Selected Acoustic Frequencies Have a Positive Impact on Behavioural and Physiological Welfare Indicators in Thoroughbred Racehorses
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Population (See Also Appendix A)
2.2. Study Phases and Playback Protocol
2.3. Assessment of Behavioral and Physiological States of Horses
2.3.1. Behavioral Measures
Welfare and Emotional Indicators (See Also Appendix B)
- -
- Welfare indicators: stereotypic behaviors (motor and oral) ([41]; see Appendix B and Appendix C). Many studies on horses focus on the ‘traditionally’ recognized stereotyped behaviors, but it is crucial to also take into account other more subtle behaviors to ensure a reliable assessment [17]. This is why, in addition to the ‘classical’ stereotypies, well known and described ([42], cribbing, windsucking, weaving), we have considered other abnormal repeated behaviors also cited and observed here (tongue playing, head movement, repetitive licking, etc. [15,43,44,45,46,47,48,49,50,51]).
- -
- -
- Emotional indicators, including agitation behaviors (active walk, rears…) and frustration behaviors (pawing, vacuum threats, etc.) (see details in Appendix B and [54]).
- -
Time Budget (Appendix D)
2.3.2. Physiological Measures
2.4. Statistical Analyses
3. Results (See Also Appendix E)
3.1. Pre-Playback Phase
3.2. Behavioral Changes According to the Study Phase (Figure 3)
3.3. Changes in Time Budget (Table 1, Figure 4)
Behavior | Mean, Standard Deviation, % of Minimum and Maximum Time for Each Behaviour for Each Period | Friedman Test, df = 2 | Comparisons of Phases 2 to 2: Wilcoxon with BH Correction | ||||
---|---|---|---|---|---|---|---|
PRE | PL | POST | PRE/PL | PL/POST | PRE/POST | ||
Sternal recumbency | 5.9 ± 5.2 | 13.8 ± 7.4 | 7.5 ± 5.4 | p = 0.0004 | p = 0.002 | p = 0.002 | |
Min 0 | Min 4 | Min 0 | |||||
Max 17.4 | Max 25 | Max 17 | |||||
Lateral recumbency | 0.9 ± 1.2 | 4.0 ± 4.2 | 2.7 ± 2.7 | p = 0.02 | p = 0.05 | ||
Min 0 | Min 0 | Min 0 | |||||
Max 3.9 | Max 12 | Max 9 | |||||
Observation | 15.6 ± 6.4 | 16.4 ± 9.3 | 11.4 ± 5.7 | p = 0.02 | |||
Min 6 | Min 8 | Min 5 | |||||
Max 29 | Max 34 | Max 22 | |||||
Hay feeding | 27.1 ± 5.3 | 25.5 ± 6.1 | 38.7 ± 11.9 | p = 0.002 | p = 0.003 | p = 0.004 | |
Min 20 | Min 13 | Min 21 | |||||
Max 35 | Max 32 | Max 62 | |||||
Exploration of environment | 2.7 ± 1.8 | 1.0 ± 1.2 | 1.6 ± 1.8 | p = 0.03 | p = 0.01 | ||
Min 1 | Min 8 | Min 5 | |||||
Max 7 | Max 34 | Max 21 | |||||
Fixed gazes | 15.2 ± 7.7 | 5.7 ± 3.9 | 5.0 ± 3.0 | p = 0.0001 | p = 0.0007 | p = 0.0007 | |
Min 7 | Min 4 | Min 5 | |||||
Max 36 | Max 34 | Max 22 |
3.4. Physiological Changes According to the Study Phase (Figure 5)
4. Discussion
- Effect of Acoustic Stimulation on Horses’ Behavior and Physiology
- What sound?
- What mechanisms of sound transmission and its effects?
