Salmonella Control in Fattening Pigs through the Use of Esterified Formic Acid in Drinking Water Shortly before Slaughter
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design and Farm Sampling
2.2. Product Used
2.3. Slaughter Sampling
2.4. Isolation and Quantification of Salmonella
2.5. Serological Analysis
2.6. Statistical Analyses
3. Results
3.1. Farm Salmonella Status Prior to the Trial
3.2. Salmonella Shedding at Slaughter
3.3. Overall Results for the Three Farms
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- European Food Safety Authority (EFSA) and European Centre for Disease Prevention and Control (ECDC). The European Union One Health 2021 Zoonoses Report. EFSA J. 2022, 20, 7666. [Google Scholar]
- Argüello, H.; Alvarez-Ordoñez, A.; Carvajal, A.; Rubio, P.; Prieto, M. Role of slaughtering in Salmonella spreading and control in pork production. J. Food Prot. 2013, 76, 899–911. [Google Scholar] [CrossRef] [PubMed]
- Swart, A.N.; Evers, E.G.; Simons, R.L.; Swanenburg, M. Modeling of Salmonella Contamination in the Pig Slaughterhouse. Risk Anal. 2016, 36, 498–515. [Google Scholar] [CrossRef]
- Pesciaroli, M.; Cucco, L.; De Luca, S.; Massacci, F.R.; Maresca, C.; Medici, L.; Paniccià, M.; Scoccia, E.; Staffolani, M.; Pezzotti, G.; et al. Association between pigs with high caecal Salmonella loads and carcass contamination. Int. J. Food Microbiol. 2017, 242, 82–86. [Google Scholar] [CrossRef] [PubMed]
- De Lucia, A.; Ostanello, F. On-farm risk factors associated with Salmonella in pig herds. Large Anim. Rev. 2020, 26, 133–140. [Google Scholar]
- Galipó, E.; Zoche-Golob, V.; Sassu, E.L.; Prigge, C.; Sjölund, M.; Tobias, T.; Rzeżutka, A.; Smith, R.P.; Burow, E. Prioritization of pig farm biosecurity for control of Salmonella and hepatitis E virus infections: Results of a European expert opinion elicitation. Porc. Health Manag. 2023, 9, 8. [Google Scholar] [CrossRef]
- Alarcón, L.V.; Allepuz, A.; Mateu, E. Biosecurity in pig farms: A review. Porc. Health Manag. 2021, 7, 5. [Google Scholar] [CrossRef] [PubMed]
- Youssef, D.M.; Wieland, B.; Knight, G.M.; Lines, J.; Naylor, N.R. The effectiveness of biosecurity interventions in reducing the transmission of bacteria from livestock to humans at the farm level: A systematic literature review. Zoonoses Public Health 2021, 68, 549–562. [Google Scholar] [CrossRef]
- Bernad-Roche, M.; Marín-Alcalá, C.M.; Cebollada-Solanas, A.; de Blas, I.; Mainar-Jaime, R.C. Building a prediction model for assessing the risk of Salmonella shedding at slaughter in fattening pigs. Front. Microbiol. 2023, 14, 1232490. [Google Scholar] [CrossRef]
- Fraser, R.W.; Williams, N.T.; Powell, L.F.; Cook, A.J. Reducing Campylobacter and Salmonella infection: Two studies of the economic cost and attitude to adoption of on-farm biosecurity measures. Zoonoses Public Health 2010, 57, e109–e115. [Google Scholar] [CrossRef]
- Marier, E.; Piers Smith, R.; Ellis-Iversen, J.; Watson, E.; Armstrong, D.; Hogeveen, H.; Cook, A.J.C. Changes in perceptions and motivators that influence the implementation of on-farm Salmonella control measures by pig farmers in England. Prev. Vet. Med. 2016, 133, 22–30. [Google Scholar] [CrossRef]
