The Use of Stromal Vascular Fraction in Long Bone Defect Healing in Sheep
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Overview, Animals, Examinations, and Samplings
2.2. Operation Procedures: Anaesthetic and Analgesic Protocols, Surgical Methodologies
2.3. Intra-Operative Procedures
2.3.1. Harvesting of Adipose Tissue and Isolation of Stromal Vascular Fraction
2.3.2. Filling of the Bone Defect
2.4. Post-Operative Management
2.5. Clinical and Paraclinical Examinations
2.5.1. Clinical Examination
2.5.2. Radiographic Examination
2.5.3. Ultrasonographic Examination
2.5.4. Histological Examination
2.6. Data Management and Analysis
2.6.1. Data Management
2.6.2. Statistical Analysis
3. Results
3.1. Outcome of Surgeries
3.2. Clinical Examination
3.3. Imaging Examination
3.3.1. Radiographic Examination
3.3.2. Ultrasonographic Examination
3.4. Histological Examination
4. Discussion
4.1. Animal Model Employed
4.2. Outcomes of the Procedure
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Giannoudis, P.V.; Einhorn, T.A.; Marsh, D. Fracture healing: The diamond concept. Injury 2007, 38, S3–S6. [Google Scholar] [CrossRef] [PubMed]
- Marsell, R.; Einhorn, T.A. The biology of fracture healing. Injury 2012, 42, 551–555. [Google Scholar] [CrossRef] [PubMed]
- DeCamp, C.E.; Johnston, S.; Déjardin, L.; Schaefer, S. Brinker, Piermattei, and Flo’s Handbook of Small Animal Orthopedics and Fracture Repair, 5th ed.; Elsevier Inc.: Maryland Heights, MO, USA, 2016. [Google Scholar]
- Bauer, T.W.; Muschler, G.F. Bone graft materials: An overview of the basic science. Clin. Orthop. Relat. Res. 2000, 371, 10–27. [Google Scholar] [CrossRef]
- Greenwald, A.S.; Boden, S.D.; Goldberg, V.M.; Khan, Y.; Laurencin, C.T.; Rosier, R.N. Bone-graft substitutes: Facts, fictions, and applications. J. Bone Jt. Surg. Am. 2001, 83, 98–103. [Google Scholar] [CrossRef]
- De Long, W.G.; Einhorn, T.A.; Koval, K.; McKee, M.; Smith, W.; Sanders, R.; Watson, T. Bone grafts and bone graft substitutes in orthopaedic trauma surgery: A critical analysis. J. Bone Jt. Surg. Am. Vol. 2007, 89, 649–658. [Google Scholar] [CrossRef]
- Vertenten, G.; Gasthuys, F.; Cornelissen, M.; Schacht, E.; Vlaminck, L. Enhancing bone healing and regeneration: Present and future perspectives in veterinary orthopaedics. Vet. Comp. Orthop. Traumatol. 2010, 23, 153–162. [Google Scholar] [PubMed]
- Martinez, S.A.; Walker, T. Bone grafts. Vet. Clin. N. Am. Small Anim. Pract. 1999, 29, 1207–1219. [Google Scholar] [CrossRef]
- Griffon, J. 3 Fracture healing. In AO Principles of Fracture Management in the Dog and Cat; Johnson, A., Houlton, J.E., Vannini, R., Eds.; AO Publishing: Davos, Switzerland, 2005; pp. 72–81. [Google Scholar]
- Khan, S.N.; Cammisa, F.P.; Sandhu, H.S.; Diwan, A.D.; Girardi, F.P.; Lane, J.M. The biology of bone grafting. J. Am. Acad. Orthop. Surg. 2005, 13, 77–86. [Google Scholar] [CrossRef]
- Roberts, T.T.; Rosenbaum, A.J. Bone grafts, bone substitutes and orthobiologics: The bridge between basic science and clinical advancements in fracture healing. Organogenesis 2012, 8, 114–124. [Google Scholar] [CrossRef]
- Gazdag, A.R.; Lane, J.M.; Glaser, D.; Forster, R.A. Alternatives to autogenous bone graft: Efficacy and indications. J. Am. Acad. Orthop. Surg. 1995, 3, 1–8. [Google Scholar] [CrossRef]
- Cannada, L.K. Viable bone and circulatory factors required for survival of bone grafts. Orthop. Clin. N. Am. 2010, 41, 5–13. [Google Scholar] [CrossRef] [PubMed]
- LeGeros, R.Z. Properties of osteoconductive biomaterials: Calcium phosphates. Clin. Orthop. Relat. Res. 2002, 395, 81–98. [Google Scholar] [CrossRef]
