. [Google Scholar] [CrossRef] [Green Version]
- Menke, H.H.; Steingass, H. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim. Res. Develop. 1988, 28, 7–55. [Google Scholar]
- Khazaal, K.; Dentinho, M.T.; Ribeiro, J.M.; Ørskov, E.R. A comparison of gas production during incubation with rumen contents in vitro and nylon bag degradability as predictors of the apparent digestibility in vivo and the voluntary intake of hays. Anim. Prod. 1993, 57, 105–112. [Google Scholar] [CrossRef]
- Furtado, C.; Vitti, D.; Bueno, I.; Dias, R.; Godoy, P.; Filho, S.; Abdalla, A. Gas production technique in the evaluation of horse feeds using equine faeces and rumen liquid as inoculum source 2. In vitro digestibility. Proceed. Br. Soc. Anim. Sci. 2005, 2005, 111. [Google Scholar] [CrossRef]
- Zicarelli, F.; Calabrò, S.; Piccolo, V.; d’Urso, S. Diets with Different Forage/Concentrate Ratios for the Mediterranean Italian Buffalo: In vivo and In vitro Digestibility. Asian Australas. J. Anim. Sci. 2008, 21, 75–82. [Google Scholar] [CrossRef]
- Zicarelli, F.; Calabrò, S.; Cutrignelli, M.I.; Infascelli, F.; Tudisco, R.; Bovera, F.; Piccolo, V. In vitro fermentation characteristics of diets with different forage/concentrate ratios: Comparison of rumen and faecal inocula. J. Sci. Food Agric. 2011, 91, 1213–1221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Musco, N.; Tudisco, R.; Grossi, M.; Mastellone, V.; Morittu, V.M.; Pero, M.E.; Wanapat, M.; Trinchese, G.; Cavaliere, G.; Mollica, M.P.; et al. Effect of a high forage: Concentrate ratio on milk yield, blood parameters and oxidative status in lactating cows. Anim. Prod. Sci. 2020, 60, 1531–1538. [Google Scholar] [CrossRef]
- Mastellone, V.; Musco, N.; Infascelli, F.; Scandurra, A.; D’Aniello, B.; Pero, M.E.; Iommelli, P.; Tudisco, R.; Lombardi, P. Higher forage: Concentrate ratio and space availability may favor positive behaviors in dairy cows. J. Vet. Behav. 2022, 51, 16–22. [Google Scholar] [CrossRef]
- Infascelli, F.; Gigli, S.; Campanile, G. Buffalo meat production: Performance infra vitam and quality of meat. Vet. Res. Commun. 2004, 28, 143–148. [Google Scholar] [CrossRef] [PubMed]
- Cavaliere, G.; Trinchese, G.; Musco, N.; Infascelli, F.; De Filippo, C.; Mastellone, V.; Morittu, V.M.; Lombardi, P.; Tudisco, R.; Grossi, M.; et al. Milk from cows fed a diet with a high forage: Concentrate ratio improves inflammatory state, oxidative stress, and mitochondrial function in rats. J. Dairy Sci. 2018, 101, 1843–1851. [Google Scholar] [CrossRef] [Green Version]
- Trinchese, G.; Cavaliere, G.; Penna, E.; De Filippo, C.; Cimmino, F.; Catapano, A.; Musco, N.; Tudisco, R.; Lombardi, P.; Infascelli, F.; et al. Milk from cow fed with high forage/concentrate ratio diet: Beneficial effect on rat skeletal muscle inflammatory state and oxidative stress through modulation of mitochondrial functions and AMPK activity. Front. Phys. 2019, 9, 1969. [Google Scholar] [CrossRef] [Green Version]