- Bearson, S.M.D. Salmonella in Swine: Prevalence, Multidrug Resistance, and Vaccination Strategies. Annu. Rev. Anim. Biosci. 2022, 10, 373–393. [Google Scholar] [CrossRef] [PubMed]
- De La Cruz, M.L.; Conrado, I.; Nault, A.; Perez, A.; Dominguez, L.; Alvarez, J. Vaccination as a control strategy against Salmonella infection in pigs: A systematic review and meta-analysis of the literature. Res. Vet. Sci. 2017, 114, 86–94. [Google Scholar] [CrossRef] [PubMed]
- Garrido, V.; Sánchez, S.; San Román, B.; Zabalza-Baranguá, A.; Díaz-Tendero, Y.; de Frutos, C.; Mainar-Jaime, R.C.; Grilló, M.J. Simultaneous infections by different Salmonella strains in mesenteric lymph nodes of finishing pigs. BMC Vet. Res. 2014, 10, 59. [Google Scholar] [CrossRef] [PubMed]
- Van der Wolf, P.J.; Wolbers, W.B.; Elbers, A.R.; van der Heijden, H.M.; Koppen, J.M.; Hunneman, W.A.; van Schie, F.W.; Tielen, M.J. Herd level husbandry factors associated with the serological Salmonella prevalence in finishing pig herds in The Netherlands. Vet. Microbiol. 2001, 78, 205–219. [Google Scholar] [CrossRef] [PubMed]
- Papenbrock, S.; Stemme, K.; Amtsberg, G.; Verspohl, J.; Kamphues, J. Investigations on prophylactic effects of coarse feed structure and/or potassium diformate on the microflora in the digestive tract of weaned piglets experimentally infected with Salmonella Derby. J. Anim. Physiol. Anim. Nutr. 2005, 89, 84–87. [Google Scholar] [CrossRef]
- Creus, E.; Pérez, J.F.; Peralta, B.; Baucells, F.; Mateu, E. Effect of acidified feed on the prevalence of Salmonella in market-age pigs. Zoonoses Public Health 2007, 54, 314–319. [Google Scholar] [CrossRef]
- Boyen, F.; Haesebrouck, F.; Vanparys, A.; Volf, J.; Mahu, M.; Van Immerseel, F.; Rychlik, I.; Dewulf, J.; Ducatelle, R.; Pasmans, F. Coated fatty acids alter virulence properties of Salmonella Typhimurium and decrease intestinal colonization of pigs. Vet. Microbiol. 2008, 132, 319–327. [Google Scholar] [CrossRef]
- Taube, V.A.; Neu, M.E.; Hassan, Y.; Verspohl, J.; Beyerbach, M.; Kamphues, J. Effects of dietary additives (potassium diformate/organic acids) as well as influences of grinding intensity (coarse/fine) of diets for weaned piglets experimentally infected with Salmonella Derby or Escherichia coli. J. Anim. Physiol. Anim. Nutr. 2009, 93, 350–358. [Google Scholar] [CrossRef]
- Visscher, C.F.; Winter, P.; Verspohl, J.; Stratmann-Selke, J.; Upmann, M.; Beyerbach, M.; Kamphues, J. Effects of feed particle size at dietary presence of added organic acids on caecal parameters and the prevalence of Salmonella in fattening pigs on farm and at slaughter. J. Anim. Physiol. Anim. Nutr. 2009, 93, 423–430. [Google Scholar] [CrossRef]
- Argüello, H.; Carvajal, A.; Costillas, S.; Rubio, P. Effect of the addition of organic acids in drinking water or feed during part of the finishing period on the prevalence of Salmonella in finishing pigs. Foodborne Pathog. Dis. 2013, 10, 842–849. [Google Scholar] [CrossRef] [PubMed]
- Lynch, H.; Leonard, F.C.; Walia, K.; Lawlor, P.G.; Duffy, G.; Fanning, S.; Markey, B.K.; Brady, C.; Gardiner, G.E.; Argüello, H. Investigation of in-feed organic acids as a low cost strategy to combat Salmonella in grower pigs. Prev. Vet. Med. 2017, 139, 50–57. [Google Scholar] [CrossRef] [PubMed]