- Autefage, A.; Dejardin, L.M. Bone grafting. In Mechanisms of Disease in Small Animal Surgery, 3rd ed.; Bojrab, J.M., Monnet, E., Eds.; Teton NewMedia: Jackson, WY, USA, 2010; pp. 1188–1207. [Google Scholar]
- Autefage, A.; Dejardin, L.M. Bone substitutes. In Mechanisms of Disease in Small Animal Surgery, 3rd ed.; Bojrab, J.M., Monnet, E., Eds.; Teton NewMedia: Jackson, WY, USA, 2010; pp. 1208–1225. [Google Scholar]
- Kim, A.; Kim, D.H.; Song, H.R.; Kang, W.H.; Kim, H.J.; Lim, H.C.; Cho, D.W.; Bae, J.H. Repair of rabbit ulna segmental bone defect using freshly isolated adipose-derived stromal vascular fraction. Cytotherapy 2012, 14, 296–305. [Google Scholar] [CrossRef] [PubMed]
- Bucholz, R.W. Nonallograft osteoconductive bone graft substitutes. Clin. Orthop. Relat. Res. 2002, 395, 44–52. [Google Scholar] [CrossRef]
- Laschke, M.W.; Witt, K.; Pohlemann, T.; Menger, M.D. Injectable nanocrystalline hydroxyapatite paste for bone substitution: In vivo analysis of biocompatibility and vascularization. J. Biomed. Mater. Res. B Appl. Biomater. 2007, 82, 494–505. [Google Scholar] [CrossRef] [PubMed]
- Huber, F.X.; Berger, I.; McArthur, N.; Huber, C.; Kock, H.P.; Hillmeier, J.; Meeder, P.J. Evaluation of a novel nanocrystalline hydroxyapatite paste and a solid hydroxyapatite ceramic for the treatment of critical size bone defects (CSD) in rabbits. J. Mater. Sci. Mater. Med. 2008, 19, 33–38. [Google Scholar] [CrossRef]
- Huber, F.X.; McArthur, N.; Heimann, L.; Dingeldein, E.; Cavey, H.; Palazzi, X.; Clermont, G.; Boutrand, J.P. Evaluation of a novel nanocrystalline hydroxyapatite paste Ostim in comparison to Alpha-BSM—More bone ingrowth inside the implanted material with Ostim compared to Alpha BSM. BMC Musculoskelet. Disord. 2009, 10, 164. [Google Scholar] [CrossRef]
- Ripamonti, U. Osteoinduction in porous hydroxyapatite implanted in heterotopic sites of different animal models. Biomaterials 1996, 17, 31–35. [Google Scholar] [CrossRef]
- Gosain, A.K.; Song, L.; Riordan, P.; Amarante, M.T.; Nagy, P.G.; Wilson, C.R.; Toth, J.M.; Ricci, J.L. A 1-year study of osteoinduction in hydroxyapatite-derived biomaterials in an adult sheep model: Part I. Plast. Reconstr. Surg. 2002, 109, 619–630. [Google Scholar] [CrossRef]
- Yuan, H.; Fernandes, H.; Habibovic, P.; de Boer, J.; Barradas, A.M.C.; de Ruiter, A.; Walsh, W.R.; van Blitterswijk, C.A.; de Bruijn, J.D. Osteoinductive ceramics as a synthetic alternative to autologous bone grafting. Proc. Natl. Acad. Sci. USA 2010, 107, 13614–13619. [Google Scholar] [CrossRef]
- Strioga, M.; Viswanathan, S.; Darinskas, A.; Slaby, O.; Michalek, J. Same or not the same? comparison of adipose tissue-derived versus bone marrow-derived mesenchymal stem and stromal cells. Stem Cells Dev. 2012, 21, 2724–2752. [Google Scholar] [CrossRef]
- Torres-Torrillas, M.; Rubio, M.; Damia, E.; Cuervo, B.; Del Romero, A.; Peláez, P.; Chicharro, D.; Miguel, L.; Sopena, J.J. Adipose-derived mesenchymal stem cells: A promising tool in the treatment of musculoskeletal diseases. Int. J. Mol. Sci. 2019, 20, 3105. [Google Scholar] [CrossRef]
- Zuk, P.A.; Zhu, M.; Mizuno, H.; Huang, J.; Futrell, J.W.; Katz, A.J.; Benhaim, P.; Lorenz, H.P.; Hedrick, M.H. Multilineage cells from human adipose tissue: Implications for cell-based therapies. Tissue Eng. 2001, 7, 211–228. [Google Scholar] [CrossRef] [PubMed]
- Zuk, P.A.; Zhu, M.; Ashjian, P.; De Ugarte, D.A.; Huang, J.I.; Mizuno, H.; Alfonso, Z.C.; Fraser, J.K.; Benhaim, P.; Hedrick, M.H. Human adipose tissue is a source of multipotent stem cells. Mol. Biol. Cell 2002, 13, 4279–4295. [Google Scholar] [CrossRef]
