Towards an Evidence-Based Classification System for Para Dressage: Associations between Impairment and Performance Measures
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Data Collection
2.2.1. Performance Assessment
2.2.2. Impairment Assessments
2.3. Data Analysis
2.3.1. Data Analysis for Performance Measures
2.3.2. Data Analysis for Impairment Measures
2.4. Statistical Analysis
3. Results
4. Discussion
4.1. Impairment Measures
4.2. Performance Measures
4.3. The Relationship between Impairment and Performance
4.4. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPC. IPC Athlete Classification Code. Available online: https://www.paralympic.org/sites/default/files/document/170704160235698_2015_12_17%2BClassification%2BCode_FINAL2_0.pdf (accessed on 24 April 2023).
- Tweedy, S.M.; Vanlandewijck, Y.C. International Paralympic Committee position stand-background and scientific principles of classification in Paralympic sport. Br. J. Sports Med. 2011, 45, 259–269. [Google Scholar] [CrossRef]
- Mann, D.L.; Tweedy, S.M.; Jackson, R.C.; Vanlandewijck, Y.C. Classifying the evidence for evidence-based classification in Paralympic sport. J. Sports Sci. 2021, 39, 1–6. [Google Scholar] [CrossRef]
- FEI. Para Equestrian Classification Rules. Available online: https://inside.fei.org/sites/default/files/FEI_PE_Classification_Rules_2023_clean.pdf (accessed on 25 April 2023).
- Meaden, C.A. Assessing People with a Disability for Sport: The Profile System. Physiotherapy 1991, 77, 360–366. [Google Scholar] [CrossRef]
- FEI. Para Equestrian Manual for Classifiers. Available online: https://inside.fei.org/sites/default/files/FEI%20Manual%20for%20Classifiers%202020_update16.01.2023_clean.pdf (accessed on 25 April 2023).
- Hobbs, S.J.; St George, L.; Reed, J.; Stockley, R.; Thetford, C.; Sinclair, J.; Williams, J.; Nankervis, K.; Clayton, H.M. A scoping review of determinants of performance in dressage. PeerJ 2020, 8, e9022. [Google Scholar] [CrossRef]
- St George, L.; Thetford, C.; Clayton, H.M.; Hobbs, S.J. An exploration of stakeholder perceptions to inform the development of an evidence-based classification system in para dressage. J. Sports Sci. 2022, 40, 459–469. [Google Scholar] [CrossRef]
- Tweedy, S.M.; Mann, D.; Vanlandewijck, Y.C. Research needs for the development of evidence-based systems of classification for physical, vision, and intellectual impairments. In Handbook of Sports Medicine and Science: Training and Coaching the Paralympic Athlete; Vanlandewijck, Y.C., Thompson, W.R., Eds.; John Wiley & Sons: West Sussex, UK, 2016; pp. 122–149. [Google Scholar]
- Tweedy, S.M.; Beckman, E.M.; Connick, M.J. Paralympic classification: Conceptual basis, current methods, and research update. PM&R 2014, 6, 11–17. [Google Scholar]
- FEI. Briefing Note Research Strategy for the Scientific Review of the FEI Classification System for Para-Equestrian Sport. Available online: https://inside.fei.org/system/files/FEI%20Classification%20Research%20Strategy%20Brief_for%20website.pdf (accessed on 22 May 2023).