- Walia, K.; Argüello, H.; Lynch, H.; Leonard, F.C.; Grant, J.; Yearsley, D.; Kelly, S.; Duffy, G.; Gardiner, G.E.; Lawlor, P.G. Effect of strategic administration of an encapsulated blend of formic acid, citric acid, and essential oils on Salmonella carriage, seroprevalence, and growth of finishing pigs. Prev. Vet. Med. 2017, 137, 28–35. [Google Scholar] [CrossRef]
- Casanova-Higes, A.; Andrés-Barranco, S.; Mainar Jaime, R.C. Use of a new form of protected sodium butyrate to control Salmonella infection in fattening pigs. Span. J. Agric. Res. 2019, 16, e05SC02. [Google Scholar] [CrossRef]
- De Busser, E.V.; Dewulf, J.; Nollet, N.; Houf, K.; Schwarzer, K.; De Sadeleer, L.; De Zutter, L.; Maes, D. Effect of organic acids in drinking water during the last 2 weeks prior to slaughter on Salmonella shedding by slaughter pigs and contamination of carcasses. Zoonoses Public Health 2009, 56, 129–136. [Google Scholar] [CrossRef]
- Martín-Peláez, S.; Costabile, A.; Hoyles, L.; Rastall, R.A.; Gibson, G.R.; La Ragione, R.M.; Woodward, M.J.; Mateu, E.; Martín-Orúe, S.M. Evaluation of the inclusion of a mixture of organic acids or lactulose into the feed of pigs experimentally challenged with Salmonella Typhimurium. Vet. Microbiol. 2010, 142, 337–345. [Google Scholar] [CrossRef]
- De Ridder, L.; Maes, D.; Dewulf, J.; Pasmans, F.; Boyen, F.; Haesebrouck, F.; Méroc, E.; Butaye, P.; Van der Stede, Y. Evaluation of three intervention strategies to reduce the transmission of Salmonella Typhimurium in pigs. Vet. J. 2013, 197, 613–618. [Google Scholar] [CrossRef]
- Nguyen, D.H.; Seok, W.J.; Kim, I.H. Organic Acids Mixture as a Dietary Additive for Pigs-A Review. Animals 2020, 10, 952. [Google Scholar] [CrossRef]
- Isaacson, R.E.; Firkins, L.D.; Weigel, R.M.; Zuckermann, F.A.; DiPietro, J.A. Effect of transportation and feed withdrawal on shedding of Salmonella Typhimurium among experimentally infected pigs. Am. J. Vet. Res. 1999, 60, 1155–1158. [Google Scholar]
- Darwin, K.H.; Miller, V.L. Molecular basis of the interaction of Salmonella with the intestinal mucosa. Clin. Microbiol. Rev. 1999, 12, 405–428. [Google Scholar] [CrossRef]
- Uribe, J.H.; Collado-Romero, M.; Zaldívar-López, S.; Arce, C.; Bautista, R.; Carvajal, A.; Cirera, S.; Claros, M.G.; Garrido, J.J. Transcriptional analysis of porcine intestinal mucosa infected with Salmonella Typhimurium revealed a massive inflammatory response and disruption of bile acid absorption in ileum. Vet. Res. 2016, 47, 11. [Google Scholar] [CrossRef]
- Cevallos-Almeida, M.; Martin, L.; Houdayer, C.; Rose, V.; Guionnet, J.M.; Paboeuf, F.; Denis, M.; Kerouanton, A. Experimental infection of pigs by Salmonella Derby, S. Typhimurium and monophasic variant of S. Typhimurium: Comparison of colonization and serology. Vet. Microbiol. 2019, 231, 147–153. [Google Scholar] [CrossRef] [PubMed]
- Ricke, S.C. Perspectives on the use of organic acids and short chain fatty acids as antimicrobials. Poult. Sci. 2003, 82, 632–639. [Google Scholar] [CrossRef] [PubMed]
- Hirshfield, I.N.; Terzulli, S.; O’Byrne, C. Weak organic acids: A panoply of effects on bacteria. Sci. Prog. 2003, 86, 245–269. [Google Scholar] [CrossRef] [PubMed]
- Berends, B.R.; Urlings, H.A.; Snijders, J.M.; van Knapen, F. Identification and quantification of risk factors in animal management and transport regarding Salmonella spp. in pigs. Int. J. Food Microbiol. 1996, 30, 37–53. [Google Scholar] [CrossRef]
