Dietary Taurine Intake Affects the Growth Performance, Lipid Composition, and Antioxidant Defense of Juvenile Ivory Shell (Babylonia areolata)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Diets
2.2. Ivory Shell Rearing, Experimental Design, and Sampling
2.3. Growth Performance and Biological Parameters Analysis
2.4. Histology of Intestine
2.5. Proximate Composition and Free Taurine Concentration Analysis of Muscle
2.6. Fatty Acid Analysis
2.7. Cholesterol Analysis
2.8. Evaluation of Intestinal and Hepatopancreas Digestive Enzyme Activities
2.9. Activity Assay of the Hepatopancreas Antioxidant Enzyme
2.10. Gene Expression Analysis
2.11. Statistical Analysis
3. Results
3.1. Growth Performance
3.2. Intestinal Morphology
3.3. Body Biochemical Composition
3.4. Digestive Enzyme Activity of Intestine and Hepatopancreas
3.5. Oxidative Stress-Related Enzyme Activity of Hepatopancreas
3.6. Gene Expression Related to the Nutrition Metabolism in Hepatopancreas
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chaitanawisuti, N.; Kritsanapuntu, S.; Natsukari, Y. Economic analysis of a pilot commercial production for spotted babylon, Babylonia areolata (Link 1807), of marketable sizes using a flow-through culture system in Thailand. Aquac. Res. 2002, 33, 1265–1272. [Google Scholar] [CrossRef]
- Zhou, J.; Liu, C.; Yang, Y.; Yang, Y.; Gu, Z.; Wang, A.; Liu, C. Effects of long-term exposure to ammonia on growth performance, immune response, and body biochemical composition of juvenile ivory shell, Babylonia areolata. Aquaculture 2023, 562, 738857. [Google Scholar] [CrossRef]
- Chaitanawisuti, N.; Kritsanapuntu, A. Growth and production of hatchery-reared juvenile spotted babylon Babylonia areolata Link 1807 cultured to marketable size in intensive flowthrough and semi-closed recirculating water systems. Aquac. Res. 2000, 31, 415–419. [Google Scholar] [CrossRef]
- Dobson, G.T.; Duy, N.D.Q.; Southgate, P.C. Preliminary assessment of large-scale co-culture of sandfish (Holothuria scabra) with the Babylon snail (Babylonia areolata) in earthen ponds and in raceways. J. World Aquac. Soc. 2020, 52, 138–154. [Google Scholar] [CrossRef]
- Liu, C.; Zhou, J.; Yang, Y.; Yang, Y.; Wang, A.; Gu, Z. Effects of salinity on growth performance, physiological response, and body biochemical composition of juvenile ivory shell (Babylonia areolata). Aquaculture 2023, 566, 739193. [Google Scholar] [CrossRef]
- Lü, W.; Zhong, M.; Fu, J.; Ke, S.; Gan, B.; Zhou, Y.; Shen, M.; Ke, C. Comparison and optimal prediction of goptimal prediction of growth of Babylonia areolata and B. lutosa. Aquac. Rep. 2020, 18, 100425. [Google Scholar] [CrossRef]
- Zhou, J.-B.; Zhou, Q.-C.; Chi, S.-Y.; Yang, Q.-H.; Liu, C.-W. Optimal dietary protein requirement for juvenile ivory shell, Babylonia areolate. Aquaculture 2007, 270, 186–192. [Google Scholar] [CrossRef]
- Dai, C.; Li, X.; Luo, D.; Liu, Q.; Sun, Y.; Tu, Z.; Shen, M. First report on genome analysis and pathogenicity of vibrio tubiashii FP17 from farmed ivory shell (Babylonia areolata). Fishes 2022, 7, 396. [Google Scholar] [CrossRef]