- Stockley, R.; St George, L.B.; Alexander, J.; Spencer, J.; Hobbs, S.J. A synthesis of potential impairment assessment tools for Para dressage classification. Eur. J. Adapt. Phys. Act. 2022, 15, 11. [Google Scholar] [CrossRef]
- Gorman, S.L.; Radtka, S.; Melnick, M.E.; Abrams, G.M.; Byl, N.N. Development and validation of the function in sitting test in adults with acute stroke. J. Neurol. Phys. Ther. 2010, 34, 150–160. [Google Scholar] [CrossRef]
- Verheyden, G.; Nieuwboer, A.; Mertin, J.; Preger, R.; Kiekens, C.; De Weerdt, W. The Trunk Impairment Scale: A new tool to measure motor impairment of the trunk after stroke. Clin. Rehabil. 2004, 18, 326–334. [Google Scholar] [CrossRef] [PubMed]
- Schmitz-Hübsch, T.; Du Montcel, S.T.; Baliko, L.; Berciano, J.; Boesch, S.; Depondt, C.; Giunti, P.; Globas, C.; Infante, J.; Kang, J.-S. Scale for the assessment and rating of ataxia: Development of a new clinical scale. Neurology 2006, 66, 1717–1720. [Google Scholar] [CrossRef] [PubMed]
- Ansari, N.N.; Naghdi, S.; Moammeri, H.; Jalaie, S. Ashworth Scales are unreliable for the assessment of muscle spasticity. Physiother. Theory Pract. 2006, 22, 119–125. [Google Scholar] [CrossRef]
- Van der Ploeg, R.; Fidler, V.; Oosterhuis, H. Hand-held myometry: Reference values. J. Neurol. Neurosurg. Psychiatry 1991, 54, 244–247. [Google Scholar] [CrossRef] [PubMed]
- Smith, R.; Connick, M.; Beckman, E.; Hogarth, L.; Nicholson, V. Establishing the reliability of instrumented trunk impairment assessment methods to enable evidence-based classification in Para swimming. J. Sports Sci. 2021, 39, 73–80. [Google Scholar] [PubMed]
- Roldan, A.; Henríquez, M.; Iturricastillo, A.; Castillo, D.; Yanci, J.; Reina, R. To What Degree Does Limb Spasticity Affect Motor Performance in Para-Footballers With Cerebral Palsy? Front. Physiol. 2022, 12, 807853. [Google Scholar]
- World Archery. Para Archery Classifiers Handbook. Available online: https://extranet.worldarchery.sport/documents/index.php/?doc=4347 (accessed on 25 May 2023).
- Union Cycliste Internationale. UCI Cycling Regulations. Part XVI: Para-Cycling. Available online: https://assets.ctfassets.net/761l7gh5x5an/2hSKKwLFWuz8ApFjJHZVWf/7db7a81648e893e51d98351853313a41/16-PAR-20230101-E.pdf (accessed on 25 May 2023).
- Deuel, N.R.; Park, J. The Gait Patterns of Olympic Dressage Horses. Int. J. Sport Biomech. 1990, 6, 198–226. [Google Scholar] [CrossRef]
- Hobbs, S.J.; Serra Braganca, F.M.; Rhodin, M.; Hernlund, E.; Peterson, M.; Clayton, H.M. Evaluating Overall Performance in High-Level Dressage Horse–Rider Combinations by Comparing Measurements from Inertial Sensors with General Impression Scores Awarded by Judges. Animals 2023, 13, 2496. [Google Scholar] [CrossRef] [PubMed]
- Baxter, J.; Hobbs, S.J.; Alexander, J.; St George, L.; Sinclair, J.; Chohan, A.; Clayton, H.M. Rider skill affects time and frequency domain postural variables when performing shoulder-in. J. Equine Vet. Sci. 2022, 109, 103805. [Google Scholar] [CrossRef]
- Wilkins, C.A.; Nankervis, K.; Protheroe, L.; Draper, S.B. Static pelvic posture is not related to dynamic pelvic tilt or competition level in dressage riders. Sports Biomech. 2020, 19, 1–13. [Google Scholar] [CrossRef]
- Pavão, S.L.; dos Santos, A.N.; Woollacott, M.H.; Rocha, N.A.C.F. Assessment of postural control in children with cerebral palsy: A review. Res. Dev. Disabil. 2013, 34, 1367–1375. [Google Scholar] [CrossRef]
- Serra-Añó, P.; Pellicer-Chenoll, M.; Garcia-Massó, X.; Brizuela, G.; García-Lucerga, C.; González, L. Sitting balance and limits of stability in persons with paraplegia. Spinal Cord 2013, 51, 267–272. [Google Scholar]
- Hendershot, B.D.; Nussbaum, M.A. Persons with lower-limb amputation have impaired trunk postural control while maintaining seated balance. Gait Posture 2013, 38, 438–442. [Google Scholar] [CrossRef] [PubMed]
- Smith, D.J. A framework for understanding the training process leading to elite performance. Sports Med. 2003, 33, 1103–1126. [Google Scholar] [CrossRef]
- Schils, S.J.; Greer, N.L.; Stoner, L.J.; Kobluk, C.N. Kinematic analysis of the equestrian—Walk, posting trot and sitting trot. Hum. Mov. Sci. 1993, 12, 693–712. [Google Scholar] [CrossRef]
- Wolframm, I.A.; Bosga, J.; Meulenbroek, R.G. Coordination dynamics in horse-rider dyads. Hum. Mov. Sci. 2013, 32, 157–170. [Google Scholar] [CrossRef] [PubMed]
- FEI. Para Dressage Rules. Available online: https://inside.fei.org/sites/default/files/FEI_Para%20Dressage_Rules_2023_update%2001.02.2023_clean.pdf (accessed on 24 April 2023).