- Behfar, M.; Javanmardi, S.; Sarrafzadeh-Rezaei, F. Comparative study on functional effects of allotransplantation of bone marrow stromal cells and adipose derived stromal vascular fraction on tendon repair: A Biomechanical study in rabbits. Cell J. 2014, 16, 263–270. [Google Scholar] [PubMed]
- Marx, C.; Silveira, M.D.; Beyer Nardi, N. Adipose-derived stem cells in veterinary medicine: Characterization and therapeutic applications. Stem Cells Dev. 2015, 24, 803–813. [Google Scholar] [CrossRef]
- Sullivan, M.O.; Gordon-Evans, W.J.; Fredericks, L.P.; Kiefer, K.; Conzemius, M.G.; Griffon, D.J. Comparison of mesenchymal stem cell surface markers from bone marrow aspirates and adipose stromal vascular fraction sites. Front. Vet. Sci. 2016, 2, 82. [Google Scholar] [CrossRef] [PubMed]
- Bateman, M.E.; Strong, A.L.; Gimble, J.M.; Bunnell, B.A. Concise review: Using fat to fight disease: A systematic review of nonhomologous adipose-derived stromal/stem cell therapies. Stem Cells 2018, 36, 1311–1328. [Google Scholar] [CrossRef] [PubMed]
- Kang, B.J.; Ryu, H.H.; Park, S.S.; Koyama, Y.; Kikuchi, M.; Woo, H.M.; Kim, W.H.; Kweon, O.K. Comparing the osteogenic potential of canine mesenchymal stem cells derived from adipose tissues, bone marrow, umbilical cord blood, and Wharton’s jelly for treating bone defects. J. Vet. Sci. 2012, 13, 299–310. [Google Scholar] [CrossRef]
- Bora, P.; Majumdar, A.S. Adipose tissue-derived stromal vascular fraction in regenerative medicine: A brief review on biology and translation. Stem Cell Res. Ther. 2017, 8, 145. [Google Scholar] [CrossRef]
- Pak, J.; Lee, J.H.; Park, K.S.; Park, M.; Kang, L.W.; Lee, S.H. Current use of autologous adipose tissue-derived stromal vascular fraction cells for orthopedic applications. J. Biomed. Sci. 2017, 24, 9. [Google Scholar] [CrossRef]
- Yoshimura, K.; Shigeura, T.; Matsumoto, D.; Sato, T.; Takaki, Y.; Aiba-Kojima, E.; Sato, K.; Inoue, K.; Nagase, T.; Koshima, I.; et al. Characterization of freshly isolated and cultured cells derived from the fatty and fluid portions of liposuction aspirates. J. Cell Physiol. 2006, 208, 64–76. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Nguyen, A.; Banyard, D.A.; Fadavi, D.; Toranto, J.D.; Wirth, G.A.; Paydar, K.Z.; Evans, G.R.D.; Widgerow, A.D. Stromal vascular fraction: A regenerative reality? Part 2: Mechanisms of regenerative action. J. Plast. Reconstr. Aesthetic Surg. 2016, 69, 180–188. [Google Scholar] [CrossRef] [PubMed]
- Kemilew, J.; Sobczynska-Rak, A.; Zylinska, B.; Szponder, T.; Nowicka, B.; Urban, B. The use of allogenic stromal vascular fraction (SVF) cells in degenerative joint disease of the spine in dogs. In Vivo 2019, 33, 1109–1117. [Google Scholar] [CrossRef]
- Prins, H.-J.; Schulten, E.A.J.M.; Ten Bruggenkate, C.M.; Klein-Nulend, J.; Helder, M.N. Bone regeneration using the freshly isolated autologous stromal vascular fraction of adipose tissue in combination with calcium phosphate ceramics. Stem Cells Transl. Med. 2016, 5, 1362–1374. [Google Scholar] [CrossRef]
- Lv, X.; He, J.; Zhang, X.; Luo, X.; He, N.; Sun, Z.; Xia, H.; Liu, V.; Zhang, L.; Lin, X.; et al. Comparative efficacy of autologous stromal vascular fraction and autologous adipose-derived mesenchymal stem cells combined with hyaluronic acid for the treatment of sheep osteoarthritis. Cell Transpl. 2018, 27, 1111–1125. [Google Scholar] [CrossRef]
- Zhang, Y.; Grosfeld, E.C.; Camargo, W.A.; Tang, H.; Magri, A.M.P.; van den Beucken, J.J.J.P. Efficacy of intraoperatively prepared cell-based constructs for bone regeneration. Stem Cell Res. Ther. 2018, 9, 283. [Google Scholar] [CrossRef]