- Zhou, Q.-C.; Zhou, J.-B.; Chi, S.-Y.; Yang, Q.-H.; Liu, C.-W. Effect of dietary lipid level on growth performance, feed utilization and digestive enzyme of juvenile ivory shell, Babylonia areolate. Aquaculture 2007, 272, 535–540. [Google Scholar] [CrossRef]
- Zhang, L.-L.; Zhou, Q.-C.; Cheng, Y.-Q. Effect of dietary carbohydrate level on growth performance of juvenile spotted Babylon (Babylonia areolata Link 1807). Aquaculture 2009, 295, 238–242. [Google Scholar] [CrossRef]
- Papatryphon, E.; Soares, J.H. Identification of feeding stimulants for striped bass, Morone saxatilis. Aquaculture 2000, 185, 339–352. [Google Scholar] [CrossRef]
- Miyasaki, T.; Harada, K. Effects of specific purine and pyrimidine compounds on the ingestion of test diets by the abalone Haliotis discus and the oriental weatherfish Misgurnus anguillicaudatus. Mar. Freshw. Res. 2003, 54, 235–241. [Google Scholar] [CrossRef]
- Felix, N.; Sudharsan, M. Effect of glycine betaine, a feed attractant affecting growth and feed conversion of juvenile freshwater prawn Macrobrachium rosenbergii. Aquac. Nutr. 2004, 10, 193–197. [Google Scholar] [CrossRef]
- Peng, D.; Peng, B.; Li, J.; Zhang, Y.; Luo, H.; Xiao, Q.; Tang, S.; Liang, X.-F. Effects of three feed attractants on the growth, biochemical indicators, lipid metabolism and appetite of Chinese perch (Siniperca chuatsi). Aquac. Rep. 2022, 23, 101075. [Google Scholar] [CrossRef]
- Shi, Y.; Zhong, L.; Zhong, H.; Zhang, J.; Che, C.; Fu, G.; Hu, Y.; Mai, K. Taurine supplements in high-fat diets improve survival of juvenile Monopterus albus by reducing lipid deposition and intestinal damage. Aquaculture 2022, 547, 737431. [Google Scholar] [CrossRef]
- Harada, K.; Miyasaki, T.; Kawashima, S.; Shiota, H. Studies on the feeding attractants for fishes and shellfishes. XXVI. Probable feeding attractants in allspice Pimenta officinalis for black abalone Haliotis discus. Aquaculture 1996, 140, 99–108. [Google Scholar] [CrossRef]
- Harada, K.; Miyasaki, T.; Maeda, H.; Satoh, K. Statistical estimation of probable feeding attractants in amino acids for abalone. Aquac. Sci. 1997, 45, 539–546. [Google Scholar] [CrossRef]
- Kita, M.; Kitamura, M.; Koyama, T.; Teruya, T.; Matsumoto, H.; Nakano, Y.; Uemura, D. Feeding attractants for the muricid gastropod Drupella cornus, a coral predator. Tetrahedron Lett. 2005, 46, 8583–8585. [Google Scholar] [CrossRef]
- Chiken, S.; Kuwasawa, K.; Kurokawa, M. A neural analysis of avoidance conditioning with the feeding attractant glycine in Pleurobranchaea japonica. Comp. Biochem. Physiol. Part A 2009, 154, 333–340. [Google Scholar] [CrossRef]
- Salze, G.P.; Davis, D.A. Taurine: A critical nutrient for future fish feeds. Aquaculture 2015, 437, 215–229. [Google Scholar] [CrossRef]
- Sampath, W.W.H.A.; Rathnayake, R.M.D.S.; Yang, M.; Zhang, W.; Mai, K. Roles of dietary taurine in fish nutrition. Mar. Life Sci. Technol. 2020, 2, 360–375. [Google Scholar] [CrossRef]
- Zhu, R.; Wu, X.-Q.; Zhao, X.-Y.; Qu, Z.-H.; Quan, Y.-N.; Lu, M.-H.; Liu, Z.-Y.; Wu, L.-F. Taurine can improve intestinal function and integrity in juvenile Rhynchocypris lagowskii Dybowski fed high-dose glycinin. Fish Shellfish. Immunol. 2022, 129, 127–136. [Google Scholar] [CrossRef] [PubMed]