- FEI. FEI Classification Research, Clinical Testing Procedures. Available online: https://inside.fei.org/fei/disc/para-dressage/classification/research (accessed on 21 June 2023).
- Robertson, D.G.E.; Dowling, J.J. Design and responses of Butterworth and critically damped digital filters. J. Electromyogr. Kinesiol. 2003, 13, 569–573. [Google Scholar] [CrossRef]
- Cappozzo, A.; Catani, F.; Della Croce, U.; Leardini, A. Position and orientation in space of bones during movement: Anatomical frame definition and determination. Clin. Biomech. 1995, 10, 171–178. [Google Scholar] [CrossRef]
- Peham, C.; Licka, T.; Kapaun, M.; Scheidl, M. A new method to quantify harmony of the horse-rider system in dressage. Sports Eng. 2001, 4, 95–101. [Google Scholar] [CrossRef]
- Egenvall, A.; Clayton, H.; Engell, M.T.; Roepstorff, C.; Engström, H.; Byström, A. Roll And Pitch of the Rider’s Pelvis During Horseback Riding at Walk on a Circle. J. Equine Vet. Sci. 2022, 109, 103798. [Google Scholar] [CrossRef]
- Heebner, N.R.; Akins, J.S.; Lephart, S.M.; Sell, T.C. Reliability and validity of an accelerometry based measure of static and dynamic postural stability in healthy and active individuals. Gait Posture 2015, 41, 535–539. [Google Scholar] [CrossRef]
- Graham, J.H.; Raz, S.; Hel-Or, H.; Nevo, E. Fluctuating asymmetry: Methods, theory, and applications. Symmetry 2010, 2, 466–540. [Google Scholar] [CrossRef]
- Field, A. Discovering Statistics Using SPSS, 3rd ed.; SAGE Publications: London, UK, 2009. [Google Scholar]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum Associates: Hillside, NJ, USA, 1988. [Google Scholar]
- Puce, L.; Pallecchi, I.; Marinelli, L.; May, M.; Mori, L.; Ruggeri, P.; Bove, M. The effect of kinesio taping on spasticity: A randomized, controlled, double-blind pilot study in para-swimmers. J. Sport Rehabil. 2020, 30, 414–421. [Google Scholar] [CrossRef]
- Winser, S.J.; Smith, C.M.; Hale, L.A.; Claydon, L.S.; Whitney, S.L. Clinical assessment of balance using BBS and SARAbal in cerebellar ataxia: Synthesis of findings of a psychometric property analysis. Hong Kong Physiother. J. 2018, 38, 53–61. [Google Scholar] [CrossRef]
- Palermo, A.E.; Cahalin, L.P.; Garcia, K.L.; Nash, M.S. Psychometric testing and clinical utility of a modified version of the function in sitting test for individuals with chronic spinal cord injury. Arch. Phys. Med. Rehabil. 2020, 101, 1961–1972. [Google Scholar] [CrossRef]
- Gorman, S.L.; Harro, C.C.; Platko, C.; Greenwald, C. Examining the function in sitting test for validity, responsiveness, and minimal clinically important difference in inpatient rehabilitation. Arch. Phys. Med. Rehabil. 2014, 95, 2304–2311. [Google Scholar] [CrossRef]
- Schmitz-Hübsch, T.; Fimmers, R.; Rakowicz, M.; Rola, R.; Zdzienicka, E.; Fancellu, R.; Mariotti, C.; Linnemann, C.; Schöls, L.; Timmann, D. Responsiveness of different rating instruments in spinocerebellar ataxia patients. Neurology 2010, 74, 678–684. [Google Scholar] [CrossRef]
- Harb, A.; Kishner, S. Modified Ashworth Scale; StatPearls: St. Petersburg, FL, USA, 2022. [Google Scholar]
- Meseguer-Henarejos, A.-B.; Sanchez-Meca, J.; López-Pina, J.-A.; Carles-Hernandez, R. Inter-and intra-rater reliability of the Modified Ashworth Scale: A systematic review and meta-analysis. Eur. J. Phys. Rehabil. Med. 2017, 54, 576–590. [Google Scholar] [CrossRef]
