Differences in Milk Proteomic Profiles between Estrous and Non-Estrous Dairy Cows
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Animals
2.2. Sample Collection
2.3. TMT-Based Proteomics Analysis
2.3.1. Protein Extraction
2.3.2. Trypsin Digestion
2.3.3. TMT Labeling
2.3.4. HPLC Fractionation
2.3.5. LC-MS/MS Analysis
2.3.6. Database Search
2.3.7. Statistical Analysis
2.3.8. Bioinformatics Analysis of Differentially Expressed Proteins
3. Results
3.1. Identification of Differentially Expressed Proteins
3.2. GO Functional Classification of Differentially Expressed Proteins
3.3. KEGG Pathway Enrichment of Differentially Expressed Proteins
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Reith, S.; Hoy, S. Review: Behavioral signs of estrus and the potential of fully automated systems for detection of estrus in dairy cattle. Animals 2018, 12, 398–407. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.S.; Jacinto, J.G.P.; Mϋnchemyer, W.; Walte, A.; Gentile, A.; Formigoni, A.; Mammi, L.M.E.; Csaba Bajcsy, Á.; Abdu, M.S.; Kamel, M.M.; et al. Estrus Detection in a Dairy Herd Using an Electronic Nose by Direct Sampling on the Perineal Region. Vet. Sci. 2022, 9, 688. [Google Scholar] [CrossRef] [PubMed]
- Higaki, S.; Horihata, K.; Suzuki, C.; Sakurai, R.; Suda, T.; Yoshioka, K. Estrus Detection Using Background Image Subtraction Technique in Tie-Stalled Cows. Animals 2021, 11, 1795. [Google Scholar] [CrossRef] [PubMed]
- Toledo-Alvarado, H.; Vazquez, A.I.; de Los Campos, G.; Tempelman, R.J.; Gabai, G.; Cecchinato, A.; Bittante, G. Changes in milk characteristics and fatty acid profile during the estrous cycle in dairy cows. J. Dairy Sci. 2018, 101, 9135–9153. [Google Scholar] [CrossRef]
- Wu, Z.L.; Chen, S.Y.; Hu, S.; Jia, X.; Wang, J.; Lai, S.J. Metabolomic and Proteomic Profiles Associated with Ketosis in Dairy Cows. Front. Genet. 2020, 11, 551587. [Google Scholar] [CrossRef]
- Zhao, C.; Shu, S.; Bai, Y.; Wang, D.; Xia, C.; Xu, C. Plasma Protein Comparison between Dairy Cows with Inactive Ovaries and Estrus. Sci. Rep. 2019, 9, 13709. [Google Scholar] [CrossRef]
- Zhao, C.; Bai, Y.L.; Fu, S.X.; Wu, L.; Xu, C.; Xia, C. Follicular fluid proteomic profiling of dairy cows with anestrus caused by negative energy balance. Ital. J. Anim. Sci. 2021, 20, 650–663. [Google Scholar] [CrossRef]
- Foroutan, A.; Guo, A.C.; Vazquez-Fresno, R.; Lipfert, M.; Zhang, L.; Zheng, J.; Badran, H.; Budinski, Z.; Mandal, R.; Ametaj, B.N.; et al. Chemical Composition of Commercial Cow’s Milk. J. Agric. Food Chem. 2019, 67, 4897–4914. [Google Scholar] [CrossRef]