- Jurgens, W.J.F.M.; Kroeze, R.J.; Zandieh-Doulabi, B.; van Dijk, A.; Renders, G.A.P.; Smit, T.H.; van Milligen, F.J.; Ritt, M.J.P.F.; Helder, M.N. One-step surgical procedure for the treatment of osteochondral defects with adipose-derived stem cells in a caprine knee defect: A pilot study. Biores. Open Access 2013, 2, 315–325. [Google Scholar] [CrossRef]
- Wu, L.; Prins, H.J.; Leijten, J.; Helder, M.N.; Evseenko, D.; Moroni, L.; Van Blitterswijk, C.A.; Lin, Y.; Karperien, M. Chondrocytes cocultured with stromal vascular fraction of adipose tissue present more intense chondrogenic characteristics than with adipose stem cells. Tissue Eng. Part A 2016, 22, 336–348. [Google Scholar] [CrossRef] [PubMed]
- Rozen, N.; Bick, T.; Bajayo, A.; Shamian, B.; Schrift-Tzadok, M.; Gabet, Y.; Yayon, A.; Bab, I.; Soudry, M.; Lewinson, D. Transplanted blood-derived endothelial progenitor cells (EPC) enhance bridging of sheep tibia critical size defects. Bone 2009, 45, 918–924. [Google Scholar] [CrossRef] [PubMed]
- Atesok, K.; Li, R.; Stewart, D.J.; Schemitsch, E.H. Endothelial progenitor cells promote fracture healing in a segmental bone defect model. J. Orthop. Res. 2010, 28, 1007–1114. [Google Scholar] [CrossRef]
- Seebach, C.; Henrich, D.; Kähling, C.; Wilhelm, K.; Tami, A.E.; Alini, M.; Marzi, I. Endothelial progenitor cells and mesenchymal stem cells seeded onto β-TCP granules enhance early vascularization and bone healing in a critical-sized bone defect in rats. Tissue Eng. Part A 2010, 16, 1961–1970. [Google Scholar] [CrossRef] [PubMed]
- Lendeckel, S.; Jödicke, A.; Christophis, P.; Heidinger, K.; Wolff, J.; Fraser, J.K.; Hedrick, M.H.; Berthold, L.; Howaldt, H.P. Autologous stem cells (adipose) and fibrin glue used to treat widespread traumatic calvarial defects: Case report. J. Cranio-Maxillofac. Surg. 2004, 32, 370–373. [Google Scholar] [CrossRef] [PubMed]
- Rhee, S.C.; Ji, Y.; Gharibjanian, N.A.; Dhong, E.S.; Park, S.H.; Yoon, E.-S. In vivo evaluation of mixtures of uncultured freshly isolated adipose-derived stem cells and demineralized bone matrix for bone regeneration in a rat critically sized calvarial defect model. Stem Cells Dev. 2011, 20, 233–242. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, R.; Amini, K. Guided bone regeneration of mandibles using chitosan scaffold seeded with characterized uncultured omental adipose–derived stromal vascular fraction: An animal study. Int. J. Oral Maxillofac. Implants 2015, 30, 216–222. [Google Scholar] [CrossRef]
- Toplu, G.; Ozcelik, D.; Serin, M.; Erdem, H.; Topacoglu, A.T. Adipose tissue-derived stromal vascular fraction increases osteogenesis in an experimental design zygomatic bone defect model. J. Craniofac. Surg. 2017, 28, 2179–2182. [Google Scholar] [CrossRef]
- Nyberg, E.; Farris, A.; O’Sullivan, A.; Rodriguez, R.; Grayson, W.L. Comparison of stromal vascular fraction and passaged adipose-derived stromal/stem cells as point-of-care agents for bone regeneration. Tissue Eng. Part A 2019, 25, 1459–1469. [Google Scholar] [CrossRef]
- Saxer, F.; Scherberich, A.; Todorov, A.; Studer, P.; Miot, S.; Schreiner, S.; Güven, S.; Tchang, L.A.; Haug, M.; Heberer, M.; et al. Implantation of stromal vascular fraction progenitors at bone fracture sites: From a rat model to a first-in-man study. Stem Cells 2016, 34, 2956–2966. [Google Scholar] [CrossRef]
- Farré-Guasch, E.; Bravenboer, N.; Helder, M.N.; Schulten, E.A.J.M.; Ten Bruggenkate, C.M.; Klein-Nulend, J. Blood vessel formation and bone regeneration potential of the stromal vascular fraction seeded on a calcium phosphate scaffold in the human maxillary sinus floor elevation model. Materials 2018, 11, 161. [Google Scholar] [CrossRef]
