Exploratory Study on Individual Locomotor Activity in Local Dual-Purpose and Commercial Breeder Pullets
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Housing Conditions
2.2. Red Junglefowl
2.3. Data Collection
2.4. Statistical Analysis
3. Results
3.1. Individual Differences in GLA
3.2. GLA and Animal Welfare
3.3. Breed, Sex, and Weight Differences
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- de Haas, E.N.; Oliemans, E.; van Gerwen, M.A.A.M. The Need for an Alternative to Culling Day-Old Male Layer Chicks: A Survey on Awareness, Alternatives, and the Willingness to Pay for Alternatives in a Selected Population of Dutch Citizens. Front. Vet. Sci. 2021, 8, 662197. [Google Scholar] [CrossRef]
- Krautwald-Junghanns, M.-E.; Cramer, K.; Fischer, B.; Förster, A.; Galli, R.; Kremer, F.; Mapesa, E.U.; Meissner, S.; Preisinger, R.; Preusse, G.; et al. Current approaches to avoid the culling of day-old male chicks in the layer industry, with special reference to spectroscopic methods. Poult. Sci. 2018, 97, 749–757. [Google Scholar] [CrossRef] [PubMed]
- Busse, M.; Kernecker, M.L.; Zscheischler, J.; Zoll, F.; Siebert, R. Ethical Concerns in Poultry Production: A German Consumer Survey About Dual Purpose Chickens. J. Agric. Environ. Ethics 2019, 32, 905–925. [Google Scholar] [CrossRef]
- Siekmann, L.; Meier-Dinkel, L.; Janisch, S.; Altmann, B.; Kaltwasser, C.; Sürie, C.; Krischek, C. Carcass Quality, Meat Quality and Sensory Properties of the Dual-Purpose Chicken Lohmann Dual. Foods 2018, 7, 156. [Google Scholar] [CrossRef]
- Nolte, T.; Jansen, S.; Weigend, S.; Moerlein, D.; Halle, I.; Link, W.; Hummel, J.; Simianer, H.; Sharifi, A.R. Growth Performance of Local Chicken Breeds, a High-Performance Genotype and Their Crosses Fed with Regional Faba Beans to Replace Soy. Animals 2020, 10, 702. [Google Scholar] [CrossRef]
- Meuser, V.; Weinhold, L.; Hillemacher, S.; Tiemann, I. Welfare-Related Behaviors in Chickens: Characterization of Fear and Exploration in Local and Commercial Chicken Strains. Animals 2021, 11, 679. [Google Scholar] [CrossRef]
- Mellor, D.J.; Beausoleil, N.J.; Littlewood, K.E.; McLean, A.N.; McGreevy, P.D.; Jones, B.; Wilkins, C. The 2020 Five Domains Model: Including Human-Animal Interactions in Assessments of Animal Welfare. Animals 2020, 10, 1870. [Google Scholar] [CrossRef]
- Duncan, I.J. Science-based assessment of animal welfare: Farm animals. Rev. Sci. Tech.-Off. Int. Des Epizoot. 2005, 24, 483. [Google Scholar] [CrossRef]
- EFSA Panel on Animal Health and Animal Welfare; Nielsen, S.S.; Alvarez, J.; Bicout, D.J.; Calistri, P.; Canali, E.; Drewe, J.A.; Garin-Bastuji, B.; Gonzales Rojas, J.L.; Schmidt, C.G.; et al. Welfare of broilers on farm. EFSA J. 2023, 21, e07788. [Google Scholar] [CrossRef]
- Fraser, D. Animal behaviour, animal welfare and the scientific study of affect. Appl. Anim. Behav. Sci. 2009, 118, 108–117. [Google Scholar] [CrossRef]
- Kjaer, J.B. Feather pecking in domestic fowl is genetically related to locomotor activity levels: Implications for a hyperactivity disorder model of feather pecking. Behav. Genet. 2009, 39, 564–570. [Google Scholar] [CrossRef]