- Koven, W.; Peduel, A.; Gada, M.; Nixon, O.; Ucko, M. Taurine improves the performance of white grouper juveniles (Epinephelus Aeneus) fed a reduced fish meal diet. Aquaculture 2016, 460, 8–14. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, P.; Hu, H.; Li, Y.; Dai, J.; Zhang, Y.; Ai, Q.; Xu, W.; Zhang, W.; Mai, K. The tolerance and safety assessment of taurine as additive in a marine carnivorous fish, Scophthalmus maximus L. Aquac. Nutr. 2018, 24, 461–471. [Google Scholar] [CrossRef]
- Dong, J.; Cheng, R.; Yang, Y.; Zhao, Y.; Wu, G.; Zhang, R.; Zhu, X.; Li, L.; Li, X. Effects of dietary taurine on growth, non-specific immunity, anti-oxidative properties and gut immunity in the Chinese mitten crab Eriocheir sinensis. Fish Shellfish. Immunol. 2018, 82, 212–219. [Google Scholar] [CrossRef]
- Yue, Y.-R.; Liu, Y.-J.; Tian, L.-X.; Gan, L.; Yang, H.-J.; Liang, G.-Y.; He, J.-Y. The effect of dietary taurine supplementation on growth performance, feed utilization and taurine contents in tissues of juvenile white shrimp (Litopenaeus vannamei, Boone, 1931) fed with low-fishmeal diets. Aquac. Res. 2013, 44, 1317–1325. [Google Scholar] [CrossRef]
- Kuzmina, V.V.; Gavrovskaya, L.K.; Ryzhova, O.V. Taurine. Effect on exotrophia and metabolism in mammals and fish. J. Evol. Biochem. Physiol. 2010, 46, 19–27. [Google Scholar] [CrossRef]
- Rimoldi, S.; Finzi, G.; Ceccotti, C.; Girardello, R.; Grimaldi, A.; Ascione, C.; Terova, G. Butyrate and taurine exert a mitigating effect on the inflamed distal intestine of European sea bass fed with a high percentage of soybean meal. Fish. Aquat. Sci. 2016, 19, 40. [Google Scholar] [CrossRef] [Green Version]
- Matias, A.C.; Dias, J.; Barata, M.; Araujo, R.L.; Bragança, J.; Pousão-Ferreira, P. Taurine modulates protein turnover in several tissues of meagre juveniles. Aquaculture 2020, 528, 735478. [Google Scholar] [CrossRef]
- Li, L.; Liu, H.-Y.; Xie, S.-Q.; Zhang, P.-Y.; Yang, Z.-C. Effects of taurine supplementation on growth performance and feed utilization in aquatic animals: A meta-analysis. Aquaculture 2022, 551, 737896. [Google Scholar] [CrossRef]
- Liu, C.-S.; Chen, S.-Q.; Zhuang, Z.-M.; Yan, J.-P.; Liu, C.-L.; Cui, H.-T. Potential of utilizing jellyfish as food in culturing Pampus argenteus juveniles. Hydrobiologia 2015, 754, 189–200. [Google Scholar] [CrossRef]
- Zhang, X.; Ren, P.; Guan, J.; Gu, Z.; Yang, Y.; Wang, A.; Liu, C. Seasonal variation of biochemical composition and non-volatile taste active compounds in pearl oyster Pinctada fucata martensii from two selective strains. Fishes 2022, 7, 348. [Google Scholar] [CrossRef]
- Liu, C.; Li, M.; Wang, Y.; Yang, Y.; Wang, A.; Gu, Z. Effects of high hydrostatic pressure and storage temperature on fatty acids and non-volatile taste active compounds in red claw crayfish (Cherax quadricarinatus). Molecules 2022, 27, 5098. [Google Scholar] [CrossRef]