- Ansari, N.N.; Naghdi, S.; Mashayekhi, M.; Hasson, S.; Fakhari, Z.; Jalaie, S. Intra-rater reliability of the Modified Modified Ashworth Scale (MMAS) in the assessment of upper-limb muscle spasticity. NeuroRehabilitation 2012, 31, 215–222. [Google Scholar] [CrossRef]
- Verheyden, G.; Nieuwboer, A.; Feys, H.; Thijs, V.; Vaes, K.; De Weerdt, W. Discriminant ability of the Trunk Impairment Scale: A comparison between stroke patients and healthy individuals. Disabil. Rehabil. 2005, 27, 1023–1028. [Google Scholar] [CrossRef]
- Eken, M.M.; Lamberts, R.P.; Koschnick, S.; Du Toit, J.; Veerbeek, B.E.; Langerak, N.G. Lower Extremity Strength Profile in Ambulatory Adults with Cerebral Palsy and Spastic Diplegia: Norm Values and Reliability for Hand-Held Dynamometry. PM&R 2020, 12, 573–580. [Google Scholar]
- Morin, M.; Duchesne, E.; Bernier, J.; Blanchette, P.; Langlois, D.; Hébert, L.J. What is known about muscle strength reference values for adults measured by hand-held dynamometry: A scoping review. Arch. Rehabil. Res. Clin. Transl. 2022, 4, 100172. [Google Scholar] [CrossRef]
- Egenvall, A.; Byström, A.; Roepstorff, L.; Rhodin, M.; Weishaupt, M.A.; van Weeren, R.; Clayton, H.M. Withers vertical movement asymmetry in dressage horses walking in different head-neck positions with and without riders. J. Vet. Behav. 2020, 36, 72–83. [Google Scholar] [CrossRef]
- Münz, A.; Eckardt, F.; Witte, K. Horse-rider interaction in dressage riding. Hum. Mov. Sci. 2014, 33, 227–237. [Google Scholar] [CrossRef] [PubMed]
- Eckardt, F.; Witte, K. Kinematic Analysis of the Rider According to Different Skill Levels in Sitting Trot and Canter. J. Equine Vet. Sci. 2016, 39, 51–57. [Google Scholar] [CrossRef]
- Schöllhorn, W.; Peham, C.; Licka, T.; Scheidl, M. A pattern recognition approach for the quantification of horse and rider interactions. Equine Vet. J. 2006, 38, 400–405. [Google Scholar] [CrossRef]
- Olivier, A.; Faugloire, E.; Lejeune, L.; Biau, S.; Isableu, B. Head stability and head-trunk coordination in horseback riders: The contribution of visual information according to expertise. Front. Hum. Neurosci. 2017, 11, 11. [Google Scholar] [CrossRef]
- Lagarde, J.; Peham, C.; Licka, T.; Kelso, J.S. Coordination dynamics of the horse-rider system. J. Mot. Behav. 2005, 37, 418–424. [Google Scholar] [CrossRef]
- Baillet, H.; Thouvarecq, R.; Vérin, E.; Tourny, C.; Benguigui, N.; Komar, J.; Leroy, D. Human energy expenditure and postural coordination on the mechanical horse. J. Mot. Behav. 2017, 49, 441–457. [Google Scholar] [CrossRef]
- Barbado, D.; Barbado, L.C.; Elvira, J.L.; van Dieën, J.H.; Vera-Garcia, F.J. Sports-related testing protocols are required to reveal trunk stability adaptations in high-level athletes. Gait Posture 2016, 49, 90–96. [Google Scholar] [CrossRef]
- Blokhuis, M.Z.; Aronsson, A.; Hartmann, E.; Van Reenen, C.G.; Keeling, L. Assessing the rider’s seat and horse’s behavior: Difficulties and perspectives. J. Appl. Anim. Welf. Sci. 2008, 11, 191–203. [Google Scholar] [CrossRef]
- Byström, A.; Rhodin, M.; Von Peinen, K.; Weishaupt, M.A.; Roepstorff, L. Kinematics of saddle and rider in high-level dressage horses performing collected walk on a treadmill. Equine Vet. J. 2010, 42, 340–345. [Google Scholar] [CrossRef]