- Stärk, K.D.; Wingstrand, A.; Dahl, J.; Møgelmose, V.; Lo Fo Wong, D.M. Differences and similarities among experts’ opinions on Salmonella enterica dynamics in swine pre-harvest. Prev. Vet. Med. 2002, 53, 7–20. [Google Scholar] [CrossRef]
- Hurd, H.S.; McKean, J.D.; Griffith, R.W.; Wesley, I.V.; Rostagno, M.H. Salmonella enterica infections in market swine with and without transport and holding. Appl. Environ. Microbiol. 2002, 68, 2376–2381. [Google Scholar] [CrossRef]
- Mannion, C.; Egan, J.; Lynch, B.P.; Fanning, S.; Leonard, N. An investigation into the efficacy of washing trucks following the transportation of pigs—A Salmonella perspective. Foodborne Pathog. Dis. 2008, 5, 261–271. [Google Scholar] [CrossRef]
- Ferrer Savall, J.; Bidot, C.; Leblanc-Maridor, M.; Belloc, C.; Touzeau, S. Modelling Salmonella transmission among pigs from farm to slaughterhouse: Interplay between management variability and epidemiological uncertainty. Int. J. Food Microbiol. 2016, 229, 33–43. [Google Scholar] [CrossRef]
- Cantini. Compositions Containing C1 to C7 Organic Acid Monoglycerides and Glycerol, Their Preparation and Use as Antibacterials and Anti-Mould Agents. 2015. Available online: https://patents.google.com/patent/WO2010106488A2/en (accessed on 15 July 2023).
- Bernad-Roche, M.; Casanova-Higes, A.; Marín-Alcalá, C.M.; Mainar-Jaime, R.C. Salmonella Shedding in Slaughter Pigs and the Use of Esterified Formic Acid in the Drinking Water as a Potential Abattoir-Based Mitigation Measure. Animals 2022, 12, 1620. [Google Scholar] [CrossRef]
- Luise, D.; Correa, F.; Bosi, P.; Trevisi, P. A Review of the Effect of Formic Acid and Its Salts on the Gastrointestinal Microbiota and Performance of Pigs. Animals 2020, 10, 887. [Google Scholar] [CrossRef] [PubMed]
- ISO 6579-1:2017; Microbiology of the Food Chain—Horizontal Method for the Detection, Enumeration and Serotyping of Salmonella—Part 1: Detection of Salmonella spp. ISO: Geneva, Switzerland, 2017.
- ISO/TS 6579-2:2012; Microbiology of Food and Animal Feed—Horizontal Method for the Detection, Enumeration and Serotyping of Salmonella—Part 2: Enumeration by a Miniaturized Most Probable Number Technique. ISO: Geneva, Switzerland, 2012.
- Jarvis, B.; Wilrich, C.; Wilrich, P.T. Reconsideration of the derivation of Most Probable Numbers, their standard deviations, confidence bounds and rarity values. J. Appl. Microbiol. 2010, 109, 1660–1667, Erratum in J. Appl. Microbiol. 2015, 119, 905. [Google Scholar] [CrossRef] [PubMed]
- Mainar-Jaime, R.C.; Atashparvar, N.; Chirino-Trejo, M.; Blasco, J.M. Accuracy of two commercial enzyme-linked immunosorbent assays for the detection of antibodies to Salmonella spp. in slaughter pigs from Canada. Prev. Vet. Med. 2008, 85, 41–51. [Google Scholar] [CrossRef]
- Dohoo, I.R.; Martin, W.; Stryhn, H.E. Veterinary Epidemiologic Research; University of Prince Edward Island: Charlottetown, PE, Canada, 2003; p. 127. [Google Scholar]
- Anonymous. S.I. No. 165/2002—Abattoirs Act 1988 (Veterinary Examination) (Amendment) Regulations 2002. 2002. Available online: https://www.irishstatutebook.ie/eli/2002/si/165/made/en/print (accessed on 21 July 2023).