- Mollica, M.P.; Trinchese, G.; Cimmino, F.; Penna, E.; Cavaliere, G.; Tudisco, R.; Musco, N.; Manca, C.; Catapano, A.; Monda, M.; et al. Milk fatty acid profiles in different animal species: Focus on the potential effect of selected pufas on metabolism and brain functions. Nutrients 2021, 13, 1111. [Google Scholar] [CrossRef]
- Colombino, E.; Raspa, F.; Perotti, M.; Bergero, D.; Venvuert, I.; Valle, E.; Capucchio, M.T. Gut health of horses: Effects of high fibre vs high starch diet on histological and morphometrical parameters. BMC Vet. Res. 2022, 18, 338. [Google Scholar] [CrossRef]
- Cavallini, D.; Penazzi, L.; Valle, E.; Raspa, F.; Bergero, D.; Formigoni, A.; Fusaro, I. When changing the Hay makes a difference: A series of case reports. J. Eq. Vet. Sci. 2022, 113, 103940. [Google Scholar] [CrossRef] [PubMed]
- Ermers, C.; McGilchrist, N.; Fenner, K.; Wilson, B.; McGreevy, P. The fibre requirements of horses and the consequences and causes of failure to meet them. Animals 2023, 13, 1414. [Google Scholar] [CrossRef]
- Lewis, L.D. Feeding and Care of the Horse, 2nd ed.; Lippinott Williams and Wilkins: Philadelphia, PA, USA, 1996. [Google Scholar]
- Nicholas, F.W. Introduction to Veterinary Genetics; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Macheboeuf, D.; Jestin, M. Utilisation of the gas test method using horse faeces as a source of inoculums. In Proceedings of the British Society of Animal Science, International Symposium on In Vitro Techniques to Measuring Nutrient Supply to Ruminants, Reading, UK, 8–10 July 1997; Volume 1, p. 43. [Google Scholar]
- AOAC. Official Methods of Analysis, 19th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 2012. [Google Scholar]
- Bergero, D.; Préfontaine, C.; Miraglia, N.; Peiretti, P.G. A comparison between the 2N and 4N HCl acid-insoluble ash methods for digestibility trials in horses. Animal 2009, 3, 1728–1732. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koura, B.I.; Vastolo, A.; Kiatti, D.D.; Cutrignelli, M.I.; Houinato, M.; Calabrò, S. Nutritional Value of Climate-Resilient Forage Species Sustaining Peri-Urban Dairy Cow Production in the Coastal Grasslands of Benin (West Africa). Animals 2022, 12, 3550. [Google Scholar] [CrossRef] [PubMed]
- Pelagalli, A.; Musco, N.; Trotta, N.; Cutrignelli, M.I.; Di Francia, A.; Infascelli, F.; Tudisco, R.; Lombardi, P.; Vastolo, A.; Calabrò, S. Chemical characterisation and in vitro gas production kinetics of eight faba bean varieties. Animals 2020, 10, 398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Macheboeuf, D.; Jestin, M.; Martin-Rosset, W. Utilization of the gas test method and horse faeces as a source of inoculum. BSAP Occas. Publ. 1998, 22, 187–189. [Google Scholar] [CrossRef]
- Formato, M.; Vastolo, A.; Piccolella, S.; Calabrò, S.; Cutrignelli, M.I.; Zidorn, C.; Pacifico, S. Antioxidants in Animal Nutrition: UHPLC-ESI-QqTOF Analysis and Effects on In Vitro Rumen Fermentation of Oak Leaf Extracts. Antioxidants 2022, 11, 2366. [Google Scholar] [CrossRef]