- Brunberg, E.I.; Rodenburg, T.B.; Rydhmer, L.; Kjaer, J.B.; Jensen, P.; Keeling, L.J. Omnivores Going Astray: A Review and New Synthesis of Abnormal Behavior in Pigs and Laying Hens. Front. Vet. Sci. 2016, 3, 57. [Google Scholar] [CrossRef] [PubMed]
- Krause, E.T.; Petow, S.; Kjaer, J.B. A note on the physiological and behavioural consequences of cannibalistic toe pecking in laying hens (Gallus gallus domesticus). Arch. Geflugelk 2011, 75, 140–143. [Google Scholar]
- van der Eijk, J.A.; Lammers, A.; Li, P.; Kjaer, J.B.; Rodenburg, T.B. Feather pecking genotype and phenotype affect behavioural responses of laying hens. Appl. Anim. Behav. Sci. 2018, 205, 141–150. [Google Scholar] [CrossRef]
- Krause, E.T.; Naguib, M.; Trillmich, F.; Schrader, L. The effects of short term enrichment on learning in chickens from a laying strain (Gallus gallus domesticus). Appl. Anim. Behav. Sci. 2006, 101, 318–327. [Google Scholar] [CrossRef]
- Phi Van, V.D.; Krause, E.T.; Phi-van, L. Modulation of Fear and Arousal Behavior by Serotonin Transporter (5-HTT) Genotypes in Newly Hatched Chickens. Front. Behav. Neurosci. 2018, 12, 284. [Google Scholar] [CrossRef] [PubMed]
- Dudde, A.; Schrader, L.; Weigend, S.; Matthews, L.R.; Krause, E.T. More eggs but less social and more fearful? Differences in behavioral traits in relation to the phylogenetic background and productivity level in laying hens. Appl. Anim. Behav. Sci. 2018, 209, 65–70. [Google Scholar] [CrossRef]
- Mendl, M. Performing under pressure: Stress and cognitive function. Appl. Anim. Behav. Sci. 1999, 65, 221–244. [Google Scholar] [CrossRef]
- Arndt, S.S.; Goerlich, V.C.; van der Staay, F.J. A dynamic concept of animal welfare: The role of appetitive and adverse internal and external factors and the animal’s ability to adapt to them. Front. Anim. Sci. 2022, 3, 88. [Google Scholar] [CrossRef]
- Kjaer, J.B. Divergent selection on home pen locomotor activity in a chicken model: Selection program, genetic parameters and direct response on activity and body weight. PLoS ONE 2017, 12, e0182103. [Google Scholar] [CrossRef]
- Liste, G.; Campderrich, I.; de Heredia, I.B.; Estevez, I. The relevance of variations in group size and phenotypic appearance on the behaviour and movement patterns of young domestic fowl. Appl. Anim. Behav. Sci. 2015, 163, 144–157. [Google Scholar] [CrossRef]
- Krause, E.T.; Phi-van, L.; Dudde, A.; Schrader, L.; Kjaer, J.B. Behavioural consequences of divergent selection on general locomotor activity in chickens. Behav. Process. 2019, 169, 103980. [Google Scholar] [CrossRef] [PubMed]
- Jones, R.B.; Bessei, W.; Faure, J.M. Aspects of “fear” in Japanese quail chicks (coturnix coturnix Japonica) genetically selected for different levels of locomotor activity. Behav. Process. 1982, 7, 201–210. [Google Scholar] [CrossRef] [PubMed]
- Tiemann, I.; Becker, S.; Büscher, W.; Meuser, V. Exploring animal genetic resources of the domestic chicken and their behavior in the open field. J. Appl. Poult. Res. 2022, 31, 100237. [Google Scholar] [CrossRef]
- van der Sluis, M.; Asher, L.; Rodenburg, T.B.; de Haas, Y.; de Klerk, B.; Ellen, E.D. Early locomotor activity in broilers and the relationship with body weight gain. Poult. Sci. 2022, 101, 102086. [Google Scholar] [CrossRef]