- Roato, I.; Belisario, D.C.; Compagno, M.; Verderio, L.; Sighinolfi, A.; Mussano, F.; Genova, T.; Veneziano, F.; Pertici, G.; Perale, G.; et al. Adipose-derived stromal vascular fraction/xenohybrid bone scaffold: An alternative source for bone regeneration. Stem Cells Int. 2018, 2018, 4126379. [Google Scholar] [CrossRef]
- Jones, R.B.; Strong, A.L.; Gimble, J.M.; Bunnell, B.A. Isolation and primary culture of adult human adipose-derived stromal/stem cells. Bio-Protocol 2017, 7, e2161. [Google Scholar] [CrossRef]
- Corre, P.; Merceron, C.; Vignes, C.; Sourice, S.; Masson, M.; Durand, N.; Espitalier, F.; Pilet, P.; Cordonnier, T.; Mercier, J.; et al. Determining a clinically relevant strategy for bone tissue engineering: An “all-in-one” study in nude mice. PLoS ONE 2013, 8, e81599. [Google Scholar] [CrossRef]
- Hivernaud, V.; Grimaud, F.; Guicheux, J.; Portron, S.; Pace, R.; Pilet, P.; Sourice, S.; Wuillem, S.; Bertin, H.; Roche, R.; et al. Comparing “intra operative” tissue engineering strategies for the repair of craniofacial bone defects. J. Stomatol. Oral Maxillofac. Surg. 2019, 120, 432–442. [Google Scholar] [CrossRef] [PubMed]
- Lovatt, F.M. Clinical examination of sheep. Small Rumin. Res. 2010, 92, 72–77. [Google Scholar] [CrossRef]
- Hodgkinson, O. The importance of feet examination in sheep health management. Small Rumin. Res. 2010, 92, 67–71. [Google Scholar] [CrossRef]
- Kaler, J.; Wassink, G.J.; Green, L.E. The inter- and intra-observer reliability of a locomotion scoring scale for sheep. Vet. J. 2009, 180, 189–194. [Google Scholar] [CrossRef] [PubMed]
- Lane, J.M.; Sandhu, H. Current Approaches to experimental bone grafting. Orthop. Clin. N. Am. 1987, 18, 213–225. [Google Scholar] [CrossRef]
- Risselada, M.; Kramer, M.; Saunders, J.H.; Verleyen, P.; Van Bree, H. Power doppler assessment of the neovascularization during uncomplicated fracture healing of long bones in dogs and cats. Vet. Radiol. Ultrasound 2006, 47, 301–306. [Google Scholar] [CrossRef]
- Jeon, S.; Jang, J.; Lee, G.; Park, S.; Lee, S.K.; Kim, H.; Choi, J. Assessment of neovascularization during bone healing using contrast-enhanced ultrasonography in a canine tibial osteotomy model: A preliminary study. J. Vet. Sci. 2020, 21, e10. [Google Scholar] [CrossRef]
- Šantić, V.; Cvek, S.Z.; Šestan, B.; Bobinac, D.; Tudor, A.; Miletić, D.; Nemec, B. Treatment of tibial bone defect with rotational vascular periosteal graft in rabbits. Coll. Antropol. 2009, 33, 43–50. [Google Scholar]
- Martini, L.; Fini, M.; Giavaresi, G.; Giardino, R. Sheep model in orthopedic research: A literature review. Comp. Med. 2001, 51, 292–299. [Google Scholar]
- Viateau, V.; Guillemin, G.; Yang, Y.C.; Bensaïd, W.; Reviron, T.; Oudina, K.; Meunier, A.; Sedel, L.; Petite, H. A technique for creating critical-size defects in the metatarsus of sheep for use in investigation of healing of long-bone defects. Am. J. Vet. Res. 2004, 65, 1653–1657. [Google Scholar] [CrossRef]
- Calori, G.M.; Albisetti, W.; Agus, A.; Iori, S.; Tagliabue, L. Risk factors contributing to fracture non-unions. Int. J. Care Inj. 2007, 38, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Rombouts, W.J.C.; Ploemacher, R.E. Primary murine MSC show highly efficient homing to the bone marrow but lose homing ability following culture. Leukemia 2003, 17, 160–170. [Google Scholar] [CrossRef]
- Bonab, M.M.; Alimoghaddam, K.; Talebian, F.; Ghaffari, S.H.; Ghavamzadeh, A.; Nikbin, B. Aging of mesenchymal stem cell in vitro. BMC Cell Biol. 2006, 7, 14. [Google Scholar] [CrossRef] [PubMed]