- Liu, C.; Yang, X.; Sun, Y.; Yang, Y.; Wang, A.; He, L.; Gu, Z. Effects of the daily light/dark cycle on photosynthetic performance, oxidative stress and illumination-related genes in boring giant clam Tridacna crocea. Mar. Biol. 2021, 168, 71. [Google Scholar] [CrossRef]
- Shen, M.; Di, G.; Li, M.; Fu, J.; Dai, Q.; Miao, X.; Huang, M.; You, W.; Ke, C. Proteomics Studies on the three Larval Stages of Development and Metamorphosis of Babylonia areolata. Sci. Rep. 2018, 8, 6269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Tang, Q.-Y.; Zhang, C.-X. Data processing system (DPS) software with experimental design, statistical analysis and data mining developed for use in entomological research. Insect Sci. 2013, 20, 254–260. [Google Scholar] [CrossRef]
- Chi, S.Y.; Zhou, Q.C.; Tan, B.P.; Dong, X.H.; Yang, Q.H.; Zhou, J.B. Effect of dietary protein and lipid levels on growth performance, carcass composition, and digestive enzyme of the juvenile spotted babylon, Babylonia areolata link 1807. J. World Aquac. Soc. 2010, 41, 903–911. [Google Scholar] [CrossRef]
- Li, X.; Fang, T.; Wang, J.; Wang, Z.; Guan, D.; Sun, H.; Yun, X.; Zhou, J. The efficiency of adding amino acid mixtures to a diet free of fishmeal and soybean meal as an attractant in yellow river carp (Cyprinus carpio var.). Aquac. Rep. 2022, 24, 101189. [Google Scholar] [CrossRef]
- Shi, L.; Yue, Z.; Wei, L.; Zhai, H.; Ren, T.; Han, Y. An evaluation on taurine addition in the diet of juvenile sea cucumber (Apostichopus japonicus): Growth, biochemical profiles and immunity genes expression. Aquac. Nutr. 2021, 27, 1315–1323. [Google Scholar] [CrossRef]
- Qi, G.; Ai, Q.; Mai, K.; Xu, W.; Liufu, Z.; Yun, B.; Zhou, H. Effects of dietary taurine supplementation to a casein-based diet on growth performance and taurine distribution in two sizes of juvenile turbot (Scophthalmus maximus L.). Aquaculture 2012, 358–359, 122–128. [Google Scholar] [CrossRef]
- Volkoff, H.; Eykelbosh, A.J.; Peter, R.E. Role of leptin in the control of feeding of goldfish Carassius auratus: Interactions with cholecystokinin, neuropeptide Y and orexin a, and modulation by fasting. Brain Res. 2003, 972, 90–109. [Google Scholar] [CrossRef] [PubMed]
- Ji, W.; Ping, H.-C.; Wei, K.-J.; Zhang, G.-R.; Shi, Z.-C.; Yang, R.-B.; Zou, G.-W.; Wang, W.-M. Ghrelin, neuropeptide Y (NPY) and cholecystokinin (CCK) in blunt snout bream (Megalobrama amblycephala): cDNA cloning, tissue distribution and mRNA expression changes responding to fasting and refeeding. Gen. Comp. Endocrinol. 2015, 223, 108–119. [Google Scholar] [CrossRef] [PubMed]
- Basto-Silva, C.; Enes, P.; Oliva-Teles, A.; Balbuena-Pecino, S.; Navarro, I.; Capilla, E.; Guerreiro, I. Dietary protein source and protein/carbohydrate ratio affects appetite regulation-related genes expression in gilthead seabream (Sparus aurata). Aquaculture 2021, 533, 736142. [Google Scholar] [CrossRef]
- Li, C.; Liu, E.; Li, T.; Wang, A.; Liu, C.; Gu, Z. Suitability of three seaweeds as feed in culturing strawberry conch Strombus luhuanus. Aquaculture 2020, 519, 734761. [Google Scholar] [CrossRef]