- Clayton, H.M.; Hobbs, S.-J. The role of biomechanical analysis of horse and rider in equitation science. Appl. Anim. Behav. Sci. 2017, 190, 123–132. [Google Scholar] [CrossRef]
- Bogisch, S.; Geser-von Peinen, K.; Wiestner, T.; Roepstorff, L.; Weishaupt, M.A. Influence of velocity on horse and rider movement and resulting saddle forces at walk and trot. Comp. Exerc. Physiol. 2014, 10, 23–32. [Google Scholar] [CrossRef]
- von Peinen, K.; Wiestner, T.; Bogisch, S.; Roepstorff, L.; Van Weeren, P.; Weishaupt, M.A. Relationship between the forces acting on the horse’s back and the movements of rider and horse while walking on a treadmill. Equine Vet. J. 2009, 41, 285–291. [Google Scholar] [CrossRef] [PubMed]
- Barbado, D.; Gomez-Illan, R.; Moreno-Navarro, P.; Valero-Conesa, G.; Reina, R.; Vera-Garcia, F.J. Postural control quantification in minimally and moderately impaired persons with multiple sclerosis: The reliability of a posturographic test and its relationships with functional ability. J. Sport Health Sci. 2020, 9, 677–684. [Google Scholar] [CrossRef]
- International Canoe Federation. ICF Paracanoe Va’a Classifiers’ Manual. Available online: https://www.canoeicf.com/sites/default/files/icf_paracanoe_-_vaa_-_classification_manual_-_2018.pdf (accessed on 25 May 2023).
- International Canoe Federation. ICF Paracanoe Kayak Classifiers’ Manual. Available online: https://www.canoeicf.com/sites/default/files/icf_paracanoe-kayak_classification_manual_19-08-2018.pdf (accessed on 25 May 2023).
- International Ski and Snowboard Federation. FIS Para Alpine Skiing Classification Rules and Regulations. Available online: https://assets.fis-ski.com/image/upload/v1664952422/fis-prod/assets/2022_10_03_Classification_Rules_and_Regulations_Para_Alpine_Clean.pdf (accessed on 25 May 2023).
- International Ski and Snowboard Federation. FIS Para Nordic Classification Rules and Regulations. Available online: https://assets.fis-ski.com/image/upload/v1667219680/fis-prod/assets/2022_10_31_Classification_Rules_and_Regulations_Para_Nordic_Clean.pdf (accessed on 25 May 2023).
- Cornejo, M.I.; Roldan, A.; Reina, R. What Is the Relationship between Trunk Control Function and Arm Coordination in Adults with Severe-to-Moderate Quadriplegic Cerebral Palsy? Int. J. Environ. Res. Public Health 2022, 20, 141. [Google Scholar] [CrossRef] [PubMed]
- Terada, K.; Clayton, H.; Kato, K. Stabilization of wrist position during horseback riding at trot. Equine Comp. Exerc. Physiol. 2006, 3, 179–184. [Google Scholar] [CrossRef]
- König Von Borstel, U.; Glißman, C. Alternatives to Conventional Evaluation of Rideability in Horse Performance Tests: Suitability of Rein Tension and Behavioural Parameters. PLoS ONE 2014, 9, e87285. [Google Scholar] [CrossRef]
- Christensen, J.W.; Munk, R.; Hawson, L.; Palme, R.; Larsen, T.; Egenvall, A.; von Borstel, U.U.K.; Rørvang, M.V. Rider effects on horses’ conflict behaviour, rein tension, physiological measures and rideability scores. Appl. Anim. Behav. Sci. 2021, 234, 105184. [Google Scholar] [CrossRef]
- van der Linden, M.L.; Jahed, S.; Tennant, N.; Verheul, M.H. The influence of lower limb impairments on RaceRunning performance in athletes with hypertonia, ataxia or athetosis. Gait Posture 2018, 61, 362–367. [Google Scholar] [CrossRef]
- Pugh, T.J.; Bolin, D. Overuse injuries in equestrian athletes. Curr. Sports Med. Rep. 2004, 3, 297–303. [Google Scholar] [CrossRef]
