The Role of Reproduction and Genetic Variation in Polish White-Backed Cows in the Breed Restoration Process
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Genetic Analysis
2.2. Analysis of Reproduction
2.3. Statistical Analysis
3. Results
3.1. Results of Genetic Variation Analysis
3.2. Results of Reproduction Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sponenberg, D.P.; Beranger, J.; Martin, A.M.; Couch, C.R. Conservation of rare and local breeds of livestock. Rev. Sci. Technol. Off. Int. Epizoot. 2018, 37, 259–267. [Google Scholar] [CrossRef]
- Rahal, O.; Aissaoui, C.; Ata, N.; Yilmaz, O.; Cemal, I.; Ameur Ameur, A.; Gaouar, S.B.S. Genetic characterization of four Algerian cattle breeds using microsatellite markers. Anim. Biotechnol. 2021, 32, 699–707. [Google Scholar] [CrossRef]
- Suprovych, T.M.; Suprovych, M.P.; Mokhnachova, N.B.; Biriukova, O.D.; Strojanovska, L.V.; Chepurna, V.A. Genetic variability and biodiversity of Ukrainian Gray cattle by the BoLA-DRB3 gene. Regul. Mech. Biosyst. 2021, 12, 33–41. [Google Scholar] [CrossRef]
- Bjelland, D.W.; Weigel, K.A.; Vukasinovic, N.; Nkrumah, J.D. Evaluation of inbreeding depression in Holstein cattle using whole-genome SNP markers and alternative measures of genomic inbreeding. J. Dairy Sci. 2013, 96, 4697–4706. [Google Scholar] [CrossRef] [PubMed]
- Cassell, B.G. Effect of Inbreeding on Lifetime Performance of Dairy Cows. Adv. Dairy Technol. 1999, 11, 13–23. [Google Scholar]
- Hofmanová, B.; Vostrý, L.; Vostrá-Vydrová, H.; Dokoupilová, A.; Majzlík, I. Estimation of genetic and non-genetic effects influencing coat colour in black horses. Czech J. Anim. Sci. 2019, 64, 41–48. [Google Scholar] [CrossRef]
- Domestic Animal Diversity Information System (DAD-IS). Available online: http://www.fao.org/dad-is/en/ (accessed on 10 June 2023).
- Gandini, G.; Avon, L.; Bohte-Wilhelmus, D.; Bay, E.; Colinet, F.G.; Choroszy, Z.; Díaz, C.; Duclos, D.; Fernández, J.; Gengler, N.; et al. Motives and values in farming local cattle breeds in Europe: A survey on 15 breeds. Anim. Genet. Resour. 2010, 47, 45–58. [Google Scholar] [CrossRef]
- Bruford, M.W.; Bradley, D.G.; Luikart, G. DNA markers reveal the complexity of livestock domestication. Nat. Rev. Genet. 2003, 4, 900–910. [Google Scholar] [CrossRef]
- Toro, M.A.; Fernández, J.; Caballero, A. Molecular characterization of breeds and its use in conservation. Livest. Sci. 2009, 120, 174–195. [Google Scholar] [CrossRef]
- Barłowska, J.; Szwajkowska, M.; Litwińczuk, Z.; Król, J. Nutritional value and technological suitability of milk from various animal species used for dairy production. Compr. Rev. Food Sci. Food Saf. 2011, 10, 291–302. [Google Scholar] [CrossRef]
- Litwińczuk, Z.; Barłowska, J.; Chabuz, W.; Brodziak, A. Nutritional value and technological suitability of milk from cows of three Polish breeds included in the genetic resources conservation programme. Ann. Anim. Sci. 2012, 12, 423–432. [Google Scholar] [CrossRef]
- Litwińczuk, Z.; Florek, M.; Domaradzki, P.; Żółkiewski, P. Physicochemical properties of meat from young bulls of 3 native breeds: Polish red, white-backed, and Polish black-and-white, as well as of simmental and Polish holstein-fresian breeds. Food. Sci. Technol. Qual. 2014, 21, 53–62. (In Polish) [Google Scholar] [CrossRef]