- Ye, B.; Gu, Z.; Zhang, X.; Yang, Y.; Wang, A.; Liu, C. Comparative Effects of Microalgal Species on Growth, Feeding, and Metabolism of Pearl Oysters, Pinctada fucata martensii and Pinctada maxima. Front. Mar. Sci. 2022, 9, 895386. [Google Scholar] [CrossRef]
- Abdel-Tawwab, M.; Monier, M.N. Stimulatory effect of dietary taurine on growth performance, digestive enzymes activity, antioxidant capacity, and tolerance of common carp, Cyprinus carpio L., fry to salinity stress. Fish Physiol. Biochem. 2018, 44, 639–649. [Google Scholar] [CrossRef]
- Zhang, J.; Hu, Y.; Ai, Q.; Mao, P.; Tian, Q.; Zhong, L.; Xiao, T.; Chu, W. Effect of dietary taurine supplementation on growth performance, digestive enzyme activities and antioxidant status of juvenile black carp (Mylopharyngodon piceus) fed with low fish meal diet. Aquac. Res. 2018, 49, 3187–3195. [Google Scholar] [CrossRef]
- Hongmanee, P.; Wongmaneeprateep, S.; Boonyoung, S.; Yuangsoi, B. The optimal dietary taurine supplementation in zero fish meal diet of juvenile snakehead fish (Channa striata). Aquaculture 2022, 553, 738052. [Google Scholar] [CrossRef]
- Bouckenooghe, T.; Remacle, C.; Reusens, B. Is taurine a functional nutrient? Curr. Opin. Clin. Nutr. Metab. Care 2006, 9, 728–733. [Google Scholar] [CrossRef]
- Aragão, C.; Teodósio, R.; Colen, R.; Richard, N.; Rønnestad, I.; Dias, J.; Conceição, L.E.C.; Ribeiro, L. Taurine supplementation to plant-based diets improves lipid metabolism in senegalese sole. Animals 2023, 13, 1501. [Google Scholar] [CrossRef] [PubMed]
- Espe, M.; Ruohonen, K.; El-Mowafi, A. Effect of taurine supplementation on the metabolism and body lipid-to-protein ratio in juvenile Atlantic salmon (Salmo salar). Aquac. Res. 2012, 43, 349–360. [Google Scholar] [CrossRef]
- Su, C.; Li, J.; Lu, Y.; Wang, Y.; Ding, Y.; Pan, L.; Zhang, M. Interactive effects of dietary cholesterol and bile acids on the growth, lipid metabolism, immune response and intestinal microbiota of Litopenaeus vannamei: Sparing effect of bile acids on cholesterol in shrimp diets. Aquaculture 2022, 547, 737412. [Google Scholar] [CrossRef]
- Ricardo, F.; Gonçalves, D.; Pimentel, T.; Mamede, R.; Domingues, M.R.M.; Lillebø, A.I.; Calado, R. Prevalence of phylogenetic over environmental drivers on the fatty acid profiles of the adductor muscle of marine bivalves and its relevance for traceability. Ecol. Indic. 2021, 129, 108017. [Google Scholar] [CrossRef]
- Liu, C.; Gu, Z.; Lin, X.; Wang, Y.; Wang, A.; Sun, Y.; Shi, Y. Effects of high hydrostatic pressure (HHP) and storage temperature on bacterial counts, color change, fatty acids and non-volatile taste active compounds of oysters (Crassostrea ariakensis). Food Chem. 2022, 372, 131247. [Google Scholar] [CrossRef]
- Chen, Y.; Qiu, X.; Yang, J. Comparing the in vitro antitumor, antioxidant and anti-inflammatory activities between two new very long chain polyunsaturated fatty acids, docosadienoic acid (DDA) and docosatrienoic acid (DTA), and docosahexaenoic acid (DHA). Nutr. Cancer 2021, 73, 1697–1707. [Google Scholar] [CrossRef]
- Xu, H.; Zhang, Q.; Kim, S.-K.; Liao, Z.; Wei, Y.; Sun, B.; Jia, L.; Chi, S.; Liang, M. Dietary taurine stimulates the hepatic biosynthesis of both bile acids and cholesterol in the marine teleost, tiger puffer (Takifugu rubripes). Br. J. Nutr. 2020, 123, 1345–1356. [Google Scholar] [CrossRef] [Green Version]