- Cejudo, A.; Ginés-Díaz, A.; Rodríguez-Ferrán, O.; Santonja-Medina, F.; Sainz de Baranda, P. Trunk lateral flexor endurance and body fat: Predictive risk factors for low back pain in child Equestrian athletes. Children 2020, 7, 172. [Google Scholar] [CrossRef]
- Hobbs, S.J.; Baxter, J.; Broom, L.; Rossell, L.-A.; Sinclair, J.; Clayton, H.M. Posture, flexibility and grip strength in horse riders. J. Hum. Kinet. 2014, 42, 113–125. [Google Scholar] [CrossRef]
- Karthikbabu, S.; Verheyden, G. Relationship between trunk control, core muscle strength and balance confidence in community-dwelling patients with chronic stroke. Top. Stroke Rehabil. 2021, 28, 88–95. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.-H.; Park, S.-D. The effects of core stability strength exercise on muscle activity and trunk impairment scale in stroke patients. J. Exerc. Rehabil. 2013, 9, 362. [Google Scholar] [CrossRef]
- Terada, K. Comparison of Head Movement and EMG Activity of Muscles between Advanced and Novice Horseback Riders at Different Gaits. J. Equine Sci. 2000, 11, 83–90. [Google Scholar] [CrossRef]
- Kim, M.J.; Kim, T.; Oh, S.; Yoon, B. Equine exercise in younger and older adults: Simulated versus real horseback riding. Percept. Mot. Ski. 2018, 125, 93–108. [Google Scholar] [CrossRef]
- Noh, H.-J.; Kim, C.-M.; Park, J.-W. A study on muscle activity based on the ankle posture for effective exercise with indoor horse riding machine. J. Phys. Ther. Sci. 2019, 31, 170–174. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.; Jung, J.; Shin, H.; Lee, G. Analysis of trunk muscles activity during horseback riding machine exercise in children with spastic cerebral palsy. Medicine 2022, 101, e31915. [Google Scholar] [CrossRef]
- Pantall, A.; Barton, S.; Collins, P. Surface electromyography of abdominal and spinal muscles in adult horseriders during rising trot. In Proceedings of the ISBS 27 International Symposium on Biomechanics in Sports, Limerick, Ireland, 17–21 August 2009. [Google Scholar]
- Elmeua González, M.; Šarabon, N. Muscle modes of the equestrian rider at walk, rising trot and canter. PLoS ONE 2020, 15, e0237727. [Google Scholar] [CrossRef]
- Clayton, H.M.; Kaiser, L.J.; de Pue, B.; Kaiser, L. Center-of-pressure movements during equine-assisted activities. Am. J. Occup. Ther. 2011, 65, 211–216. [Google Scholar] [CrossRef]
- Van Drunen, P.; Koumans, Y.; van der Helm, F.; Van Dieën, J.; Happee, R. Modulation of intrinsic and reflexive contributions to low-back stabilization due to vision, task instruction, and perturbation bandwidth. Exp. Brain Res. 2015, 233, 735–749. [Google Scholar] [CrossRef] [PubMed]
- Maaswinkel, E.; Veeger, H.; Dieen, J.H. Interactions of touch feedback with muscle vibration and galvanic vestibular stimulation in the control of trunk posture. Gait Posture 2014, 39, 745–749. [Google Scholar] [CrossRef] [PubMed]
- Alexander, J.; Hobbs, S.-J.; May, K.; Northrop, A.; Brigden, C.; Selfe, J. Postural characteristics of female dressage riders using 3D motion analysis and the effects of an athletic taping technique: A randomised control trial. Phys. Ther. Sport 2015, 16, 154–161. [Google Scholar] [CrossRef] [PubMed]
- Bocian, K.; Strzelec, K.; Dziubinska, P. Results of para-dressage competition with regard to different levels of difficulties. Ann. UMCS Zootech. 2011, 29, 1–10. [Google Scholar] [CrossRef]