- Du, C.; Nan, L.; Li, C.; Sabek, A.; Wang, H.; Luo, X.; Su, J.; Hua, G.; Ma, Y.; Zhang, S. Influence of Estrus on the Milk Characteristics and Mid-Infrared Spectra of Dairy Cows. Animals 2021, 11, 1200. [Google Scholar] [CrossRef] [PubMed]
- Zebari, H.M.; Rutter, S.M.; Bleach, E.C.L. Fatty acid profile of milk for determining reproductive status in lactating Holstein Friesian cows. Anim. Reprod. Sci. 2019, 202, 26–34. [Google Scholar] [CrossRef]
- Forde, N.; Mehta, J.P.; McGettigan, P.A.; Mamo, S.; Bazer, F.W.; Spencer, T.E.; Lonergan, P. Alterations in expression of endometrial genes coding for proteins secreted into the uterine lumen during conceptus elongation in cattle. BMC Genom. 2013, 14, 321. [Google Scholar] [CrossRef] [PubMed]
- Pandey, K.; Mizukami, Y.; Watanabe, K.; Sakaguti, S.; Kadokawa, H. Deep sequencing of the transcriptome in the anterior pituitary of heifers before and after ovulation. J. Vet. Med. Sci. 2017, 79, 1003–1012. [Google Scholar] [CrossRef]
- Johnston, D.; Malo Estepa, I.; Ebhardt, H.A.; Crowe, M.A.; Diskin, M.G. Differences in the bovine milk whey proteome between early pregnancy and the estrous cycle. Theriogenology 2018, 114, 301–307. [Google Scholar] [CrossRef] [PubMed]
- Musavi, S.A.A.; Yamashita, S.; Fujihara, T.; Masaka, H.; Islam, M.R.; Kim, S.; Gotoh, T.; Kawahara, M.; Tashiro, K.; Yamauchi, N. Analysis of differentially expressed genes and the promoters in bovine endometrium throughout estrus cycle and early pregnancy. Anim. Sci. J. 2018, 89, 1609–1621. [Google Scholar] [CrossRef] [PubMed]
- Samimi, A.S.; Aghamiri, S.M.; Babaei, H.; Heidarabadypor, R. Changes of acute-phase proteins during different phases of the estrous cycle in Ovsynch-synchronized Holstein cows. Iran J. Vet. Res. 2020, 21, 226–229. [Google Scholar]
- de Andrade Melo-Sterza, F.; Poehland, R. Lipid Metabolism in Bovine Oocytes and Early Embryos under In Vivo, In Vitro, and Stress Conditions. Int. J. Mol. Sci. 2021, 22, 3421. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Qu, J.; Tian, M.; Yang, R.; Song, X.; Li, R.; Yan, J.; Qiao, J. Lipid Metabolic Process Involved in Oocyte Maturation During Folliculogenesis. Front. Cell Dev. Biol. 2022, 10, 806890. [Google Scholar] [CrossRef]
- Recoules, E.; De La Torre, A.; Agabriel, J.; Egal, D.; Blanc, F. Subcutaneous body lipids affect cyclicity and estrus behavior in primiparous Charolais cows. Anim. Reprod. Sci. 2013, 140, 115–123. [Google Scholar] [CrossRef]
- Kajdasz, A.; Warzych, E.; Derebecka, N.; Madeja, Z.E.; Lechniak, D.; Wesoly, J.; Pawlak, P. Lipid Stores and Lipid Metabolism Associated Gene Expression in Porcine and Bovine Parthenogenetic Embryos Revealed by Fluorescent Staining and RNA-seq. Int. J. Mol. Sci. 2020, 21, 6488. [Google Scholar] [CrossRef]