- Bai, F.; Niu, X.; Wang, X.; Ye, J. Growth performance, biochemical composition and expression of lipid metabolism related genes in groupers (Epinephelus coioides) are altered by dietary taurine. Aquac. Nutr. 2021, 27, 2690–2702. [Google Scholar] [CrossRef]
- Xu, X.; Yang, F.; Zhao, L.; Yan, X. Seawater acidification affects the physiological energetics and spawning capacity of the manila clam Ruditapes philippinarum during gonadal maturation. Comp. Biochem. Physiol. Part A 2016, 196, 20–29. [Google Scholar] [CrossRef]
- Gu, Z.; Wei, H.; Cheng, F.; Wang, A.; Liu, C. Effects of air exposure time and temperature on physiological energetics and oxidative stress of winged pearl oyster (Pteria penguin). Aquac. Rep. 2020, 17, 100384. [Google Scholar] [CrossRef]
- Kim, J.-H.; Kang, J.-C. The selenium accumulation and its effect on growth, and haematological parameters in red sea bream, Pagrus major, exposed to waterborne selenium. Ecotoxicol. Environ. Saf. 2014, 104, 96–102. [Google Scholar] [CrossRef] [PubMed]
- Mezzomo, N.J.; Müller, T.E.; Franscescon, F.; Michelotti, P.; Souza, T.P.; Rosemberg, D.B.; Barcellos, L.J.G. Taurine-mediated aggression is abolished via 5-HT1A antagonism and serotonin depletion in zebrafish. Pharmacol. Biochem. Behav. 2020, 199, 173067. [Google Scholar] [CrossRef] [PubMed]
- Coutinho, F.; Simões, R.; Monge-Ortiz, R.; Furuya, W.M.; Pousão-Ferreira, P.; Kaushik, S.; Oliva-Teles, A.; Peres, H. Effects of dietary methionine and taurine supplementation to low-fish meal diets on growth performance and oxidative status of European sea bass (Dicentrarchus labrax) juveniles. Aquaculture 2017, 479, 447–454. [Google Scholar] [CrossRef]
- Ding, Z.; Kong, Y.; Qi, C.; Liu, Y.; Zhang, Y.; Ye, J. The alleviative effects of taurine supplementation on growth, antioxidant enzyme activities, hepatopancreas morphology and mRNA expression of heat shock proteins in freshwater prawn Macrobrachium nipponense (De Haan) exposed to dietary lead stress. Aquac. Nutr. 2021, 27, 2195–2204. [Google Scholar] [CrossRef]
0.0% | 1.0% | 1.5% | 2.0% | 2.5% | 3.0% | |
---|---|---|---|---|---|---|
IBW (g) | 1.71 ± 0.11 | |||||
FBW (g) | 6.18 ± 0.05 d | 7.00 ± 0.10 b | 7.18 ± 0.05 a | 7.32 ± 0.07 a | 6.68 ± 0.05 c | 6.81 ± 0.13 c |
WGR (%) | 261.40 ± 2.56 d | 309.36 ± 5.64 b | 319.88 ± 3.18 a | 328.07 ± 4.44 a | 290.64 ± 2.69 c | 298.25 ± 7.31 c |
SGR (%/d) | 2.29 ± 0.01 f | 2.52 ± 0.02 c | 2.56 ± 0.012 b | 2.60 ± 0.02 a | 2.43 ± 0.01 e | 2.47 ± 0.03 d |
FCR | 1.47 ± 0.06 ab | 1.38 ± 0.07 abc | 1.31 ± 0.08 bc | 1.24 ± 0.20 c | 1.40 ± 0.03 abc | 1.51 ± 0.07 a |
SR (%) | 90.60 ± 0.06 c | 92.89 ± 1.43 bc | 98.60 ± 1.43 a | 95.46 ± 2.86 ab | 98.60 ± 1.43 a | 90.03 ± 1.43 c |
VSI (%) | 12.75 ± 0.97 a | 12.37 ± 0.26 a | 13.35 ± 0.82 a | 13.33 ± 0.51 a | 13.43 ± 0.67 a | 12.36 ± 1.36 a |
MTI (%) | 38.08 ± 0.87 a | 37.36 ± 1.12 a | 37.63 ± 0.93 a | 37.41 ± 1.27 a | 37.42 ± 0.56 a | 38.21 ± 1.45 a |