- Sung, B.; Jeon, S.; Lim, S.; Lee, K.; Jee, H. Equestrian expertise affecting physical fitness, body compositions, lactate, heart rate and calorie consumption of elite horse riding players. J. Exerc. Rehabil. 2015, 11, 175–181. [Google Scholar] [CrossRef]
- Yu, C.H.; Kim, U.R.; Kwon, T.K. Fundamental study of basal physical fitness and activities of daily living for the aged in relation to indoor horse riding exercise. Bio-Med. Mater. Eng. 2014, 24, 2407–2415. [Google Scholar] [CrossRef] [PubMed]
n | |||
Para athletes (n = 21) | Gender | Male | 1 |
Female | 20 | ||
Age: Mean (SD) years | 41.1 (13.2) | ||
Impairment | Impaired muscle power | 8 | |
Ataxia | 5 | ||
Athetosis | 2 | ||
Hypertonia | 1 | ||
Dystonia | 1 | ||
Impaired Range of motion (ROM) | 2 | ||
Visual Impairment | 2 | ||
Current Grade (Sports Class) | 1 | 6 | |
2 | 3 | ||
3 | 4 | ||
4 | 6 | ||
5 | 2 | ||
Classification Status | Confirmed (C) | 16 | |
Review (R) | 5 | ||
Competition Information | Number of International Competitions (1 January 2018 to 31 December 2022) | 177 | |
Placings at Major Competitions | 81 | ||
Number of Medals | 59 | ||
Non-disabled athletes (n = 11) | Gender | Male | 2 |
Female | 9 | ||
Age: Mean (SD) years | 35.8 (13.7) | ||
Competition Level | Prix St. Georges | 6 | |
Grand Prix | 5 |
Trunk Handheld Dynamometry (Peak Values) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Group | n | FIST | SARA | TIS | R-MAS | Flexion | Extension | Rotation to Left | Rotation to Right | Left Lateral Flexion | Right Lateral Flexion |
Para | 21 | 49.00 (9.07) | 4.74 (3.60) | 13.43 (7.10) | 4.95 (6.52) | 60.8 (31.6) | 75.4 (42.0) | 54.1 (26.0) | 51.9 (26.8) | 66.3 (31.1) | 61.8 (27.4) |
%COV | 19 | 24 | 53 | 34 | 52 | 56 | 48 | 52 | 47 | 44 | |
Non-disabled | 11 | 56.0 (0.0) | 0.0 (0.0) | 20.27 (1.42) | 0.18 (0.60) | 105.6 (21.5) | 141.8 (42.6) | 90.8 (20.0) | 87.1 (20.1) | 121.2 (30.1) | 118.6 (23.7) |
%COV | 0 | 0 | 7 | 3 | 20 | 30 | 22 | 23 | 25 | 20 | |
p-value | 0.017 | <0.001 | 0.004 | 0.023 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Hip (Peak Values) | Shoulder (Peak Values) | Elbow (Peak Values) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Group | n | Add Right | Add Left | Ex Rot Right | Ex Rot Left | Extn Right | Extn Left | Ex Rot Right | Ex Rot Left | Flexion Right | Flexion Left | Extn Right | Extn Left |
Para | 21 | 54.4 (53.8) | 48.7 (48.7) | 31.7 (29.0) | 32.3 (28.1) | 59.9 (38.1) | 61.4 (34.4) | 43.5 (20.4) | 49.6 (24.7) | 52.7 (29.7) | 53.0 (34.0) | 52.1 (33.3) | 58.0 (36.8) |
%COV | 99 | 100 | 91 | 87 | 64 | 56 | 47 | 50 | 56 | 64 | 64 | 63 | |
Non-disabled | 11 | 119.5 (30.9) | 117.5 (33.6) | 76.8 (18.1) | 79.1 (24.9) | 113.3 (29.2) | 110.1 (30.8) | 85.3 (23.4) | 88.7 (20.2) | 94.7 (25.7) | 101.2 (28.1) | 90.7 (22.4) | 101.6 (25.9) |
%COV | 26 | 29 | 24 | 31 | 26 | 28 | 27 | 23 | 27 | 28 | 25 | 25 | |
p-value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.002 | 0.002 |
Group | n | SPowersf Walk | SRatiosf Walk | SPowersf Trot | SRatiosf Trot | Head Stability | Sym Trunk | SVector Trunk | Sym Pelvis | SVector Pelvis | DVar Walk | DVar Trot |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Para | 21 | 1.27 (0.12) | 1.38 (0.09) | 0.22 (0.18) | 3.93 (4.34) | −13.08 (22.23) | 1.88 (0.98) | 0.17 (0.15) | 1.29 (0.73) | 0.19 (0.04) | 13.18 (8.23) | 7.31 (9.64) |
%COV | 9 | 6 | 82 | 110 | 170 | 52 | 88 | 57 | 21 | 62 | 132 | |