- Yue, B.; Wu, J.; Shao, S.; Zhang, C.; Fang, X.; Bai, Y.; Qi, X.; Chen, H. Polymorphism in PLIN2 gene and its association with growth traits in Chinese native cattle. Anim. Biotechnol. 2020, 31, 142–147. [Google Scholar] [CrossRef]
- Li, P.; Wang, Y.; Zhang, L.; Ning, Y.; Zan, L. The Expression Pattern of PLIN2 in Differentiated Adipocytes from Qinchuan Cattle Analysis of Its Protein Structure and Interaction with CGI-58. Int. J. Mol. Sci. 2018, 19, 1336. [Google Scholar] [CrossRef]
- Castro, N.A.; Pfeifer, L.F.M.; Andrade, J.S.; Rincón, J.A.A.; Pegoraro, L.M.C.; Schneider, A. Effect of serum paraoxonase-1 (PON1) activity on follicular development and pregnancy rate in cattle. Anim. Reprod. Sci. 2018, 188, 130–136. [Google Scholar] [CrossRef] [PubMed]
- Schneider, A.; Absalon-Medina, V.A.; Esposito, G.; Corrêa, M.N.; Butler, W.R. Paraoxonase (PON) 1, 2 and 3 expression in granulosa cells and PON1 activity in follicular fluid of dairy cows. Reprod. Domest. Anim. 2013, 48, 989–994. [Google Scholar] [CrossRef] [PubMed]
- Grala, T.M.; Roche, J.R.; Kay, J.K.; Rius, A.G.; White, H.M.; Donkin, S.S.; Littlejohn, M.D.; Snell, R.G.; Phyn, C.V. The expression of genes involved in hepatic metabolism is altered by temporary changes to milking frequency. J. Dairy Sci. 2014, 97, 838–850. [Google Scholar] [CrossRef]
- Scalici, E.; Bechoua, S.; Astruc, K.; Duvillard, L.; Gautier, T.; Drouineaud, V.; Jimenez, C.; Hamamah, S. Apolipoprotein B is regulated by gonadotropins and constitutes a predictive biomarker of IVF outcomes. Reprod. Biol. Endocrinol. 2016, 14, 28. [Google Scholar] [CrossRef]
- Yang, X.; Zhao, Z.; Fan, Q.; Li, H.; Liu, L.Z.C.; Liang, X. Cholesterol metabolism is decreased in patients with diminished ovarian reserve. Reprod. Biomed. Online 2022, 44, 185–192. [Google Scholar] [CrossRef] [PubMed]
- Warzych, E.; Lipinska, P. Energy metabolism of follicular environment during oocyte growth and maturation. J. Reprod. Dev. 2020, 66, 1–7. [Google Scholar] [CrossRef]
- Shi, M.; Sirard, M.A. Metabolism of fatty acids in follicular cells; oocytes; and blastocysts. Reprod. Fertil. 2022, 3, R96–R108. [Google Scholar] [CrossRef]
- Fernandes, C.A.C.; Lopes, A.C.; Gonçalves, F.C.; Pereira, J.R.; Guimarães, J.P.A.; Castilho, A.C.S.; Caixeta, E.S. Improvement in early antral follicle development and gene expression modulation prior to follicle aspiration in bovine cumulus-oocyte complexes by equine chorionic gonadotropin. Theriogenology 2021, 172, 281–288. [Google Scholar] [CrossRef]
- Du, L.; Chang, T.; An, B.; Liang, M.; Deng, T.; Li, K.; Cao, S.; Du, Y.; Gao, X.; Xu, L.; et al. Transcriptomics and Lipid Metabolomics Analysis of Subcutaneous; Visceral; and Abdominal Adipose Tissues of Beef Cattle. Genes 2022, 14, 37. [Google Scholar] [CrossRef]