- Anonymous. Koninklijk Besluit tot Opheffing van het Koninklijk en het Ministerieel Besluit van 27 April 2007 Betreffende de Bewaking van Salmonella bij Varkens. Voedselketen, F.A.v.d.V.v.d., Ed. 2015. Available online: https://etaamb.openjustice.be/nl/koninklijk-besluit-van-27-april-2007_n2007022865 (accessed on 21 July 2023).
- Van der Wolf, P.J. Monitoring for Salmonella in Swine in the Netherlands. Pig333. 2017. Available online: https://www.pig333.com/articles/monitoring-forsalmonella-in-swine-in-the-netherlands_12866/ (accessed on 17 July 2023).
- QS. Guidelines Salmonella Monitoring Pigs. 2023. Available online: https://www.q-s.de/services/files/downloadcenter/h-salmonellenmonitoring/2023/leitfaeden/englisch/Guideline_Salmonella_Monitoring_Pigs01.01.2023.pdf (accessed on 17 July 2023).
- Teng, K.T.; Martinez Avilés, M.; Ugarte-Ruiz, M.; Barcena, C.; de la Torre, A.; Lopez, G.; Moreno, M.A.; Dominguez, L.; Alvarez, J. Spatial Trends in Salmonella Infection in Pigs in Spain. Front. Vet. Sci. 2020, 7, 345. [Google Scholar] [CrossRef]
- Anonymous. FCC Consortium, Final Report. Analysis of the Costs and Benefits of Setting a Target for the Reduction of Salmonella in Breeding Pigs for European Commission Health and Consumers Directorate-General SANCO/2008/E2/056. Brussels: SANCO/2008/E2/056. 2011. Available online: https://food.ec.europa.eu/system/files/2016-10/biosafety_food-borne-disease_salmonella_fattening-pigs_slaughthouse-analysis-costs.pdf (accessed on 17 July 2023).
- Gavin, C.; Simons, R.R.L.; Berriman, A.D.C.; Moorhouse, D.; Snary, E.L.; Smith, R.P.; Hill, A.A. A cost-benefit assessment of Salmonella-control strategies in pigs reared in the United Kingdom. Prev. Vet. Med. 2018, 160, 54–62. [Google Scholar] [CrossRef] [PubMed]
- Suiryanrayna, M.V.; Ramana, J.V. A review of the effects of dietary organic acids fed to swine. J. Anim. Sci. Biotechnol. 2015, 6, 45. [Google Scholar] [CrossRef] [PubMed]
- Pearlin, B.V.; Muthuvel, S.; Govidasamy, P.; Villaban, M.; Alagawany, M.; Farag, M.R.; Dhama, K.; Gopi, M. Role of acidifiers in livestock nutrition and health: A review. J. Anim. Physiol. Anim. Nutr. 2020, 104, 558–569. [Google Scholar] [CrossRef]
- Kuterna, L. A Combined Strategy to Reduce Salmonella in Pigs. PigProgress. 2015. Available online: https://www.pigprogress.net/health-nutrition/a-combined-strategy-to-reduce-salmonella-in-pigs-2/ (accessed on 18 July 2023).
