Analysis of Early Growth of Piglets from Hyperprolific Sows Using Random Regression Coefficient
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design and Data
2.2. Statistical Analysis
- yijklm is live weight;
- BWj is the effect of the birth weight class; 1–5;
- LSk is the effect of the litter size class, 1–5;
- Pl is the effect of parity;
- Sm is the effect of the sex; barrows, female;
- tijklm is the time of the measuring observation yijklm;
- β0 is the overall intercept for the jklm levels of BWj, LSk, Pl, Sm;
- β1 is the overall slope (linear term) for the jklm levels of BWj, LSk, Pl, Sm;
- β2 is the overall slope (quadratic term) for the jklm levels of BWj, LSk, Pl, Sm;
- b0 is the intercept deviation for subject i;
- b1i is the slope deviation (linear) for subject i;
- b2i is the slope deviation (quadratic) for subject i;
- ε is an independent error term distributed normally with mean 0 and variance σ2.
3. Results
3.1. Descriptive Statistics
3.2. Random Regression Coefficient Analysis
Covariance Structure
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Oliviero, C.; Junnikkala, S.; Peltoniemi, O. The Challenge of Large Litters on the Immune System of the Sow and the Piglets. Reprod. Domest. Anim. 2019, 54, 12–21. [Google Scholar] [CrossRef]
- Riddersholm, K.V.; Bahnsen, I.; Bruun, T.S.; de Knegt, L.V.; Amdi, C. Identifying Risk Factors for Low Piglet Birth Weight, High within-Litter Variation and Occurrence of Intrauterine Growth-Restricted Piglets in Hyperprolific Sows. Animals 2021, 11, 2731. [Google Scholar] [CrossRef] [PubMed]
- Milligan, B.N.; Dewey, C.E.; Grau, A.F. De Neonatal-Piglet Weight Variation and Its Relation to Pre-Weaning Mortality and Weight Gain on Commercial Farms. Prev. Vet. Med. 2002, 56, 119–127. [Google Scholar] [CrossRef] [PubMed]
- Quesnel, H.; Brossard, L.; Valancogne, A.; Quiniou, N. Influence of Some Sow Characteristics on Within-Litter Variation of Piglet Birth Weight. Animal 2008, 2, 1842–1849. [Google Scholar] [CrossRef] [PubMed]
- Kirkwood, R.N.; Langendijk, P.; Carr, J. Management Strategies for Improving Survival of Piglets from Hyperprolific Sows. Thai J. Vet. Med. 2021, 51, 629–636. [Google Scholar] [CrossRef]
- Schmitt, O.; Baxter, E.M.; Lawlor, P.G.; Boyle, L.A.; O’Driscoll, K. A Single Dose of Fat-Based Energy Supplement to Light Birth Weight Pigs Shortly After Birth Does Not Increase Their Survival and Growth. Animals 2019, 9, 227. [Google Scholar] [CrossRef]
- Kapš, M.; Lamberson, W.R. Biostatistics for Animal Science, 2nd ed.; CABI Publishing: Wallingford, UK, 2009; ISBN 0851998208. [Google Scholar]
- Meyer, K. Estimating Covariance Functions for Longitudinal Data Using a Random Regression Model. Genet. Sel. Evol. 1998, 30, 221. [Google Scholar] [CrossRef]
- Meyer, K. Scope for a Random Regression Model in Genetic Evaluation of Beef Cattle for Growth. Livest. Prod. Sci. 2004, 86, 69–83. [Google Scholar] [CrossRef]
- Schaeffer, L.R. Application of Random Regression Models in Animal Breeding. Livest. Prod. Sci. 2004, 86, 35–45. [Google Scholar] [CrossRef]
- Huisman, A.E.; Veerkamp, R.F.; Van Arendonk, J.A.M. Genetic Parameters for Various Random Regression Models to Describe the Weight Data of Pigs. J. Anim. Sci. 2002, 80, 575–582. [Google Scholar] [CrossRef]
- Wang, Y.; Diao, C.; Kang, H.; Hao, W.; Mrode, R.; Chen, J.; Liu, J.; Zhou, L. A Random Regression Model Based on a Single-Step Method for Improving the Genomic Prediction Accuracy of Residual Feed Intake in Pigs. Front. Genet. 2022, 12, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Luković, Z.; Malovrh, S.; Gorjanc, G.; Kovač, M. A Random Regression Model in Analysis of Litter Size in Pigs. South Afr. J. Anim. Sci. 2004, 34, 241–248. [Google Scholar]