- Zheng, P.; Huang, H.; Li, X.; Huang, F.; Adeniran, S.O.; Wang, Z.; Feng, R.; Zhang, G. LRH-A3 and HCG increase pregnancy rate during timed artificial insemination in dairy cows. Anim. Sci. J. 2021, 92, e13549. [Google Scholar] [CrossRef]
- Borchardt, S.; Haimerl, P.; Heuwieser, W. Effect of insemination after estrous detection on pregnancy per artificial insemination and pregnancy loss in a Presynch-Ovsynch protocol: A meta-analysis. J. Dairy Sci. 2016, 99, 2248–2256. [Google Scholar] [CrossRef] [PubMed]
- Macmillan, K.; Gobikrushanth, M.; Mapletoft, R.J.; Colazo, M.G. The effect of altering the timing of GnRH administration and artificial insemination in a modified 5-d CO-Synch protocol using sex-sorted semen in dairy heifers. Theriogenology 2021, 159, 53–59. [Google Scholar] [CrossRef] [PubMed]
- LeRoy, C.N.S.; Walton, J.S.; LeBlanc, S.J. Estrous detection intensity and accuracy and optimal timing of insemination with automated activity monitors for dairy cows. J. Dairy Sci. 2018, 101, 1638–1647. [Google Scholar] [CrossRef] [PubMed]
Protein Accession | Protein Description | Gene Name | MFC | U/D | p Value |
---|---|---|---|---|---|
F1MTB5 | F-box and leucine rich repeat protein 19 | FBXL19 | 0.72 | D | 0.00 |
E1BBV1 | Round spermatid basic protein 1 | RSBN1 | 2.78 | U | 0.00 |
A0A3Q1MJ34 | 40S ribosomal protein S9 | RPS9 | 3.09 | U | 0.02 |
F1N1Z8 | Uncharacterized protein | LOC104975830 | 0.66 | D | 0.00 |
Q3ZC35 | Cellular communication network factor 1 | CCN1 | 0.66 | D | 0.04 |
P61223 | Ras-related protein Rap-1b | RAP1B | 0.77 | D | 0.01 |
Q3T0Q4 | Nucleoside diphosphate kinase B | NME2 | 0.71 | D | 0.00 |
Q0VD31 | F-box/LRR-repeat protein 4 | FBXL4 | 1.93 | U | 0.00 |
P62157 | Calmodulin | CALM | 0.56 | D | 0.00 |
Q58CP2 | Inactive C-alpha-formylglycine-generating enzyme 2 | SUMF2 | 1.39 | U | 0.03 |
Q2KJ93 | Cell division control protein 42 homolog | CDC42 | 1.32 | U | 0.03 |
F1MGR1 | Sodium/nucleoside cotransporter | SLC28A3 | 1.43 | U | 0.00 |
A0A3Q1M483 | Acetyl-CoA carboxylase 1 | ACACA | 1.49 | U | 0.00 |
A0A3Q1M7Y8 | Procollagen-lysine,2-oxoglutarate 5-dioxygenase 1 | PLOD1 | 0.72 | D | 0.03 |
A0A3Q1NIJ7 | Heparanase | HPSE | 0.64 | D | 0.00 |
A0A3Q1N0L4 | Dynamin binding protein | DNMBP | 0.69 | D | 0.03 |
A0A3Q1LXG9 | von Willebrand factor A domain-containing protein 1 | VWA1 | 0.65 | D | 0.01 |
A0A3Q1LSP4 | Complement C8 alpha chain | C8A | 0.73 | D | 0.01 |
A0A3Q1MAQ8 | Serine protease 8 | PRSS8 | 1.39 | U | 0.02 |
G3N0M6 | CIDE-N domain-containing protein | CIDEA | 1.61 | U | 0.00 |