STI (%) | 50.83 ± 1.62 a | 49.73 ± 1.25 a | 50.98 ± 0.36 a | 50.74 ± 1.53 a | 50.85 ± 1.20 a | 50.56 ± 1.70 a |
0.0% | 1.0% | 1.5% | 2.0% | 2.5% | 3.0% | |
---|---|---|---|---|---|---|
Moisture (%) | 71.10 ± 0.35 a | 69.92 ± 0.54 c | 70.69 ± 0.62 ab | 70.10 ± 0.20 bc | 70.08 ± 0.01 bc | 70.65 ± 0.17 ab |
Crude protein (%) | 17.21 ± 0.27 b | 17.27 ± 0.36 b | 16.32 ± 0.42 c | 17.61 ± 0.14 ab | 17.81 ± 0.01 a | 16.50 ± 0.11 c |
Crude lipid (%) | 1.11 ± 0.02 c | 1.25 ± 0.03 ab | 1.25 ± 0.02 ab | 1.28 ± 0.01 a | 1.13 ± 0.01 c | 1.22 ± 0.02 b |
Ash (%) | 3.26 ± 0.05 c | 3.63 ± 0.08 ab | 3.68 ± 0.07 a | 3.68 ± 0.07 a | 3.47 ± 0.19 b | 3.46 ± 0.06 b |
Glycogen (mg/g) | 3.03 ± 0.09 cd | 3.05 ± 0.09 c | 3.15 ± 0.01 bc | 3.20 ± 0.10 b | 3.96 ± 0.01 a | 2.92 ± 0.05 d |
Taurine (mg/g) | 2.00 ± 0.24 d | 8.06 ± 0.09 c | 8.77 ± 0.09 b | 9.45 ± 0.73 a | 9.81 ± 0.38 a | 10.05 ± 0.05 a |
0.0% | 1.0% | 1.5% | 2.0% | 2.5% | 3.0% | |
---|---|---|---|---|---|---|
C14:0 | 2.65 ± 0.15 abc | 2.76 ± 0.03 a | 2.50 ± 0.03 c | 2.50 ± 0.14 c | 2.57 ± 0.12 bc | 2.72 ± 0.10 ab |
C15:0 | 0.38 ± 0.07 ab | 0.42 ± 0.02 a | 0.29 ± 0.11 b | 0.34 ± 0.01 ab | 0.31 ± 0.11 ab | 0.39 ± 0.04 ab |
C16:0 | 16.00 ± 1.35 a | 15.79 ± 0.05 a | 15.42 ± 0.70 a | 12.96 ± 1.35 b | 16.08 ± 0.64 a | 17.11 ± 1.09 a |
C17:0 | 1.17 ± 0.09 ab | 1.05 ± 0.05 b | 1.17 ± 0.01 ab | 1.04 ± 0.02 b | 1.22 ± 0.26 ab | 1.27 ± 0.11 a |
C18:0 | 10.44 ± 1.36 a | 10.05 ± 0.29 a | 8.71 ± 0.81 b | 7.67 ± 0.16 b | 8.22 ± 0.38 b | 8.15 ± 0.40 b |
SFA | 30.63 ± 3.01 a | 30.07 ± 0.25 a | 28.10 ± 0.59 b | 24.50 ± 1.04 c | 28.40 ± 0.76 b | 29.64 ± 0.67 a |
C16:1n7 | 0.73 ± 0.27 a | 0.58 ± 0.02 a | 0.54 ± 0.01 a | 0.64 ± 0.11 a | 0.52 ± 0.02 a | 0.62 ± 0.05 a |
C18:1n9 (z) | 2.89 ± 0.21 c | 2.68 ± 0.12 c | 3.46 ± 0.18 b | 3.53 ± 0.32 ab | 3.34 ± 0.10 b | 3.94 ± 0.35 a |
C18:1n9 (e) | 0.32 ± 0.02 b | 0.19 ± 0.03 b | 0.34 ± 0.01 b | 0.78 ± 0.01 a | 0.61 ± 0.36 a | 0.27 ± 0.04 b |
C20:1n9 | 3.77 ± 1.71 c | 5.34 ± 0.24 bc | 5.59 ± 0.22 ab | 7.01 ± 1.20 a | 5.64 ± 0.47 ab | 5.10 ± 0.36 bc |
MUFA | 7.71 ± 1.67 c | 8.79 ± 0.07 bc | 9.94 ± 0.05 b | 11.96 ± 1.62 a | 10.11 ± 0.19 b | 9.92 ± 0.03 b |
C16:3n3 | 0.80 ± 0.01 cd | 0.71 ± 0.01 d | 0.91 ± 0.11 bc | 0.92 ± 0.13 bc | 1.08 ± 0.11 a | 1.01 ± 0.02 ab |
C18:2n6 | 7.39 ± 0.48 a | 7.40 ± 0.23 a | 6.82 ± 0.07 b | 6.86 ± 0.26 b | 6.94 ± 0.03 ab | 7.07 ± 0.33 ab |
C18:3n6 | 0.19 ± 0.07 c | 0.39 ± 0.01 b | 0.62 ± 0.08 a | 0.47 ± 0.11 b | 0.64 ± 0.04 a | ND |
C18:3n3 | 1.07 ± 0.08 ab | 1.01 ± 0.01 b | 1.23 ± 0.17 a | 1.11 ± 0.16 ab | 1.09 ± 0.01 ab | 1.13 ± 0.05 ab |
C20:2n6 | 1.96 ± 0.16 ab | 1.86 ± 0.05 ab | 2.00 ± 0.12 a | 1.77 ± 0.22 b | 1.84 ± 0.15 ab | 1.92 ± 0.05 ab |
C20:4n6(ARA) | 15.16 ± 0.42 a | 14.49 ± 0.33 b | 14.38 ± 0.08 b | 13.63 ± 0.76 b | 14.60 ± 0.11 b | 13.80 ± 0.40 b |
C20:5n3 (EPA) | 9.37 ± 0.30 a | 8.31 ± 0.05 b | 8.73 ± 0.25 ab | 7.47 ± 0.96 c | 8.27 ± 0.16 b | 8.69 ± 0.08 ab |
C22:2n6 | 3.53 ± 0.51 c | 7.63 ± 0.09 b | 7.19 ± 0.19 b | 10.71 ± 3.03 a | 7.26 ± 0.50 b | 7.63 ± 0.26 b |
C22:5n3 | 6.83 ± 0.35 a | 4.57 ± 0.38 bc | 4.22 ± 0.51 c | 5.36 ± 0.21 b | 4.57 ± 0.34 bc | 4.35 ± 0.96 c |