- Doi, K.; Tanaka, S.; Iida, H.; Eto, H.; Kato, H.; Aoi, N.; Kuno, S.; Hirohi, T.; Yoshimura, K. Stromal vascular fraction isolated from lipo-aspirates using an automated processing system: Bench and bed analysis. J. Tissue Eng. Regen. Med. 2013, 7, 864–870. [Google Scholar] [CrossRef] [PubMed]
- Dorea, H.C.; McLaughlin, R.M.; Cantwell, H.D.; Read, R.; Armbrust, L.; Pool, R.; Roush, J.K.; Boyle, C. Evaluation of healing in feline femoral defects filled with cancellous autograft, cancellous allograft or bioglass. Vet. Comp. Orthop. Traumatol. 2005, 18, 157–168. [Google Scholar] [CrossRef]
- Ragetly, G.R.; Griffon, D.J. The rationale behind novel bone grafting techniques in small animals. Vet. Comp. Orthop. Traumatol. 2010, 24, 1–8. [Google Scholar]
- Pak, J.; Chang, J.J.; Lee, J.H.; Lee, S.H. Safety reporting on implantation of autologous adipose tissue-derived stem cells with platelet-rich plasma into human articular joints. BMC Musculoskelet. Disord. 2013, 14, 337. [Google Scholar] [CrossRef]
- Aronowitz, J.A.; Lockhart, R.A.; Hakakian, C.S.; Hicok, K.C. Clinical safety of stromal vascular fraction separation at the point of care. Ann. Plast. Surg. 2015, 75, 666–671. [Google Scholar] [CrossRef]
- Granel, B.; Daumas, A.; Jouve, E.; Harlé, J.R.; Nguyen, P.S.; Chabannon, C.; Colavolpe, N.; Reynier, J.C.; Truillet, R.; Mallet, S.; et al. Safety, tolerability and potential efficacy of injection of autologous adipose-derived stromal vascular fraction in the fingers of patients with systemic sclerosis: An open-label phase i trial. Ann. Rheum. Dis. 2015, 74, 2175–2182. [Google Scholar] [CrossRef]
- Roato, I.; Alotto, D.; Belisario, D.C.; Casarin, S.; Fumagalli, M.; Cambieri, I.; Piana, R.; Stella, M.; Ferracini, R.; Castagnoli, C. Adipose derived-mesenchymal stem cells viability and differentiating features for orthopaedic reparative applications: Banking of adipose tissue. Stem Cells Int. 2016, 2016, 4968724. [Google Scholar] [CrossRef]
- Astor, D.E.; Hoelzler, M.G.; Harman, R.; Bastian, R.P. Patient factors influencing the concentration of stromal vascular fraction (SVF) for adipose-derived stromal cell (ASC) therapy in dogs. Can. J. Vet. Res. 2013, 77, 177–182. [Google Scholar] [PubMed]
- Marx, C.; Silveira, M.D.; Selbach, I.; Da Silva, A.S.; Braga, L.M.G.D.M.; Camassola, M.; Nardi, N.B. Acupoint injection of autologous stromal vascular fraction and allogeneic adipose-derived stem cells to treat hip dysplasia in dogs. Stem Cells Int. 2014, 2014, 391274. [Google Scholar] [CrossRef] [PubMed]
- Pak, J. Regeneration of human bones in hip osteonecrosis and human cartilage in knee osteoarthritis with autologous adipose-tissue-derived stem cells: A case series. J. Med. Case Rep. 2011, 5, 296. [Google Scholar] [CrossRef] [PubMed]
- Koh, Y.G.; Choi, Y.J. Infrapatellar fat pad-derived mesenchymal stem cell therapy for knee osteoarthritis. Knee 2012, 19, 902–907. [Google Scholar] [CrossRef]
- Koh, Y.G.; Choi, Y.J.; Kwon, O.R.; Kim, Y.S. Second-look arthroscopic evaluation of cartilage lesions after mesenchymal stem cell implantation in osteoarthritic knees. Am. J. Sports Med. 2014, 42, 1628–1637. [Google Scholar] [CrossRef]
- Koh, Y.G.; Choi, Y.J.; Kwon, S.K.; Kim, Y.S.; Yeo, J.E. Clinical results and second-look arthroscopic findings after treatment with adipose-derived stem cells for knee osteoarthritis. Knee Surg. Sport. Traumatol. Arthrosc. 2015, 23, 1308–1316. [Google Scholar] [CrossRef]
- Fodor, P.B.; Paulseth, S.G. Adipose derived stromal cell (ADSC) injections for pain management of osteoarthritis in the human knee joint. Aesthetic Surg. J. 2016, 36, 229–236. [Google Scholar] [CrossRef]