- Gomez-Osorio, L.M.; Yepes-Medina, V.; Ballou, A.; Parini, M.; Angel, R. Short and Medium Chain Fatty Acids and Their Derivatives as a Natural Strategy in the Control of Necrotic Enteritis and Microbial Homeostasis in Broiler Chickens. Front. Vet. Sci. 2021, 8, 773372. [Google Scholar] [CrossRef]
Farm | Group | No. | Seroprevalence (%) | p-Value | No. | Pen Prevalence (%) | p-Value 1 |
---|---|---|---|---|---|---|---|
1 | CG | 30 | 16.67 | 0.53 | 10 | 10 | 1 |
TG | 30 | 26.70 | 10 | 10 | |||
2 | CG | 30 | 30.00 | 0.29 | 10 | 10 | 1 |
TG | 30 | 46.67 | 10 | 10 | |||
3 | CG | 30 | 33.33 | 0.04 | 10 | 10 | 1 |
TG | 30 | 63.33 | 10 | 10 |
Farm | Group | N | No. Salmonella-Positive Samples (%) | p-Value 1 |
---|---|---|---|---|
1 | CG | 40 | 26 (65.0) | 0.0015 |
TG | 40 | 11 (27.5) | ||
2 | CG | 40 | 5 (12.5) | 0.0547 |
TG | 40 | 0 (0.0) | ||
3 | CG | 40 | 29 (72.5) | 0.0007 |
TG | 40 | 13 (32.5) | ||
Total | CG | 120 | 60 (50.0) | <0.001 |
TG | 120 | 24 (20.0) |
Farm | Group | N | No. Salmonella-Positive Samples (%) | No. Samples in Salmonella MPN/g Ranges (%) | |||
---|---|---|---|---|---|---|---|
ND 1 | 0.02–20 | 21–200 | ∞ 2 | ||||
1 | CG | 9 | 4 (44.4) | 5 (55.6) | 3 (33.3) | 0 (0.0) | 1 (11.1) |
TG | 9 | 1 (11.1) | 8 (88.9) | 0 (0.0) | 0 (0.0) | 1 (11.1) | |
2 | CG | 10 | 1 (10.0) | 9 (90.0) | 1 (10.0) | 0 (0.0) | 0 (0.0) |
TG | 10 | 0 (0.0) | 10 (100.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | |
3 | CG | 10 | 6 (60.0) | 4 (40.0) | 1 (10.0) | 2 (20.0) | 3 (30.0) |
TG | 10 | 3 (30.0) | 7 (70.0) | 3 (30.0) | 0 (0.0) | 0 (0.0) | |
Total | CG | 29 | 11 (37.9) | 18 (62.1) | 5 (17.2) | 2 (6.9) | 4 (13.8) |
TG | 29 | 4 (13.8) | 25 (86.2) | 3 (10.3) | 0 (0.0) | 1 (3.4) |
Coefficient (β) | Std Error (β) | Odds Ratio (OR) | 95% CI (OR) | p-Value | |
---|---|---|---|---|---|
Group | |||||
Control | 1 | - | - | ||
Treatment | 1.73 | 0.33 | 5.63 | 2.92–10.8 | <0.001 |
Constant | −1.86 | 0.84 | 0.15 | 0.29–080 | 0.026 |
MPN Category | CG (%) | TG (%) | OR * | 95% CI (OR) | p |
---|---|---|---|---|---|
Not detected | 18 (62.1) | 25 (86.2) | 1 | - | - |
0.02–20.00 CFU/g | 5 (17.2) | 3 (10.3) | 2.32 | 0.47–11.3 | 0.28 |
21–∞ CFU/g * | 6 (20.7) | 1 (3.5) | 8.33 | 0.80–8.62 | 0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bernad-Roche, M.; Marín-Alcalá, C.M.; Vico, J.P.; Mainar-Jaime, R.C. Salmonella Control in Fattening Pigs through the Use of Esterified Formic Acid in Drinking Water Shortly before Slaughter. Animals 2023, 13, 2814. https://doi.org/10.3390/ani13182814
Bernad-Roche M, Marín-Alcalá CM, Vico JP, Mainar-Jaime RC. Salmonella Control in Fattening Pigs through the Use of Esterified Formic Acid in Drinking Water Shortly before Slaughter. Animals. 2023; 13(18):2814. https://doi.org/10.3390/ani13182814
Chicago/Turabian StyleBernad-Roche, María, Clara María Marín-Alcalá, Juan Pablo Vico, and Raúl Carlos Mainar-Jaime. 2023. "Salmonella Control in Fattening Pigs through the Use of Esterified Formic Acid in Drinking Water Shortly before Slaughter" Animals 13, no. 18: 2814. https://doi.org/10.3390/ani13182814
APA StyleBernad-Roche, M., Marín-Alcalá, C. M., Vico, J. P., & Mainar-Jaime, R. C. (2023). Salmonella Control in Fattening Pigs through the Use of Esterified Formic Acid in Drinking Water Shortly before Slaughter. Animals, 13(18), 2814. https://doi.org/10.3390/ani13182814