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
HORSE | SEX | AGE | TIME IN STABLE | PRE-PLAYBACK | PLAYBACK | POST-PLAYBACK | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
M | T Level | Nb T Sessions | Nb of Races | M | T Level | Nb T Sessions | M | T Level | Nb T Sessions | Nb T Sessions | Nb of Races | ||||
1 | Gelding | 6 | 6 months | / | T | 18 | 2 | / | T | 18 | 2 | / | PT | 18 | 0 |
2 | Gelding | 5 | 5 months | / | PT | 18 | 0 | / | T | 18 | 1 | / | T | 18 | 1 |
3 | Gelding | 4 | 3 months | / | T | 18 | 2 | / | T | 18 | 2 | / | T | 18 | 1 |
4 | Mare | 4 | 1 months | Tildren | PT | 18 | 0 | / | PT | 18 | 0 | Vulvo | T | 18 | 0 |
5 | Mare | 4 | 6 months | / | T | 18 | 1 | / | T | 18 | 2 | / | PT | 18 | 0 |
6 | Gelding | 3 | 5 months | / | PT | 18 | 0 | / | PT | 18 | 0 | / | PT | 18 | 0 |
7 | Gelding | 3 | 5 months | / | PT | 18 | 0 | / | PT | 18 | 0 | / | PT | 18 | 0 |
8 | Mare | 3 | 2 months | / | PT | 18 | 0 | / | PT | 18 | 0 | / | T | 18 | 1 |
9 | Gelding | 7 | 16 months | / | T | 18 | 2 | / | T | 18 | 1 | / | T | 18 | 1 |
10 | Mare | 3 | 7 months | / | T | 18 | 1 | / | T | 18 | 1 | / | T | 18 | 1 |
11 | Gelding | 8 | 13 months | / | PT | 18 | 0 | / | T | 18 | 1 | / | T | 18 | 1 |
12 | Mare | 3 | 3 months | / | T | 18 | 1 | / | T | 18 | 1 | / | T | 18 | 1 |
Appendix B
Behavioral Category | Behavior | Description | |
---|---|---|---|
Frustration behaviors (non-repetitive) [54,133] | Pawing | A foreleg is lifted off the ground, extended in the object direction and brought back. | |
Feeder-directed behaviors | Bites, licks, catches feeder with teeth. | ||
Other ambiguous behaviors/redirected activities | Yawning (not followed by rest) [52] | Long and deep inspiration with the mouth widely opened, the jaws being, either directly opposed, or shifted sideways. | |
Vacuum chewing (with lip licking) [17] | Up and down or lateral chewing movements of the jaw without food in the mouth and accompanied most often by lip licking. | ||
Agitation behaviors [50,134,135,136,137] | Active walk between door and back wall | Make a straight line from the door to the back of the stall with a continuous and active step and back to the door without repeating. | |
Rears | Stand up on the hind legs. | ||
Air kicking | Sharp and backward projection of the hind legs while leaning on the front legs and lowering the neck. | ||
Stereotypic/abnormal repetitive behaviors observed (repeated at least 3 times successively and observed at least 5 times, independently of the observation period [15,39,137] | Motor | Head shaking | Vertical movements of head and neck. |
Weaving | Lateral movement of head, neck, forequarters and sometimes hindquarters. | ||
Oral | Cribbing | Grasping a fixed object with the incisors and pulling back. | |
Lips clapping | Repeated and rapid opening and closing of the lips causing clapping noises. | ||
Mouth movements | Opening of the mouth and lateral movementsof the upper and lower jaws. | ||
Mouth opening | Mouth opening (>1 s) outside yawning context. | ||
Tongue movements | Move the tongue out of the open mouth. | ||
Vacuum and object-directed nibbling | Exploration with lip movements or tip of the nose on the different objects and in the void. | ||
Object biting or licking | Grasping and clamping with teeth or licking various supports and fixed objects. | ||
Depressed state [19,138] | Depressed-like posture | Standing, inactive, neck mostly perpendicular to the ground, with fixed head, ears and eyes with a fixed stance. | |
Acoustic production [55,56,139] | Non-vocal sound | Snort | Pulsed non-vocal sound, emitted with the mouth closed, by a forced expulsion of air through the nostrils, making them vibrate. Observed mostly in a context of positive emotion. |