- Groot, J.C.J.; Cone, J.W.; Williams, B.A.; Debersaques, F.M.A.; Lantinga, E.A. Multiphasic analysis of gas production kinetics for in vitro fermentation of ruminant feeds. Anim. Feed Sci. Technol. 1996, 64, 77–89. [Google Scholar] [CrossRef]
- Martin-Rosset, W.; Doreau, M. Consommation d’aliments et d’eau par le cheval. Le Cheval. Reprod. Sélection Aliment. Exploit. 1984, 1, 333–354. [Google Scholar]
- Van den Berg, M.; Hoskin, S.O.; Rogers, C.W.; Grinberg, A. Fecal pH and Microbial Populations in Thoroughbred Horses During Transition from Pasture to Concentrate Feeding. J. Eq. Vet. Sci. 2013, 33, 215–222. [Google Scholar] [CrossRef]
- Wolin, M.J. A Theoretical Rumen Fermentation Balance. J. Dairy Sci. 1960, 43, 1452–1459. [Google Scholar] [CrossRef]
- Miraglia, N.; Bergero, D.; Bassano, B.; Tarantola, M.; Ladetto, G. Studies of apparent digestibility in horses and the use of internal markers. Livestock Prod. Sci. 1999, 60, 21–25. [Google Scholar] [CrossRef]
- Vermorel, M.; Vernet, J.; Martin-Rosset, W. Digestive and energy utilisation of two diets by ponies and horses. Livestock Prod. Sci. 1997, 51, 13–19. [Google Scholar] [CrossRef]
- Kienzle, E.; Pohlenz, J.; Radicke, S. Morphology of starchdigestion in the horse. J. Vet. Med. 1997, 44, 207–221. [Google Scholar] [CrossRef] [PubMed]
- Raspa, F.; Dinardo, F.R.; Vervuert, I.; Bergero, D.; Bottero, M.T.; Pattono, D.; Dalmasso, A.; Vinassa, M.; Valvassori, E.; Bruno, E.; et al. A Fibre- vs. cereal grain-based diet: Which is better for horse welfare? Effects on intestinal permeability, muscle characteristics and oxidative status in horses reared for meat production. J. Anim. Physiol. Anim. Nutr. 2021, 106, 313–326. [Google Scholar] [CrossRef]
- McLean, B.M.L.; Hyslop, J.J.; Longland, A.C.; Cuddeford, D.; Hollands, T. Development of the Mobile Bag Technique to Determine the Degradation Kinetics of Purified Starch Sources in the Pre-Caecal Segment of the Equine Digestive Tract. In Proceedings of the British Society of Animal Science, Scarborough, UK, June 1999; Volume 1, p. 138. [Google Scholar] [CrossRef]
- McLean, B.M.L.; Hyslop, J.J.; Longland, A.C.; Cuddeford, D.; Hollands, T. Physical processing of barley and its effects on intra-caecal fermentation parameters 538 in ponies. Anim. Feed Sci. Technol. 2000, 85, 79–87. [Google Scholar] [CrossRef]
- de Fombelle, A.; Frumholtz, P.; Poillion, D.; Drogoul, C.; Phillipeau, C.; Jacotot, E.; Julliand, V. Effect of the botanical origin of starch on its prececal digestibility measured with the mobile bag technique. In Proceedings of the 17th Equine Nutrition and Physiology Society Symposium, Lexington, KY, USA, 31 May–2 June 2001; pp. 153–155. [Google Scholar]
- Martin-Rosset, W.; Andrieu, J.; Jestin, M. Prediction of the organic matter digestibility (OMD) of forages in horses by the pepsin-cellulase method. In Proceedings of the 47th EAAP Meeting, Lillehammer, Norway, 25–29 August 1996; p. 294. [Google Scholar]
- Getachew, G.; Makkar, H.; Becker, K. Tropical browses: Contents of phenolic compounds, in vitro gas production and stoichiometric relationship between short chain fatty acid and in vitro gas production. J. Agric. Sci. 2002, 139, 341–352. [Google Scholar] [CrossRef]