- de Jong, I.C.; Blaauw, X.E.; van der Eijk, J.A.; Da Souza Silva, C.; van Krimpen, M.M.; Molenaar, R.; van den Brand, H. Providing environmental enrichments affects activity and performance, but not leg health in fast- and slower-growing broiler chickens. Appl. Anim. Behav. Sci. 2021, 241, 105375. [Google Scholar] [CrossRef]
- Bizeray, D.; Leterrier, C.; Constantin, P.; Picard, M.; Faure, J.M. Early locomotor behaviour in genetic stocks of chickens with different growth rates. Appl. Anim. Behav. Sci. 2000, 68, 231–242. [Google Scholar] [CrossRef]
- Dawkins, M.S.; Cain, R.; Merelie, K.; Roberts, S.J. In search of the behavioural correlates of optical flow patterns in the automated assessment of broiler chicken welfare. Appl. Anim. Behav. Sci. 2013, 145, 44–50. [Google Scholar] [CrossRef]
- Youssef, A.; Exadaktylos, V.; Berckmans, D.A. Towards real-time control of chicken activity in a ventilated chamber. Biosyst. Eng. 2015, 135, 31–43. [Google Scholar] [CrossRef]
- Wang, Z.-C.; He, X.-X.; Zhao, Y.-C.; Wang, Y.; Wang, J.-X.; Guo, X.; Jiang, R.-S. Exercise profile and effect on growth traits, carcass yield, meat quality, and tibial strength in Chinese Wannan chickens. Poult. Sci. 2021, 100, 721–727. [Google Scholar] [CrossRef]
- Alindekon, S.; Rodenburg, T.B.; Langbein, J.; Puppe, B.; Wilmsmeier, O.; Louton, H. Setting the stage to tag “n” track: A guideline for implementing, validating and reporting a radio frequency identification system for monitoring resource visit behavior in poultry. Poult. Sci. 2023, 102, 102799. [Google Scholar] [CrossRef]
- Ellen, E.D.; van der Sluis, M.; Siegford, J.; Guzhva, O.; Toscano, M.J.; Bennewitz, J.; van der Zande, L.E.; van der Eijk, J.A.J.; de Haas, E.N.; Norton, T.; et al. Review of Sensor Technologies in Animal Breeding: Phenotyping Behaviors of Laying Hens to Select Against Feather Pecking. Animals 2019, 9, 108. [Google Scholar] [CrossRef]
- van der Sluis, M.; de Haas, Y.; de Klerk, B.; Rodenburg, T.B.; Ellen, E.D. Assessing the Activity of Individual Group-Housed Broilers Throughout Life using a Passive Radio Frequency Identification System-A Validation Study. Sensors 2020, 20, 3612. [Google Scholar] [CrossRef]
- Ferreira, V.H.B.; Simoni, A.; Germain, K.; Leterrier, C.; Lansade, L.; Collin, A.; Mignon-Grasteau, S.; Le Bihan-Duval, E.; Guettier, E.; Leruste, H.; et al. Foraging Behavior Shows Individual-Consistency Over Time, and Predicts Range Use in Slow-Growing Free-Range Male Broiler Chickens. Front. Vet. Sci. 2022, 9, 814054. [Google Scholar] [CrossRef]
- Siegel, P.B.; Haberfeld, A.; Mukherjee, T.K.; Stallard, L.C.; Marks, H.L.; Anthony, N.B.; Dunnington, E.A. Jungle fowl–domestic fowl relationships: A use of DNA fingerprinting. World’s Poult. Sci. J. 1992, 48, 147–155. [Google Scholar] [CrossRef]
- de Haas, E.N.; Bolhuis, J.E.; Kemp, B.; Groothuis, T.G.G.; Rodenburg, T.B. Parents and early life environment affect behavioral development of laying hen chickens. PLoS ONE 2014, 9, e90577. [Google Scholar] [CrossRef]
- Welfare Quality®. Welfare Quality® Assessment Protocol for Laying Hens (Version 2.0); Welfare Quality®: Lelystad, The Netherlands, 2019; Available online: http://www.welfarequalitynetwork.net/media/1294/wq_laying_hen_protocol_20_def-december-2019.pdf (accessed on 7 February 2023).