- Litwińczuk, Z.; Żółkiewski, P.; Florek, M.; Chabuz, W.; Domaradzki, P. Semi-intensive fattening suitability and slaughter value of young bulls of three Polish native breeds in comparison with Polish Holstein-Friesian and Simmental. Ann. Anim. Sci. 2014, 14, 453–460. [Google Scholar] [CrossRef]
- Rysiak, A.; Chabuz, W.; Sawicka-Zugaj, W.; Jan Zdulski Grzywaczewski, G.; Kulik, M. Comparative impacts of grazing and mowing on the floristics of grasslands in the buffer zone of Polesie National Park, eastern Poland. Glob. Ecol. Conserv. 2021, 27, e01612. [Google Scholar] [CrossRef]
- Bennett, P. Demystified … Microsatellites. J. Clin. Pathol. Mol. Pathol. 2000, 53, 177–183. [Google Scholar] [CrossRef] [PubMed]
- Agung, P.P.; Saputra, F.; Zein, M.S.A.; Wulandari, A.S.; Putra, W.P.B.; Said, S.; Jakaria, J. Genetic diversity of Indonesian cattle breeds based on microsatellite markers. Asian-Australas. J. Anim. Sci. 2019, 32, 467. [Google Scholar] [CrossRef] [PubMed]
- Karsli, T.; Demir, E.; Fidan, H.G.; Aslan, M.; Karsli, B.A.; Arik, I.Z.; Semerci, E.S.; Karabag, K.; Balcioglu, M.S. Determination of genetic variability, population structure and genetic differentiation of indigenous Turkish goat breeds based on SSR loci. Small Rumin. Res. 2020, 190, 106147. [Google Scholar] [CrossRef]
- Yu, G.C.; Tang, Q.Z.; Long, K.R.; Che, T.D.; Li, M.Z.; Shuai, S.R. Effectiveness of microsatellite and single nucleotide polymorphism markers for parentage analysis in European domestic pigs. Genet. Mol. Res. 2015, 14, 1362–1370. [Google Scholar] [CrossRef]
- Abraham, F. An Overview on Functional Causes of Infertility in cows. JFIV Reprod. Med. Genet. 2017, 5, 203. [Google Scholar] [CrossRef]
- Riecka, Z.; Candrák, J.; Strapáková, E. Factors Affecting Holstein Cattle Fertility Traits in the Slovak Republic. Anim. Sci. Biotechnol. 2010, 43, 263–267. [Google Scholar]
- Berry, D.P.; Friggens, N.C.; Lucy, M.; Roche, J.R. Milk Production and Fertility in Cattle. Annu. Rev. Anim. Biosci. 2016, 4, 269–290. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Mandal, A.; Gupta, A.K.; Karunakaran, M.; Das, S.K.; Dutta, T.K. Genetic analysis of fertility traits in Jersey crossbred cows. Indian J. Anim. Res. 2018, 52, 1113–1118. [Google Scholar] [CrossRef]
- Gonzalez-Recio, O.; Alenda, R.; Chang, Y.M.; Weigel, K.A.; Gianola, D. Selection for female fertility using censored fertility traits and investigation of the relationship with milk production. J. Dairy Sci. 2006, 89, 4438–4444. [Google Scholar] [CrossRef] [PubMed]
- Peakall, R.; Smouse, P.E. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research–an update. Bioinformatics 2012, 28, 2537–2539. [Google Scholar] [CrossRef] [PubMed]
- Marshall, T.C.; Slate, J.; Kruuk, L.E.B.; Pemberton, J.M. Statistical confidence for likelihood-based paternity inference in natural populations. Mol. Ecol. 1998, 7, 639–655. [Google Scholar] [CrossRef] [PubMed]