- Agazzi, A.; Ferroni, M.; Fanelli, A.; Maroccolo, S.; Invernizzi, G.; Dell’Orto, V.; Savoini, G. Evaluation of the Effects of Live Yeast Supplementation on Apparent Digestibility of High-Fiber Diet in Mature Horses Using the Acid Insoluble Ash Marker Modified Method. J. Eq. Vet. Sci. 2011, 31, 13–18. [Google Scholar] [CrossRef]
- Raspa, F.; Vervuert, I.; Capucchio, M.T.; Colombino, E.; Bergero, D.; Forte, C.; Greppi, M.; Cavallarin, L.; Giribaldi, M.; Antoniazzi, S.; et al. A high-starch vs. high-fibre diet: Effects on the gut environment of the different intestinal compartments of the horse digestive tract. BMC Vet. Res. 2022, 18, 187. [Google Scholar] [CrossRef]
- Lukitawesa; Patinvoh, R.J.; Millati, R.; Sárvári-Horváth, I.; Taherzadeh, M.J. Factors influencing volatile fatty acids production from food wastes via anaerobic digestion. Bioengineered 2020, 11, 39–52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Julliand, V.; De Fombelle, A.; Drogoul, C.; Jacotot, E. Feeding and microbial disorders in horses: Part 3. Effects of three hay: Grain ratios on microbial profile and activities. J. Equine Vet. Sci. 2001, 22, 543–546. [Google Scholar] [CrossRef]
- Philippeau, C.; Sadet-Bourgeteau, S.; Varloud, M.; Julliand, V. Impact of barley form on equine total tract fibre digestibility and colonic microbiota. Animal 2015, 9, 1943–1948. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jansson, A.; Lindberg, J.E. A forage-only diet alters the metabolic response of horses in training. Animal 2012, 6, 1939–1946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milinovich, G.J.; Trott, D.J.; Burrell, P.C.; Van Eps, A.W.; Thoefner, M.B.; Blackall, L.L.; Al Jassim, R.A.M.; Morton, J.M.; Pollitt, C.C. Changes in equine hindgut bacterial populations during oligofructose-induced laminitis. Environ. Microbiol. 2006, 8, 885–898. [Google Scholar] [CrossRef]
- Macheboeuf, D.; Van Milgen, J. Comparison of five models used to describe gas accumulation profiles in the gas test method with horse caecal fluid as inoculum. BSAP Occ. Pub. 1998, 22, 185–186. [Google Scholar] [CrossRef]
Diet 1 | Diet 2 | Diet 3 | Diet 4 | Diet 5 | |
---|---|---|---|---|---|
Ingredients, % | |||||
Polyphite hay | 90.0 | 47.6 | 47.6 | 47.1 | 35.0 |
Straw | - | 30.6 | 20.5 | 12.6 | 15.0 |
Oat | 10.0 | 14.6 | 21.4 | 27.2 | 33.4 |
Barley | - | 7.20 | 10.5 | 13.1 | 16.6 |
Chemical composition | |||||
DM, % | 89.02 | 86.0 | 86.9 | 89.4 | 85.6 |
Ash, % DM | 10.8 | 7.5 | 6.1 | 6.7 | 6.0 |
CP, % DM | 6.4 | 6.3 | 7.8 | 8.7 | 8.0 |
CF, % DM | 30.0 | 30.7 | 27.1 | 28.3 | 23.6 |
Diet 1 | Diet 2 | Diet 3 | Diet 4 | Diet 5 | |
---|---|---|---|---|---|
DM intake (kg/d) | 11.1 ± 0.5 | 10.7 ± 0.4 | 10.9 ± 0.5 | 11.2 ± 0.5 | 10.7 ± 0.4 |
DM intake (g/kg MW) | 105 ± 4.7 | 101 ± 3.8 | 103 ± 4.7 | 106 ± 4.7 | 101 ± 3.8 |
LN | 1.72 | 1.36 | 1.98 | 1.89 | 1.88 |
Poliphyte hay (kg DM/d) | 9.98 ± 0.41 | 5.05 ± 0.25 | 5.16 ± 0.20 | 5.25 ± 0.25 | 3.72 ± 0.12 |