Non-disabled | 11 | 1.06 (0.41) | 1.36 (0.05) | 0.20 (0.05) | 6.42 (11.61) | 3.14 (14.10) | 0.91 (0.37) | 0.09 (0.05) | 1.02 (0.20) | 0.18 (0.03) | 8.68 (2.86) | 5.76 (2.01) |
%COV | 39 | 4 | 25 | 181 | 449 | 41 | 56 | 20 | 17 | 33 | 35 | |
p-value | 0.027 | 0.401 | 0.529 | 0.920 | 0.084 | <0.001 | 0.071 | 0.259 | 0.636 | 0.116 | 0.577 |
Component | |||
---|---|---|---|
PC1 Strength | PC2 Sitting Function | PC3 Tone | |
FIST | 0.221 | 0.860 | 0.089 |
SARA | 0.404 | −0.799 | 0.247 |
TIS | 0.423 | 0.720 | 0.007 |
R-MAS | −0.194 | 0.024 | 0.852 |
HHD Trunk Flexion | 0.890 | 0.060 | 0.181 |
HHD Trunk Rotation toward left | 0.799 | 0.468 | −0.081 |
HHD Trunk Rotation toward right | 0.800 | 0.494 | 0.111 |
HHD Right Hip External Rotation (seated) | 0.417 | 0.639 | 0.456 |
HHD Left Hip External Rotation (seated) | 0.392 | 0.660 | 0.412 |
HHD Right Shoulder Extension | 0.943 | 0.019 | −0.163 |
HHD Left Shoulder Extension | 0.916 | 0.216 | −0.153 |
Performance Measure | Group | Regression Model and Predictor(s) | Standardized Beta Coefficients | R2 | Significance | Durbin–Watson Statistic |
---|---|---|---|---|---|---|
SPowersf Walk | Para | TIS | 0.489 | 0.239 | 0.025 | 0.999 |
ND | NP | |||||
SRatiosf Walk | Para | NP | ||||
ND | NP | |||||
SPowersf Trot | Para | NP | ||||
ND | NP | |||||
SRatiosf Trot | Para | NP | ||||
ND | NP | |||||
Head Stability | Para | SARA | −0.481 | 0.232 | 0.032 | 1.841 |
ND | NP | |||||
Sym Trunk | Para | SARA | 0.436 | 0.190 | 0.048 | 1.875 |
ND | TIS | −0.636 | 0.404 | 0.035 | 1.568 | |
SVector Trunk | Para | FIST | −0.511 | 0.261 | 0.018 | 2.064 |
ND | NP | |||||
Sym Pelvis | Para | R-MAS | 0.545 | 0.297 | 0.011 | 2.252 |
ND | TIS | −0.630 | 0.397 | 0.038 | 1.775 | |
SVector Pelvis | Para | FIST | −0.590 | 0.348 | 0.005 | 1.272 |
ND | NP | |||||
DVar Walk | Para | NP | ||||
ND | TrRot L | −0.671 | 0.450 | 0.024 | 2.317 | |
DVar Trot | Para | NP | ||||
ND | HipExRot R | −0.684 | 0.468 | 0.020 | 2.151 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hobbs, S.J.; Alexander, J.; Wilkins, C.; St. George, L.; Nankervis, K.; Sinclair, J.; Penhorwood, G.; Williams, J.; Clayton, H.M. Towards an Evidence-Based Classification System for Para Dressage: Associations between Impairment and Performance Measures. Animals 2023, 13, 2785. https://doi.org/10.3390/ani13172785
Hobbs SJ, Alexander J, Wilkins C, St. George L, Nankervis K, Sinclair J, Penhorwood G, Williams J, Clayton HM. Towards an Evidence-Based Classification System for Para Dressage: Associations between Impairment and Performance Measures. Animals. 2023; 13(17):2785. https://doi.org/10.3390/ani13172785
Chicago/Turabian StyleHobbs, Sarah Jane, Jill Alexander, Celeste Wilkins, Lindsay St. George, Kathryn Nankervis, Jonathan Sinclair, Gemma Penhorwood, Jane Williams, and Hilary M. Clayton. 2023. "Towards an Evidence-Based Classification System for Para Dressage: Associations between Impairment and Performance Measures" Animals 13, no. 17: 2785. https://doi.org/10.3390/ani13172785
APA StyleHobbs, S. J., Alexander, J., Wilkins, C., St. George, L., Nankervis, K., Sinclair, J., Penhorwood, G., Williams, J., & Clayton, H. M. (2023). Towards an Evidence-Based Classification System for Para Dressage: Associations between Impairment and Performance Measures. Animals, 13(17), 2785. https://doi.org/10.3390/ani13172785