- Rousset, F. GENEPOP’007: A complete re-implementation of the genepop software for Windows and Linux. Mol. Ecol. Resour. 2008, 8, 103–106. [Google Scholar] [CrossRef] [PubMed]
- Wright, S. Evolution and the Genetics of Populations: Variability within and among Natural Populations; University of Chicago Press: Chicago, IL, USA, 1978; Volume 4. [Google Scholar]
- Brasil, B.S.A.F.; Coelho, E.G.A.; Drummond, M.G.; Oliveira, D.A.A. Genetic diversity and differentiation of exotic and American commercial cattle breeds raised in Brazil. Genet. Mol. Res. 2013, 12, 5516–5526. [Google Scholar] [CrossRef]
- Maretto, F.; Ramljak, J.; Sbarra, F.; Penasa, M.; Mantovani, R.; Ivanković, A.; Bittante, G. Genetic relationships among Italian and Croatian Podolian cattle breeds assessed by microsatellite markers. Livest. Sci. 2012, 150, 256–264. [Google Scholar] [CrossRef]
- Ladyka, V.I.; Khmelnychyi, L.M.; Lyashenko, Y.V.; Kulibaba, R.O. Analysis of the genetic structure of a population of Lebedyn cattle by microsatellite markers. Regul. Mech. Biosyst. 2019, 10, 45–49. [Google Scholar] [CrossRef]
- Macedo, F.L.; Christensen, O.F.; Legarra, A. Selection and drift reduce genetic variation for milk yield in Manech Tête Rousse dairy sheep. JDS Commun. 2021, 2, 31–34. [Google Scholar] [CrossRef]
- Chen, B.; Cole, J.W.; Grond-Ginsbach, C. Departure from Hardy Weinberg Equilibrium and Genotyping Error. Front. Genet. 2017, 8, 167. [Google Scholar] [CrossRef] [PubMed]
- Ndiaye, N.P.; Sow, A.; Dayo, G.K.; Ndiaye, S.; Sawadogo, G.J.; Sembène, M. Genetic diversity and phylogenetic relationships in local cattle breeds of Senegal based on autosomal microsatellite markers. Vet. World 2015, 8, 994–1005. [Google Scholar] [CrossRef] [PubMed]
- Lapickis, R.; Griciuvienė, L.; Aleksandravičienė, A.; Lipatova, I.; Paulauskas, A. Genetic variability of dairy cattle breeds in Lithuania. Biologija 2021, 67, 188–195. [Google Scholar] [CrossRef]
- Heryani, L.G.S.S.; Wandia, I.N.; Suarna, I.W.; Puja, I.K.; Susari, N.N.W.; Agustina, K.K. Short communication: Molecular characteristic of taro white cattle based on DNA microsatellite markers. Biodiversitas 2019, 20, 671–675. [Google Scholar] [CrossRef]
- Alsalh, M.A.; Bakai, A.; Feyzullaev, F.R.; Bakai, F.R.; Lepekhina, T.V.; Mkrtchyan, G.; Krovikova, A.; Mekhtieva, K.; Alyaseen, O.A. Comparative Characteristics of the Genetic Structure of the Syrian Cattle Breed Compared to Holstein and Aberdeen-Angus Breeds. J. Adv. Vet. Anim. Res. 2021, 8, 339–345. [Google Scholar] [CrossRef]
- Hedrick, P.W.; Kalinowski, S.T. Inbreeding Depression in Conservation Biology. Annu. Rev. Ecol. Evol. Syst. 2000, 31, 139–162. [Google Scholar] [CrossRef]
- Cecchi, F.; Ciampolini, R.; Castellana, E.; Ciani, E. Genetic diversity within and among endangered local cattle breeds from Tuscany (Italy). Large Anim. Rev. 2012, 18, 79–85. [Google Scholar]
- Kramarenko, A.S.; Gladyr, E.A.; Kramarenko, S.S.; Pidpala, T.V.; Strikha, L.A.; Zinovieva, N.A. Genetic diversity and bottleneck analysis of the Red Steppe cattle based on microsatellite markers. Ukr. J. Ecol. 2018, 8, 12–17. [Google Scholar]