- Powell, S.B.; Geyer, M.A.; Gallagher, D.; Paulus, M.P. The balance between approach and avoidance behaviors in a novel object exploration paradigm in mice. Behav. Brain Res. 2004, 152, 341–349. [Google Scholar] [CrossRef]
- Iffland, H.; Wellmann, R.; Preuß, S.; Tetens, J.; Bessei, W.; Piepho, H.-P.; Bennewitz, J. A novel model to explain extreme feather pecking behavior in laying hens. Behav. Genet. 2020, 50, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Krause, E.T.; Kjaer, J.B.; Lüders, C.; Phi van, L. A polymorphism in the 5’-flanking region of the serotonin transporter (5-HTT) gene affects fear-related behaviors of adult domestic chickens. Behav. Brain Res. 2017, 330, 92–96. [Google Scholar] [CrossRef] [PubMed]
- Taylor, P.S.; Hemsworth, P.H.; Groves, P.J.; Gebhardt-Henrich, S.G.; Rault, J.-L. Ranging Behaviour of Commercial Free-Range Broiler Chickens 2: Individual Variation. Animals 2017, 7, 55. [Google Scholar] [CrossRef] [PubMed]
- Dall, S.R.X.; Houston, A.I.; McNamara, J.M. The behavioural ecology of personality: Consistent individual differences from an adaptive perspective. Ecol. Lett. 2004, 7, 734–739. [Google Scholar] [CrossRef]
- Réale, D.; Dingemanse, N.J.; Kazem, A.J.N.; Wright, J. Evolutionary and ecological approaches to the study of personality. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2010, 365, 3937–3946. [Google Scholar] [CrossRef]
- Meluzzi, A.; Sirri, F. Welfare of broiler chickens. Ital. J. Anim. Sci. 2009, 8, 161–173. [Google Scholar] [CrossRef]
- Hedlund, L.; Jensen, P. Effects of stress during commercial hatching on growth, egg production and feather pecking in laying hens. PLoS ONE 2022, 17, e0262307. [Google Scholar] [CrossRef] [PubMed]
- Dawson, L.C.; Widowski, T.M.; Liu, Z.; Edwards, A.M.; Torrey, S. In pursuit of a better broiler: A comparison of the inactivity, behavior, and enrichment use of fast- and slower growing broiler chickens. Poult. Sci. 2021, 100, 101451. [Google Scholar] [CrossRef]
- Malchow, J.; Dudde, A.; Berk, J.; Krause, E.T.; Sanders, O.; Puppe, B.; Schrader, L. Is the rotarod test an objective alternative to the gait score for evaluating walking ability in chickens? Anim. Welf. 2019, 28, 261–269. [Google Scholar] [CrossRef]
- Newberry, R.C.; Keeling, L.J.; Estevez, I.; Bilčík, B. Behaviour when young as a predictor of severe feather pecking in adult laying hens: The redirected foraging hypothesis revisited. Appl. Anim. Behav. Sci. 2007, 107, 262–274. [Google Scholar] [CrossRef]
- Miller, L.J.; Vicino, G.A.; Sheftel, J.; Lauderdale, L.K. Behavioral Diversity as a Potential Indicator of Positive Animal Welfare. Animals 2020, 10, 1211. [Google Scholar] [CrossRef]
- Baxter, M.; Bailie, C.L.; O’Connell, N.E. Play behaviour, fear responses and activity levels in commercial broiler chickens provided with preferred environmental enrichments. Anim. Int. J. Anim. Biosci. 2019, 13, 171. [Google Scholar] [CrossRef] [PubMed]
- Schutz, K.E.; Jensen, P. Effects of Resource Allocation on Behavioural Strategies: A Comparison of Red Junglefowl (Gallus gallus) and Two Domesticated Breeds of Poultry. Ethology 2001, 107, 753–765. [Google Scholar] [CrossRef]
- Väisänen, J.; Jensen, P. Social versus exploration and foraging motivation in young red junglefowl (Gallus gallus) and White Leghorn layers. Appl. Anim. Behav. Sci. 2003, 84, 139–158. [Google Scholar] [CrossRef]
- Lindqvist, C.; Jensen, P. Effects of age, sex and social isolation on contrafreeloading in red junglefowl (Gallus gallus) and White Leghorn fowl. Appl. Anim. Behav. Sci. 2008, 114, 419–428. [Google Scholar] [CrossRef]