E1BQ28 | Solute carrier family 39 member 8 | SLC39A8 | 1.52 | U | 0.00 |
E1BNE1 | Lipid droplet associated hydrolase | LDAH | 1.32 | U | 0.04 |
Q2KIS4 | Dehydrogenase/reductase (SDR family) member 1 | DHRS1 | 1.35 | U | 0.00 |
E1BJF9 | Serum amyloid A protein | LOC104968478 | 1.42 | U | 0.02 |
G3N2S4 | Leucine rich repeat containing 26 | LRRC26 | 0.65 | D | 0.04 |
F1MXQ3 | FAM20C golgi associated secretory pathway kinase | FAM20C | 0.76 | D | 0.00 |
F1MUL0 | Leukocyte surface antigen CD47 | CD47 | 1.35 | U | 0.01 |
F1MYL3 | Syntaxin-binding protein 6 | STXBP6 | 1.40 | U | 0.02 |
E1BJ18 | Calpain 6 | CAPN6 | 1.32 | U | 0.00 |
F1MEX9 | Acyl-CoA synthetase long chain family member 3 | ACSL3 | 1.34 | U | 0.00 |
F1MXP8 | Prosaposin | PSAP | 0.76 | D | 0.00 |
A8E654 | COL18A1 protein | COL18A1 | 0.75 | D | 0.00 |
Q2KIW1 | Paraoxonase 1 | PON1 | 0.66 | D | 0.03 |
A6QPW7 | TNF receptor superfamily member 6b | TNFRSF6B | 0.63 | D | 0.00 |
Q0VCZ8 | Acyl-CoA synthetase long-chain family member 1 | ACSL1 | 1.41 | U | 0.00 |
Q0IIA2 | Odorant-binding protein-like | MGC151921 | 0.68 | D | 0.02 |
F1MN49 | Eukaryotic translation initiation factor 5A | EIF5A2 | 1.31 | U | 0.03 |
A0A3Q1MUW9 | F-box/LRR-repeat protein 20 | FBXL20 | 1.59 | U | 0.01 |
F6Q8A8 | Nucleobindin 2 | NUCB2 | 0.60 | D | 0.00 |
A0A3Q1MLF5 | AP complex subunit sigma | AP1S2 | 0.73 | D | 0.04 |
Q3SYR8 | Immunoglobulin J chain | JCHAIN | 0.70 | D | 0.04 |
A2VDV1 | Ankyrin repeat domain 22 | ANKRD22 | 1.51 | U | 0.03 |
A8E4N5 | RING1 protein | RING1 | 0.71 | D | 0.04 |
A6QPK0 | SCGB2A2 protein | SCGB2A2 | 0.73 | D | 0.02 |
Q32KV6 | Nucleotide exchange factor SIL1 | SIL1 | 0.61 | D | 0.00 |
Q0VCP3 | Olfactomedin-like protein 3 | OLFML3 | 1.96 | U | 0.00 |
Q3ZBE9 | Sterol-4-alpha-carboxylate 3-dehydrogenase, decarboxylating | NSDHL | 1.48 | U | 0.00 |
P62998 | Ras-related C3 botulinum toxin substrate 1 | RAC1 | 1.36 | U | 0.00 |
Q9TUM6 | Perilipin-2 | PLIN2 | 1.46 | U | 0.00 |
P62833 | Ras-related protein Rap-1A | RAP1A | 1.51 | U | 0.01 |
F1N152 | Serine protease HTRA1 | HTRA1 | 0.75 | D | 0.00 |
P19803 | Rho GDP-dissociation inhibitor 1 | ARHGDIA | 1.30 | U | 0.00 |
P80195 | Glycosylation-dependent cell adhesion molecule 1 | GLYCAM1 | 0.69 | D | 0.00 |
P42916 | Collectin-43 | CL43 | 0.73 | D | 0.01 |
P10790 | Fatty acid-binding protein, heart | FABP3 | 1.35 | U | 0.00 |
P18892 | Butyrophilin subfamily 1 member A1 | BTN1A1 | 1.38 | U | 0.02 |
P81134 | Renin receptor | ATP6AP2 | 0.74 | D | 0.00 |
O46375 | Transthyretin | TTR | 0.76 | D | 0.00 |
A0JNP2 | Secretoglobin family 1D member | SCGB1D | 0.74 | D | 0.00 |
Q0IIG8 | Ras-related protein Rab-18 | RAB18 | 1.32 | U | 0.00 |