- Yokota, N.; Yamakawa, M.; Shirata, T.; Kimura, T.; Kaneshima, H. Clinical results following intra-articular injection of adipose-derived stromal vascular fraction cells in patients with osteoarthritis of the knee. Regen. Ther. 2017, 6, 108–112. [Google Scholar] [CrossRef]
- Michalek, J.; Vrablikova, A.; Darinskas, A.; Lukac, L.; Prucha, J.; Skopalik, J.; Travnik, J.; Cibulka, M.; Dudasova, Z. Stromal vascular fraction cell therapy for osteoarthritis in elderly: Multicenter case-control study. J. Clin. Orthop. Trauma 2019, 10, 76–80. [Google Scholar] [CrossRef]
- Upchurch, D.A.; Renberg, W.C.; Roush, J.K.; Milliken, G.A.; Weiss, M.L. Effects of administration of adipose-derived stromal vascular fraction and platelet-rich plasma to dogs with osteoarthritis of the hip joints. Am. J. Vet. Res. 2016, 77, 940–951. [Google Scholar] [CrossRef]
- Salgado, A.J.; Reis, R.L.; Sousa, N.; Gimble, J.M. Adipose tissue derived stem cells secretome: Soluble factors and their roles in regenerative medicine. Curr. Stem Cell Res. Ther. 2010, 5, 103–110. [Google Scholar] [CrossRef]
- Arthurs, G. Chapter 14 Bone Grafts and Alternatives. In BSAVA Manual of Canine and Feline Fracture Repair and Management; Gemmill, T., Clements, D., Eds.; British Small Animal Veterinary Association: Gloucester, UK, 2016; pp. 120–125. [Google Scholar]
- Corrales, L.A.; Morshed, S.; Bhandari, M.; Miclau, T. Variability in the assessment of fracture-healing in orthopaedic trauma studies. J. Bone Jt. Surg. Am. 2008, 90, 1862–1868. [Google Scholar] [CrossRef] [PubMed]
- Maffulli, N.; Thornton, A. Ultrasonographic appearance of external callus in long-bone fractures. Injury 1995, 26, 5–12. [Google Scholar] [CrossRef]
- Risselada, M.; Kramer, M.; De Rooster, H.; Taeymans, O.; Verleyen, P.; Van Bree, H. Ultrasonographic and radiographic assessment of uncomplicated secondary fracture healing of long bones in dogs and cats. Vet. Surg. 2005, 34, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Risselada, M.; Van Bree, H.; Kramer, M.; Duchateau, L.; Verleyen, P.; Saunders, J.H. Ultrasonographic assessment of fracture healing after plate osteosynthesis. Vet. Radiol. Ultrasound 2007, 48, 368–372. [Google Scholar] [CrossRef]
- Risselada, M.; Winter, M.D.; Lewis, D.D.; Griffith, E.; Pozzi, A. Comparison of three imaging modalities used to evaluate bone healing after tibial tuberosity advancement in cranial cruciate ligament-deficient dogs and comparison of the effect of a gelatinous matrix and a demineralized bone matrix mix on bone healing-a pilot study. BMC Vet. Res. 2018, 14, 164. [Google Scholar]
- Caruso, G.; Lagalla, R.; Derchi, L.; Iovane, A.; Sanfilippo, A. Monitoring of fracture calluses with color doppler sonography. J. Clin. Ultrasound 2000, 28, 20–27. [Google Scholar] [CrossRef]
- Pozzi, A.; Risselada, M.; Winter, M.D. Assessment of fracture healing after minimally invasive plate osteosynthesis or open reduction and internal fixation of coexisting radius and ulna fractures in dogs via ultrasonography and radiography. J. Am. Vet. Med. Assoc. 2012, 241, 744–753. [Google Scholar] [CrossRef]
- Su, H.Q.; Zhuang, X.Q.; Bai, Y.; Ye, H.H.; Huang, X.H.; Lu, B.B.; Lu, S.L.; Nong, D.Y.; Wang, W. Value of ultrasonography for observation of early healing of humeral shaft fractures. J. Med. Ultrason. 2013, 40, 231–236. [Google Scholar] [CrossRef] [PubMed]
- Wawrzyk, M.; Sokal, J.; Andrzejewska, E.; Przewratil, P. The role of ultrasound imaging of callus formation in the treatment of long bone fractures in children. Pol. J. Radiol. 2015, 80, 473–478. [Google Scholar] [CrossRef] [PubMed]