- Sawicka-Zugaj, W.; Chabuz, W.; Litwińczuk, Z.; Kasprzak-Filipek, K. Evaluation of reproductive performance and genetic variation in bulls of the Polish White-Backed breed. Reprod. Domest. Anim. 2018, 53, 157–162. [Google Scholar] [CrossRef]
- Brickell, J.S.; Bourne, N.; McGowan, M.M.; Wathes, D.C. Effect of growth and development during the rearing period on the subsequent fertility of nulliparous Holstein-Friesian heifers. Theriogenology 2009, 72, 408–416. [Google Scholar] [CrossRef]
- Gandini, G.; Maltecca, C.; Pizzi, F.; Bagnato, A.; Rizzi, R. Comparing local and commercial breeds on functional traits and profitability: The case of Reggiana dairy cattle. J. Dairy Sci. 2007, 90, 2004–2011. [Google Scholar] [CrossRef] [PubMed]
- Muller, C.J.C.; Potgieter, J.P.; Cloete, S.W.P. The Fertility of South African Holstein and Jersey Heifers. In Proceedings of the 10th World Congress on Genetics Applied to Livestock Production, Vancouver, BC, Canada, 17–22 August 2014; pp. 10–13. [Google Scholar]
- Brzáková, M.; Zavadilová, L.; Pribyl, J.; Pešek, P.; Kašná, E.; Kranjčevičová, A. Estimation of genetic parameters for female fertility traits in the czech holstein population. Czech J. Anim. Sci. 2019, 64, 199–206. [Google Scholar] [CrossRef]
- Găvan, C.; Dragan, F.; Motorga, V. Age of First Calving and Subsequent Fertility and Survival in Holstein Friesian Cattle. Sci. Pap. Anim. Sci. Biotechnol. 2014, 47, 37–40. [Google Scholar]
- Bieber, A.; Wallenbeck, A.; Leiber, F.; Fuerst-Waltl, B.; Winckler, C.; Gullstrand, P.; Walczak, J.; Wójcik, P.; Neff, A.S. Production level, fertility, health traits, and longevity in local and commercial dairy breeds under organic production conditions in Austria, Switzerland, Poland, and Sweden. J. Dairy Sci. 2019, 102, 5330–5341. [Google Scholar] [CrossRef] [PubMed]
- Polish Federation of Cattle Breeders and Dairy Farmers. Cattle Assessment and Breeding, Data for 2021. PFHiPM. 2022. (In Polish). Available online: https://pfhb.pl/fileadmin/user_upload/OCENA/publikacje/publikacje_2022/wyniki_oceny/Wyniki_oceny_za_rok_2021_PFHBiPM_Polska.pdf (accessed on 10 June 2023).
Locus | G1 | G2 | G3 | Ha | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
N = 178 | N = 86 | N = 108 | |||||||||||||||||
Na | Ne | HWE | Ho | He | Fis | Na | Ne | HWE | Ho | He | Fis | Na | Ne | HWE | Ho | He | Fis | ||
BM1818 | 10 | 5.028 | *** | 0.697 | 0.806 | 0.130 | 10 | 5.974 | * | 0.651 | 0.842 | 0.218 | 7 | 3.050 | ** | 0.667 | 0.678 | 0.008 | 0.769 |
BM1824 | 10 | 6.477 | *** | 0.685 | 0.850 | 0.189 | 8 | 6.951 | *** | 0.744 | 0.866 | 0.131 | 6 | 3.812 | *** | 0.630 | 0.745 | 0.146 | 0.813 |
BM2113 | 18 | 10.561 | *** | 0.764 | 0.910 | 0.156 | 14 | 10.215 | ** | 0.767 | 0.913 | 0.149 | 10 | 6.037 | *** | 0.926 | 0.842 | −0.110 | 0.881 |
ETH3 | 10 | 6.171 | *** | 0.742 | 0.843 | 0.115 | 10 | 4.859 | *** | 0.651 | 0.804 | 0.180 | 8 | 3.104 | NS | 0.593 | 0.684 | 0.126 | 0.770 |
ETH10 | 8 | 4.035 | NS | 0.730 | 0.756 | 0.029 | 9 | 4.931 | NS | 0.721 | 0.807 | 0.096 | 9 | 3.978 | *** | 0.741 | 0.756 | 0.010 | 0.766 |
ETH225 | 15 | 6.876 | *** | 0.798 | 0.859 | 0.066 | 14 | 8.443 | *** | 0.651 | 0.892 | 0.261 | 8 | 4.567 | *** | 0.796 | 0.788 | −0.019 | 0.839 |