Q3SZF2 | ADP-ribosylation factor 4 | ARF4 | 1.49 | U | 0.02 |
G3X807 | Histone H4 | H4C9 | 0.46 | D | 0.00 |
G3MZ19 | Jacalin-type lectin domain-containing protein | ZG16B | 0.66 | D | 0.01 |
F1MMS7 | SERPIN domain-containing protein | / | 0.43 | D | 0.01 |
P56425 | Cathelicidin-7 | CATHL7 | 0.66 | D | 0.04 |
A0A3Q1MFR4 | Apolipoprotein B | APOB | 1.31 | U | 0.00 |
E1B8Q6 | Uncharacterized protein | LOC112441458 | 0.59 | D | 0.02 |
F6S1Q0 | Keratin 18 | KRT18 | 0.41 | D | 0.01 |
A0A3Q1MKJ8 | Syndecan | SDC2 | 0.75 | D | 0.01 |
A0A452DJE4 | Actin, aortic smooth muscle | ACTA2 | 0.66 | D | 0.01 |
E1B6Z6 | Lipocalin 2 | LCN2 | 0.53 | D | 0.00 |
A5D984 | Pyruvate kinase | PKM | 0.69 | D | 0.00 |
A8E4P3 | STOM protein | STOM | 0.72 | D | 0.02 |
A0A3Q1MB98 | Haptoglobin | HP | 0.59 | D | 0.00 |
Q9XSJ4 | Alpha-enolase | ENO1 | 0.68 | D | 0.00 |
O02853 | Prostaglandin-H2 D-isomerase | PTGDS | 0.71 | D | 0.00 |
P27479 | Arachidonate 15-lipoxygenase | ALOX15 | 1.32 | U | 0.01 |
P52176 | Matrix metalloproteinase-9 | MMP9 | 0.52 | D | 0.01 |
Q5E9F7 | Cofilin-1 | CFL1 | 0.76 | D | 0.00 |
P22226 | Cathelicidin-1 | CATHL1 | 0.58 | D | 0.00 |
Q3MHR7 | Actin-related protein 2/3 complex subunit 2 | ARPC2 | 0.52 | D | 0.02 |
Q1JPB0 | Leukocyte elastase inhibitor | SERPINB1 | 0.51 | D | 0.02 |
P33046 | Cathelicidin-4 | CATHL4 | 0.63 | D | 0.02 |
P19660 | Cathelicidin-2 | CATHL2 | 0.60 | D | 0.01 |
Q3T149 | Heat shock protein beta-1 | HSPB1 | 0.70 | D | 0.02 |
Q8SPP7 | Peptidoglycan recognition protein 1 | PGLYRP1 | 0.60 | D | 0.04 |
P28782 | Protein S100-A8 | S100A8 | 0.39 | D | 0.00 |
Q5E956 | Triosephosphate isomerase | TPII | 0.59 | D | 0.03 |
P48616 | Vimentin | VIM | 0.70 | D | 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, C.; Nan, L.; Li, C.; Chu, C.; Wang, H.; Fan, Y.; Ma, Y.; Zhang, S. Differences in Milk Proteomic Profiles between Estrous and Non-Estrous Dairy Cows. Animals 2023, 13, 2892. https://doi.org/10.3390/ani13182892
Du C, Nan L, Li C, Chu C, Wang H, Fan Y, Ma Y, Zhang S. Differences in Milk Proteomic Profiles between Estrous and Non-Estrous Dairy Cows. Animals. 2023; 13(18):2892. https://doi.org/10.3390/ani13182892
Chicago/Turabian StyleDu, Chao, Liangkang Nan, Chunfang Li, Chu Chu, Haitong Wang, Yikai Fan, Yabin Ma, and Shujun Zhang. 2023. "Differences in Milk Proteomic Profiles between Estrous and Non-Estrous Dairy Cows" Animals 13, no. 18: 2892. https://doi.org/10.3390/ani13182892
APA StyleDu, C., Nan, L., Li, C., Chu, C., Wang, H., Fan, Y., Ma, Y., & Zhang, S. (2023). Differences in Milk Proteomic Profiles between Estrous and Non-Estrous Dairy Cows. Animals, 13(18), 2892. https://doi.org/10.3390/ani13182892