Straw (kg DM/d) | - | 3.32 ± 0.16 | 2.27 ± 0.07 | 1.44 ± 0.17 | 1.63 ± 0.06 |
Oat grain (kg DM/d) | 1.12 ± 0.06 | 1.50 ± 0.04 | 2.33 ± 0.13 | 3.07 ± 0.17 | 3.59 ± 0.16 |
Barley grain (kg DM/d) | - | 0.75 ± 0.03 | 1.12 ± 0.07 | 1.44 ± 0.06 | 1.75 ± 0.08 |
OM | CF | |
---|---|---|
% | ||
Diet 1 | 58.8 A ± 2.6 | 57.2 A ± 4.2 |
Diet 2 | 46.7 B ± 2.8 | 44.1 B ± 2.5 |
Diet 3 | 65.5 A ± 0.6 | 64.8 A ± 7.6 |
Diet 4 | 61.4 A ± 3.4 | 32.2 C ± 7.3 |
Diet 5 | 63.4 A ± 3.7 | 39.3 BC ± 4.2 |
OMCV | A | B | Yield | dOM | pH | |
---|---|---|---|---|---|---|
mL/g | h | mL/g | % | |||
Diet 1 | 175 B | 240 B | 43.0 A | 273 B | 60.0 AB | 6.58 B |
Diet 2 | 208 B | 282 AB | 42.8 A | 380 AB | 54.9 B | 6.54 B |
Diet 3 | 274 A | 313 A | 22.1 B | 414 A | 66.0 A | 7.18 A |
Diet 4 | 235 AB | 290 AB | 27.8 AB | 379 AB | 62.1 A | 6.21 C |
Diet 5 | 179 B | 244 B | 25.4 AB | 291 B | 61.4 AB | 6.47 B |
SEM | 1942 | 1885 | 144 | 4189 | 21.5 | 0.007 |
Acetate | Propionate | Butyrate | Total VFA | A/P | (A + B)/P | |
---|---|---|---|---|---|---|
mmol/g | ||||||
Diet 1 | 25.3 CB ± 5.85 | 10.8 A ± 2.25 | 0.56 B ± 0.18 | 36.7 C ± 7.66 | 2.36 ± 0.49 | 2.41 B ± 0.50 |
Diet 2 | 27.4 CB ± 6.05 | 11.0 A ± 1.84 | 1.01 A ± 0.37 | 39.4 BC ± 4.48 | 2.62 ± 0.96 | 2.71 ± 0.96 |
Diet 3 | 42.0 A ± 10.7 | 13.1 A ± 4.00 | 1.37 A ± 0.56 | 56.5 A ± 14.5 | 3.26 ± 0.51 | 3.36 A ± 0.53 |
Diet 4 | 29.5 B ± 6.75 | 10.2 A ± 2.87 | 1.13 A ± 0.25 | 40.8 B ± 8.48 | 3.04 ± 0.94 | 3.16 A ± 0.95 |
Diet 5 | 21.0 C ± 7.51 | 7.69 B ± 1.79 | 0.88 B ± 0.35 | 29.6 C ± 8.79 | 2.72 ± 0.73 | 2.85 A ± 0.73 |
Eq. N. | IntercePT | b | R2 | RSD | |
---|---|---|---|---|---|
y = ADC (%) | 1 | 30.504 | 0.5135 dOM (%) | 0.8933 | 2.70 |
y = ADC (%) | 2 | 96.824 | −1.092 B (h) | 0.6572 | 5.00 |
y = OMCV (mmoli) | 3 | 2.27 | 1.69 AGV (mmoli) | 0.8470 | 0.729 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zicarelli, F.; Tudisco, R.; Lotito, D.; Musco, N.; Iommelli, P.; Ferrara, M.; Calabrò, S.; Infascelli, F.; Lombardi, P. Forage:Concentrate Ratio Effects on In Vivo Digestibility and In Vitro Degradability of Horse’s Diet. Animals 2023, 13, 2589. https://doi.org/10.3390/ani13162589
Zicarelli F, Tudisco R, Lotito D, Musco N, Iommelli P, Ferrara M, Calabrò S, Infascelli F, Lombardi P. Forage:Concentrate Ratio Effects on In Vivo Digestibility and In Vitro Degradability of Horse’s Diet. Animals. 2023; 13(16):2589. https://doi.org/10.3390/ani13162589
Chicago/Turabian StyleZicarelli, Fabio, Raffaella Tudisco, Daria Lotito, Nadia Musco, Piera Iommelli, Maria Ferrara, Serena Calabrò, Federico Infascelli, and Pietro Lombardi. 2023. "Forage:Concentrate Ratio Effects on In Vivo Digestibility and In Vitro Degradability of Horse’s Diet" Animals 13, no. 16: 2589. https://doi.org/10.3390/ani13162589
APA StyleZicarelli, F., Tudisco, R., Lotito, D., Musco, N., Iommelli, P., Ferrara, M., Calabrò, S., Infascelli, F., & Lombardi, P. (2023). Forage:Concentrate Ratio Effects on In Vivo Digestibility and In Vitro Degradability of Horse’s Diet. Animals, 13(16), 2589. https://doi.org/10.3390/ani13162589