C22:6n3 (DHA) | 15.34 ± 0.49 ab | 14.76 ± 0.23 b | 15.85 ± 0.24 a | 15.24 ± 0.20 ab | 15.20 ± 0.30 ab | 14.83 ± 0.57 b |
PUFA | 61.66 ± 1.35 b | 61.14 ± 0.18 b | 61.96 ± 1.53 ab | 63.54 ± 0.57 a | 61.49 ± 0.57 b | 60.44 ± 0.64 b |
Σn-3 | 33.42 ± 0.24 a | 29.37 ± 0.12 c | 30.94 ± 1.29 b | 30.09 ± 1.26 bc | 30.21 ± 0.02 bc | 30.01 ± 0.51 bc |
Σn-6 | 28.24 ± 1.58 d | 31.77 ± 0.06 b | 31.02 ± 0.24 bc | 33.45 ± 0.68 a | 31.27 ± 0.56 bc | 30.42 ± 0.13 c |
Σn-3/Σn-6 | 1.19 ± 0.08 a | 0.92 ± 0.01 cd | 1.00 ± 0.03 b | 0.90 ± 0.06 d | 0.97 ± 0.02 bcd | 0.99 ± 0.01 bc |
0.0% | 1.0% | 1.5% | 2.0% | 2.5% | 3.0% | |
---|---|---|---|---|---|---|
Total cholesterol | 33.75 ± 2.60 a | 28.45 ± 2.00 b | 28.92 ± 2.00 b | 28.77 ± 1.51 b | 23.91 ± 3.14 e | 29.86 ± 2.00 ab |
Triglyceride | 602.15 ± 46.41 a | 635.10 ± 11.43 a | 648.81 ± 19.37 a | 613.73 ± 94.47 a | 570.73 ± 49.32 a | 655.33 ± 79.78 a |
LDL-C | 45.78 ± 1.37 a | 44.51 ± 8.90 a | 42.35 ± 1.71 a | 29.15 ± 2.04 b | 23.25 ± 2.29 b | 27.31 ± 7.39 b |
HDL-C | 5.24 ± 2.52 c | 8.61 ± 0.05 ab | 6.84 ± 2.36 abc | 9.44 ± 1.84 a | 5.68 ± 0.78 bc | 5.32 ± 1.44 c |
0.0% | 1.0% | 1.5% | 2.0% | 2.5% | 3.0% | |
---|---|---|---|---|---|---|
Intestine | ||||||
Pepsin activity (U/mg prot) | 6.88 ± 0.07 bc | 7.83 ± 0.06 b | 10.31 ± 0.13 a | 7.40 ± 0.05 b | 6.31 ± 0.05 c | 6.00 ± 1.16 c |
Amylase activity (U/mg prot) | 0.16 ± 0.01 d | 0.21 ± 0.01 b | 0.29 ± 0.02 a | 0.20 ± 0.01 b | 0.19 ± 0.01 bc | 0.17 ± 0.01 cd |
Lipase activity (U/g prot) | 1.90 ± 0.25 b | 2.10 ± 0.23 b | 1.89 ± 0.25 b | 2.69 ± 0.21 a | 1.90 ± 0.21 b | 1.48 ± 0.21 c |
Hepatopancreas | ||||||
Pepsin activity (U/mg prot) | 13.73 ± 1.92 bc | 12.15 ± 2.72 c | 15.75 ± 0.61 b | 22.31 ± 0.36 a | 13.36 ± 1.79 bc | 15.33 ± 2.87 bc |
Amylase activity (U/mg prot) | 0.03 ± 0.00 a | 0.01 ± 0.00 c | 0.02 ± 0.00 b | 0.02 ± 0.00 b | 0.02 ± 0.00 b | 0.02 ± 0.00 b |
Lipase activity (U/g prot) | 2.25 ± 0.07 f | 5.97 ± 0.05 e | 7.64 ± 0.12 c | 6.70 ± 0.34 d | 9.24 ± 0.20 b | 10.49 ± 0.21 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Du, X.; Yang, Y.; Wang, A.; Gu, Z.; Liu, C. Dietary Taurine Intake Affects the Growth Performance, Lipid Composition, and Antioxidant Defense of Juvenile Ivory Shell (Babylonia areolata). Animals 2023, 13, 2592. https://doi.org/10.3390/ani13162592
Sun Y, Du X, Yang Y, Wang A, Gu Z, Liu C. Dietary Taurine Intake Affects the Growth Performance, Lipid Composition, and Antioxidant Defense of Juvenile Ivory Shell (Babylonia areolata). Animals. 2023; 13(16):2592. https://doi.org/10.3390/ani13162592
Chicago/Turabian StyleSun, Yunchao, Xiangyu Du, Yi Yang, Aimin Wang, Zhifeng Gu, and Chunsheng Liu. 2023. "Dietary Taurine Intake Affects the Growth Performance, Lipid Composition, and Antioxidant Defense of Juvenile Ivory Shell (Babylonia areolata)" Animals 13, no. 16: 2592. https://doi.org/10.3390/ani13162592
APA StyleSun, Y., Du, X., Yang, Y., Wang, A., Gu, Z., & Liu, C. (2023). Dietary Taurine Intake Affects the Growth Performance, Lipid Composition, and Antioxidant Defense of Juvenile Ivory Shell (Babylonia areolata). Animals, 13(16), 2592. https://doi.org/10.3390/ani13162592