Group | Collection of Adipose Tissue Intra-Operatively | Collection of Bone Graft Intra-Operatively | Filling of the Defect 1 |
---|---|---|---|
A (n = 6) | No | No | nHA paste |
B (n = 6) | No | Yes | Autologous BG with nHA paste |
C (n = 6) | Yes | No | Fresh SVF with nHA paste |
D (n = 6) | Yes | Yes | Fresh SVF, autologous BG with nHA paste |
Group | Day of the Study | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
D–3 | D–1 | D1 | D2 | D3 2 | D10 2 | D20 2 | D30 2 | D40 | D50 | D60 | D70 | D80 | D90 | |
A | 0 (0) | 0 (0) | 4(0) | 3 (0) | 3 (0) | 2 (0) | 1 (0) | 1 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) |
B | 0 (0) | 0 (0) | 4 (0) | 3 (0) | 2 (0.8) | 1 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) |
C | 0 (0) | 0 (0) | 4 (0) | 3 (0) | 2 (0) | 1 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) |
D | 0 (0) | 0 (0) | 4 (0) | 3 (0) | 2 (0) | 1 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) |
Group | Day of the Study | |||
---|---|---|---|---|
D1 | D30 | D60 2 | D90 2 | |
A | 0 (0) | 2 (0) | 3 (0) | 3 (0.8) |
B | 0 (0) | 2 (1.5) | 4 (2.8) | 5 (2.8) |
C | 0 (0) | 3 (0.8) | 5.5 (1.8) | 7 (0.8) |
D | 0 (0) | 3 (0.8) | 5 (0.8) | 6 (1.5) |
Group | Day of the Study | ||||||||
---|---|---|---|---|---|---|---|---|---|
D1 | D10 | D20 | D30 | D40 | D50 | D60 | D75 1 | D90 1 | |
A | 15 (0) | 17 (0.8) | 11 (0) | 10 (1.5) | 8.5 (1) | 7 (0.8) | 7 (1.5) | 6.5 (1) | 6 (0.8) |
B | 15 (0) | 15.5 (2.5) | 13 (2.8) | 10.5 (2.5) | 8.5 (2.5) | 6 (1.5) | 6 (1.5) | 5 (0.8) | 4.5 (1) |
C | 15 (0) | 16 (0.8) | 8.5 (3.3) | 7 (0.8) | 6 (0.8) | 6 (0) | 5 (0.8) | 4 (0) | 2 (0.8) |
D | 15 (0) | 14.5 (1.8) | 12 (1.5) | 9 (2) | 6 (1.5) | 5.5 (3.3) | 5 (3.5) | 4.5 (1.8) | 4 (0.8) |
Group | Day of the Study | |||||||
---|---|---|---|---|---|---|---|---|
D10 | D20 | D30 | D40 | D50 | D60 | D75 | D90 | |
A | 1 (0.8) | 2 (0.8) | 2 (0) | 1 (0.8) | 1 (0) | 1 (0) | 1 (0) | 0.5 (1) |
B | 1 (0.8) | 2.5 (1) | 1.5 (1) | 1 (0) | 1 (0) | 1 (0.8) | 0 (0.8) | 0 (0) |
C | 2 (0) | 3 (0) | 2 (0.8) | 1 (0) | 1 (0) | 1 (0.8) | 0 (0) | 0 (0) |
D | 1 (0) | 3 (0.8) | 2 (0) | 1 (0.8) | 1 (0) | 1 (0.8) | 0 (0) | 0 (0) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pappa, E.I.; Barbagianni, M.S.; Georgiou, S.G.; Athanasiou, L.V.; Psalla, D.; Vekios, D.; Katsarou, E.I.; Vasileiou, N.G.C.; Gouletsou, P.G.; Galatos, A.D.; et al. The Use of Stromal Vascular Fraction in Long Bone Defect Healing in Sheep. Animals 2023, 13, 2871. https://doi.org/10.3390/ani13182871
Pappa EI, Barbagianni MS, Georgiou SG, Athanasiou LV, Psalla D, Vekios D, Katsarou EI, Vasileiou NGC, Gouletsou PG, Galatos AD, et al. The Use of Stromal Vascular Fraction in Long Bone Defect Healing in Sheep. Animals. 2023; 13(18):2871. https://doi.org/10.3390/ani13182871
Chicago/Turabian StylePappa, Elena I., Mariana S. Barbagianni, Stefanos G. Georgiou, Labrini V. Athanasiou, Dimitra Psalla, Dionysios Vekios, Eleni I. Katsarou, Natalia G. C. Vasileiou, Pagona G. Gouletsou, Apostolos D. Galatos, and et al. 2023. "The Use of Stromal Vascular Fraction in Long Bone Defect Healing in Sheep" Animals 13, no. 18: 2871. https://doi.org/10.3390/ani13182871
APA StylePappa, E. I., Barbagianni, M. S., Georgiou, S. G., Athanasiou, L. V., Psalla, D., Vekios, D., Katsarou, E. I., Vasileiou, N. G. C., Gouletsou, P. G., Galatos, A. D., Prassinos, N. N., Gougoulis, D. A., Angelidou, M., Tsioli, V., Fthenakis, G. C., & Sideri, A. I. (2023). The Use of Stromal Vascular Fraction in Long Bone Defect Healing in Sheep. Animals, 13(18), 2871. https://doi.org/10.3390/ani13182871