INRA23 | 15 | 7.375 | *** | 0.685 | 0.869 | 0.207 | 18 | 10.446 | *** | 0.721 | 0.915 | 0.203 | 9 | 5.385 | *** | 0.796 | 0.822 | 0.022 | 0.861 |
SPS115 | 7 | 2.535 | *** | 0.618 | 0.609 | −0.020 | 7 | 2.664 | NS | 0.605 | 0.632 | 0.032 | 7 | 2.663 | NS | 0.667 | 0.630 | −0.067 | 0.618 |
TGLA53 | 17 | 9.464 | ** | 0.764 | 0.899 | 0.146 | 15 | 8.805 | NS | 0.907 | 0.897 | −0.023 | 14 | 7.209 | NS | 0.852 | 0.869 | 0.011 | 0.881 |
TGLA122 | 17 | 8.395 | *** | 0.798 | 0.886 | 0.094 | 12 | 5.569 | *** | 0.721 | 0.830 | 0.121 | 12 | 5.134 | *** | 0.870 | 0.813 | −0.081 | 0.835 |
TGLA126 | 5 | 2.618 | NS | 0.595 | 0.625 | 0.036 | 5 | 2.438 | NS | 0.581 | 0.597 | 0.014 | 5 | 2.988 | NS | 0.722 | 0.671 | −0.086 | 0.624 |
TGLA227 | 14 | 7.870 | NS | 0.865 | 0.878 | 0.009 | 10 | 7.532 | ** | 0.698 | 0.877 | 0.195 | 9 | 5.740 | NS | 0.796 | 0.833 | 0.036 | 0.855 |
Mean ± SD | 12.167 ± 4.366 | 6.450 ± 2.536 | 0.7285 ± 0.077 | 0.816 ± 0.102 | 0.096 | 11.000 ± 3.717 | 6.569 ± 2.649 | 0.702 ± 0.0858 | 0.823 ± 0.105 | 0.131 | 8.667 ± 2.498 | 4.472 ± 1.442 | 0.755 ± 0.103 | 0.761 ± 0.079 | 0.000 | 0.793 ± 0.090 |
R1 | R2 | R3 | Total | |||||
---|---|---|---|---|---|---|---|---|
X | SD | X | SD | X | SD | X | SD | |
Number of lactations | 1420 | 600 | 1638 | 3658 | ||||
Age at first calving (days and months) | 811.43 A | 870.69 B | 850.35 C | 844.53 | ||||
(27.05) | 139.87 | (29.02) | 133.67 | (28.35) | 124.07 | (28.15) | 131.61 | |
Calving interval (days) | 409.98 A | 92.33 | 410.69 A | 100.75 | 393.41 B | 78.75 | 402.68 | 88.41 |
Days open (days) | 129.03 A | 92.23 | 129.28 A | 100.89 | 112.88 B | 78.75 | 121.84 | 88.37 |
Calving to first service (days) | 81.91 | 54.78 | 80.33 | 52.10 | 79.12 | 48.01 | 80.40 | 51.40 |
First service to conception (days) | 46.89 A | 72.45 | 48.84 A | 84.37 | 33.55 B | 62.36 | 41.24 | 70.65 |
Services per conception | 1.96 A | 1.18 | 2.01 A | 1.40 | 1.59 B | 0.82 | 1.80 | 1.09 |
Dry period (days) | 85.94 A | 69.12 | 85.00 | 71.57 | 78.89 B | 62.07 | 82.81 | 67.09 |
Gestation length (days) 305-day milk production (kg) | 280.96 | 5.41 | 281.74 | 5.92 | 280.30 | 5.93 | 280.78 | 5.76 |
4332.26 | 843.45 | 4381.02 | 1024.36 | 4642.38 | 815.21 | 4461.64 | 912.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sawicka-Zugaj, W.; Chabuz, W.; Kasprzak-Filipek, K. The Role of Reproduction and Genetic Variation in Polish White-Backed Cows in the Breed Restoration Process. Animals 2023, 13, 2790. https://doi.org/10.3390/ani13172790
Sawicka-Zugaj W, Chabuz W, Kasprzak-Filipek K. The Role of Reproduction and Genetic Variation in Polish White-Backed Cows in the Breed Restoration Process. Animals. 2023; 13(17):2790. https://doi.org/10.3390/ani13172790
Chicago/Turabian StyleSawicka-Zugaj, Wioletta, Witold Chabuz, and Karolina Kasprzak-Filipek. 2023. "The Role of Reproduction and Genetic Variation in Polish White-Backed Cows in the Breed Restoration Process" Animals 13, no. 17: 2790. https://doi.org/10.3390/ani13172790
APA StyleSawicka-Zugaj, W., Chabuz, W., & Kasprzak-Filipek, K. (2023). The Role of Reproduction and Genetic Variation in Polish White-Backed Cows in the Breed Restoration Process. Animals, 13(17), 2790. https://doi.org/10.3390/ani13172790