- Kasap, A.; Kaić, A.; Širić, I.; Antunović, Z.; Mioč, B. The Random Regression Coefficient Approach in Analysis of Early Growth of Alpine and Saanen Kids. Small Rumin. Res. 2017, 150, 40–45. [Google Scholar] [CrossRef]
- Jančo, N.; Jančo, G.; Škorput, D.; Luković, Z. Effect of D-Kloprostenol Application Time on Onset of Partus in Sows. In Proceedings of the 51st Croatian and 11th International Symposium on Agriculture, Opatija, Croatia, 15–18 February 2016; pp. 347–350. [Google Scholar]
- SAS Institute Inc. SAS® 9.4 Guide to Software Updates and Product Changes; SAS Institute Inc.: Cary, NC, USA, 2013. [Google Scholar]
- Wichkam, H. Ggplot2: Elegant Graphics for Data Analysis, 1st ed.; Springer: New York, NY, USA, 2009; pp. 60–62. [Google Scholar]
- R Core Team. A Language and Environment for Statistical Computing 2021; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Wolf, J.; Žáková, E.; Groeneveld, E. Within-Litter Variation of Birth Weight in Hyperprolific Czech Large White Sows and Its Relation to Litter Size Traits, Stillborn Piglets and Losses until Weaning. Livest. Sci. 2008, 115, 195–205. [Google Scholar] [CrossRef]
- Oliveira, H.R.; Brito, L.F.; Lourenco, D.A.L.; Silva, F.F.; Jamrozik, J.; Schaeffer, L.R.; Schenkel, F.S. Invited Review: Advances and Applications of Random Regression Models: From Quantitative Genetics to Genomics. J. Dairy Sci. 2019, 102, 7664–7683. [Google Scholar] [CrossRef]
- Bérard, J.; Kalbe, C.; Lösel, D.; Tuchscherer, A.; Rehfeldt, C. Potential Sources of Early-Postnatal Increase in Myo W Bre Number in Pig Skeletal Muscle. Histochem. Cell Biol. 2011, 136, 217–225. [Google Scholar] [CrossRef]
- Gondret, F.; Lefaucheur, L.; Louveau, I. Influence of Piglet Birth Weight on Postnatal Growth Performance, Tissue Lipogenic Capacity and Muscle Histological Traits at Market Weight Influence of Piglet Birth Weight on Postnatal Growth Performance, Tissue Lipogenic Capacity and Muscle Histologic. Livest. Sci. 2018, 93, 137–146. [Google Scholar] [CrossRef]
- Václavková, E.; Daněk, P.; Rozkot, M. The Influence of Piglet Birth Weight on Growth Performance. Res. Pig Breed. 2012, 6, 59–61. [Google Scholar]
- Rehfeldt, C.; Kuhn, G. Consequences of Birth Weight for Postnatal Growth Performance and Carcass Quality in Pigs as Related to Myogenesis. J. Anim. Sci. 2006, 84, 113–124. [Google Scholar] [CrossRef]
- Ocepek, A.M.; Newberry, R.C.; Lise, I. Trade-Offs between Litter Size and Offspring Fitness in Domestic Pigs Subjected to Different Genetic Selection Pressures. Appl. Anim. Behav. Sci. 2017, 193, 7–14. [Google Scholar] [CrossRef]
- Père, M.; Tienne, M.E. Uterine Blood Flow in Sows: Effects of Pregnancy Stage and Litter Size. Reprod. Nutr. Dev. 2000, 40, 369–382. [Google Scholar] [CrossRef] [PubMed]
- Kobek-kjeldager, C.; Moustsen, V.A.; Theil, P.K.; Pedersen, L.J. Effect of Large Litter Size and Within-Litter Differences in Piglet Weight on the Use of Milk Replacer in Litters from Hyper-Prolific Sows under Two Housing Conditions. Appl. Anim. Behav. Sci. 2020, 230, 105046. [Google Scholar] [CrossRef]
- Božičković, I.; Vitorović, D.; Savić, R.; Blagojević, M.; Nešić, I. Influence of Litter Size on Growth and Structure of M. Semitendinosus in Newborn Piglets and Slaughter Pigs. Biotechnol. Anim. Husb. 2017, 33, 161–169. [Google Scholar] [CrossRef]
- Carney, E.E.; Tran, H.; Bundy, J.W.; Moreno, R.; Miller, P.S.; Burkey, T.E. Effect of Dam Parity on Growth Performance and Immunity of Weaned Pigs. Neb. Swine Rep. 2009, 30–32. Available online: https://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1248&context=coopext_swine (accessed on 9 September 2023).