- Tiemann, I.; Hillemacher, S.; Wittmann, M. Are Dual-Purpose Chickens Twice as Good? Measuring Performance and Animal Welfare throughout the Fattening Period. Animals 2020, 10, 1980. [Google Scholar] [CrossRef]
- Reiter, K.; Bessei, W. Influence of running on leg weakness of slow and fast growing broilers. In Proceedings of the 29th International Congress of the International Society of Applied Ethology, Exeter, UK, 3–5 August 1995. [Google Scholar]
- Bessei, W. Welfare of broilers: A review. Worlds Poult. Sci. J. 2006, 62, 455–466. [Google Scholar] [CrossRef]
- Knowles, T.G.; Broom, D.M. Limb bone strength and movement in laying hens from different housing systems. Vet. Rec. 1990, 126, 354–356. [Google Scholar] [CrossRef] [PubMed]
- Strauss, E.D.; Curley, J.P.; Shizuka, D.; Hobson, E.A. The centennial of the pecking order: Current state and future prospects for the study of dominance hierarchies. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2022, 377, 20200432. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, H.; Johnston, L.J.; Martin, W. Understanding tail-biting in pigs through social network analysis. Animals 2018, 8, 13. [Google Scholar] [CrossRef] [PubMed]
- Gómez, Y.; Stygar, A.H.; Boumans, I.J.M.M.; Bokkers, E.A.M.; Pedersen, L.J.; Niemi, J.K.; Pastell, M.; Manteca, X.; Llonch, P. A Systematic Review on Validated Precision Livestock Farming Technologies for Pig Production and Its Potential to Assess Animal Welfare. Front. Vet. Sci. 2021, 8, 660565. [Google Scholar] [CrossRef] [PubMed]
- Tierschutz-Nutztierhaltungsverordnung. Verordnung zum Schutz landwirtschaftlicher Nutztiere und Anderer zur Erzeugung tierischer Produkte Gehaltener Tiere bei ihrer Haltung. Last Revision 2021. 2006. Available online: https://www.gesetze-im-internet.de/tierschnutztv/ (accessed on 31 August 2023). (In German).
- American Dairy Science Association®; The American Society of Animal Science; The Poultry Science Association. Guide for the Care and Use of Agricultural Animals in Research and Teaching. 2020. Available online: https://www.adsa.org/Portals/0/SiteContent/docs/AgGuide4th/Ag_Guide_4th_ed.pdf (accessed on 31 August 2023).
Line | Age (Weeks of Life) | Number of Birds (n) | Sampled Animals (n) | Stocking Density (Animals m−²) | Average Weight (g) | Sex Ratio (m:f) |
---|---|---|---|---|---|---|
Bielefelder (BIE) | 9 | 112 | 109 | 7.27 | 967 | 1:2.6 |
Ramelsloher (RAM) | 9 | 152 | 136 | 9.87 | 742 | 1:2.2 |
Ranger (RA) | 14 | 125 | 107 | 5.02 | 1371 | f only |
White Rock (WR) | 14 | 125 | 117 | 8.12 | 1117 | f only |
Red Junglefowl * | 116 | 12 | 12 | 0.78 | 601 | 1:4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schürmann, P.; Becker, S.; Krause, E.T.; Hillemacher, S.; Büscher, W.; Tiemann, I. Exploratory Study on Individual Locomotor Activity in Local Dual-Purpose and Commercial Breeder Pullets. Animals 2023, 13, 2879. https://doi.org/10.3390/ani13182879
Schürmann P, Becker S, Krause ET, Hillemacher S, Büscher W, Tiemann I. Exploratory Study on Individual Locomotor Activity in Local Dual-Purpose and Commercial Breeder Pullets. Animals. 2023; 13(18):2879. https://doi.org/10.3390/ani13182879
Chicago/Turabian StyleSchürmann, Pia, Senta Becker, E. Tobias Krause, Sonja Hillemacher, Wolfgang Büscher, and Inga Tiemann. 2023. "Exploratory Study on Individual Locomotor Activity in Local Dual-Purpose and Commercial Breeder Pullets" Animals 13, no. 18: 2879. https://doi.org/10.3390/ani13182879
APA StyleSchürmann, P., Becker, S., Krause, E. T., Hillemacher, S., Büscher, W., & Tiemann, I. (2023). Exploratory Study on Individual Locomotor Activity in Local Dual-Purpose and Commercial Breeder Pullets. Animals, 13(18), 2879. https://doi.org/10.3390/ani13182879