- Amatucci, L.; Luise, D.; Correa, F.; Bosi, P.; Trevisi, P. Importance of Breed, Parity and Sow Colostrum Components on Litter Performance and Health. Animals 2022, 12, 1230. [Google Scholar] [CrossRef] [PubMed]
- Akdag, F.; Arslan, S. The Effect of Parity and Litter Size on Birth Weight and the Effect of Birth Weight Variations on Weaning Weight and Pre-Weaning Survival in Piglet. Asian J. Anim. Vet. Adv. 2009, 8, 2133–2138. [Google Scholar]
- Cisneros, F.; Ellis, M.; Mckeith, F.K.; Mccaw, J.; Fernando, R.L. Influence of Slaughter Weight on Growth and Carcass Characteristics, Commercial Cutting and Curing Yields, and Meat Quality of Barrows and Gilts from Two Genotypes. J. Anim. Sci. 1996, 74, 925–933. [Google Scholar] [CrossRef]
- Škorjanc, D.; Brus, M.; Čandek Potokar, M. Effect of Birth Weight and Sex on Pre-Weaning Growth Rate of Piglets. Arch. Anim. Breed. 2007, 50, 476–486. [Google Scholar] [CrossRef]
- Bocian, M.; Jankowiak, H.; Cebulska, A.; Wiśniewska, J.; Fratczak, K.; Włodarski, W.; Kapelański, W. Differences in Piglets Sex Proportion in Litter and in Body Weight at Birth and Weaning and Fattening Results. J. Cent. Eur. Agric. 2012, 13, 475–482. [Google Scholar] [CrossRef]
- Lee, J.H.; Song, M.H.; Yun, W.; Liu, S.D.; Lee, C.H.; Oh, H.J.; An, J.S.; Yu, D.J.; Kim, H.B.; Cho, J.H. Influence of Season of Birth, Sex and Paternal Line on Growth Performance and Carcass Traits in Pigs. S. Afr. J. Anim. Sci. 2019, 49, 372–378. [Google Scholar] [CrossRef]
- Kielly, J.; Dewey, C.E.; Cochran, M. Castration at 3 Days of Age Temporarily Slows Growth of Pigs Materials and Methods Herd and Facilities. Swine Health Prod. 1999, 7, 151–153. [Google Scholar]
Pre-Starter | Starter | Grover | |
---|---|---|---|
Protein, % | 17.56 | 16.5 | 16.70 |
Fibre, % | 3.20 | 3.10 | 4.04 |
Lipid, % | 4.60 | 5.20 | 4.55 |
Ash, % | 6.00 | 7.00 | 6.50 |
Lysin, % | 1.4 | 1.44 | 1.31 |
Methionine, % | 0.37 | 0.44 | 0.44 |
Calcium, % | 0.60 | 0.70 | 0.68 |
Phosphorus, % | 5.57 | 0.64 | 0.49 |
Sodium, % | 0.29 | 0.21 | 0.23 |
Number of Piglets Born Alive | Class | Number of Piglets | Proportion | Birth Weight (g) | Class | Number of Piglets | Proportion |
---|---|---|---|---|---|---|---|
10–12 | 1 | 57 | 15.83 | ≤1000 | 1 | 57 | 15.83 |
13–15 | 2 | 65 | 18.06 | 1001–1200 | 2 | 52 | 14.44 |
16–18 | 3 | 163 | 45.28 | 1201–1400 | 3 | 103 | 28.61 |
19–21 | 4 | 56 | 15.56 | 1401–1600 | 4 | 69 | 19.17 |
>21 | 5 | 19 | 5.28 | ≥1601 | 5 | 79 | 21.94 |
Number of litters | 25 |
Number of male piglets/castrates | 194 |
Number of female piglets | 166 |
Total number of piglets | 360 |
Parameter | Mean | SD | CV | Min | Max |
---|---|---|---|---|---|
NBA | 15.71 | 3.10 | 19.71 | 6 | 21 |
Stillborn | 2.18 | 2.65 | 121.40 | 0 | 9 |
Birth weight, kg | 1.33 | 0.33 | 25.17 | 0.40 | 2.22 |
Final weight (85 d) | 27.96 | 5.30 | 18.96 | 15.40 | 42.00 |
1 | 2 | 3 | 4 | 5 | |
---|---|---|---|---|---|
1 | 1.0000 | 0.4033 | −0.2706 | 0.2732 | −0.4601 |
2 | 1.0000 | 0.7114 | 0.1894 | 0.1003 | |
3 | 1.0000 | −0.1079 | 0.3426 | ||
4 | 1.0000 | 0.5670 | |||
5 | 1.0000 |
Source | DF | F Value | p Value |
---|---|---|---|
Birth weight | 1 | 651.53 | <0.0001 |
Litter size class | 4 | 7.69 | <0.0001 |
Parity | 4 | 9.42 | <0.0001 |
Sex | 1 | 0.02 | 0.8875 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Škorput, D.; Jančo, N.; Karolyi, D.; Kaić, A.; Luković, Z. Analysis of Early Growth of Piglets from Hyperprolific Sows Using Random Regression Coefficient. Animals 2023, 13, 2888. https://doi.org/10.3390/ani13182888
Škorput D, Jančo N, Karolyi D, Kaić A, Luković Z. Analysis of Early Growth of Piglets from Hyperprolific Sows Using Random Regression Coefficient. Animals. 2023; 13(18):2888. https://doi.org/10.3390/ani13182888
Chicago/Turabian StyleŠkorput, Dubravko, Nina Jančo, Danijel Karolyi, Ana Kaić, and Zoran Luković. 2023. "Analysis of Early Growth of Piglets from Hyperprolific Sows Using Random Regression Coefficient" Animals 13, no. 18: 2888. https://doi.org/10.3390/ani13182888
APA StyleŠkorput, D., Jančo, N., Karolyi, D., Kaić, A., & Luković, Z. (2023). Analysis of Early Growth of Piglets from Hyperprolific Sows Using Random Regression Coefficient. Animals, 13(18), 2888. https://doi.org/10.3390/ani13182888