Snore | Pulsed non-vocal sound of very short hoarse inhalation produced in a context of low alertness, such as when facing a novel object. | ||
Sigh | Slow exhale through the nose that can be preceded by a deep inhale. | ||
Vocal sound | Nicker | Short distance contact call with low intensity combined with a visible vibration of the nostrils. | |
Groan | Groans are monotone, hum-like sounds of discomfort produced during exhalation tipically lasting up to 2 s. |
Appendix C
Number of Horses Having Performed This Behaviour at Least Once | |
---|---|
Weaving | 1 |
Head shaking | 8 |
Lips clapping | 4 |
Jaw shift | 4 |
Tongue playing | 2 |
Repeated biting of the box door | 4 |
Repeated biting of the door’s lock | 8 |
Repetitive biting of the salt stone string | 1 |
Repeated biting of the attachment ring in the box | 1 |
Nibble on the attachment ring in the box | 1 |
Nibble on the box door | 3 |
Vacuum nibble | 1 |
Nibble on the box door lock | 3 |
Repeated licking of the box wall | 3 |
Repeated licking of the stall door | 1 |
Repeated licking of the lock on the box door | 1 |
Lip rubbing against wall | 3 |
Teeth rubbing against door | 1 |
Appendix D
Visual attention [62,63,141] | Observation | Visual monitoring of the environment with slow horizontal movements of the head and horizontal neck posture. |
Fixed gazes | Binocular gaze (>1 s) directed towards the object of attention, without head movements, neck above horizontal. | |
Exploration of environment | Sniffing | Breathing can be seen through the movement of the nostrils, orientation of head towards the object (floor, wall or food). |
Licking | Passes the tongue on different fixed supports. | |
Nibbling | Exploration of an object with the jaws closed and the upper lip is moved upwards and downwards typically without dental contact with the object. | |
Drinking | Drinking | Ingest water by placing the lips on the surface of the water and sucking with a suction action, then ingesting. |
Feeding (hay) | Feeding | Chew and then ingests hay in the hay rack. |
Locomotion | Locomotion | Moving with a four-beat gait. |
Resting Resting (eyes half-closed) or sleeping (eyes closed) as eyes were not always visible | Lateral recumbency | Lying with full body in lateral position (lateral decubitus) with head and limbs on ground. |
Sternal recumbency | Horse on the ground in sternal decubitus, head up or down. | |
Standing | Standing, inactive, eyes half closed and with or without one hindleg flexed. | |
Maintenance | Elimination (defecation, urination) | Expel faeces or urine. |
Scratching | Scratching a body part with lips, teeth or hooves. | |
Rolling | Go from standing to lying down, then rotate one or more times from prone to back by folding the legs against the body, then stand up and shake the body. | |
Social | Sniffs another horse | Visible inhalation by the movement of the nostrils, head and ears in the direction of the congeners. |
Appendix E
DATA | PRE | PL | POST | STATISTICAL RESULTS (Friedman Test, df = 2) | |
---|---|---|---|---|---|
All I sampling (number of behaviours during 50 min) | Frustration behavior | 9.0 ± 11.5 | 10.0 ± 10.0 | 7.0 ± 11.7 | X2 = 0.2, p = 0.9 |
Agitation behavior | 1.9 ± 1.3 | 1.0 ± 0.8 | 0.3 ± 0.7 | X2 = 7.1, p = 0.03 | |
Yawning | 3.0 ± 3.3 | 2.0 ± 2.3 | 0.8 ± 1.4 | X2 = 3.6, p= 0.2 | |
Vacuum chewing (with lip licking) | 32.6 ± 21.8 | 23.9 ± 20.4 | 19.0 ± 14.6 | X2 = 10.2, p = 0.006 | |
Stereotypic/ARB behaviors | 10.5 ± 14.8 | 5.0 ± 5.4 | 2.0 ± 2.0 | X2 = 6.9, p = 0.03 | |
Depressed posture | 0 ± 0 | 0.1 ± 0.3 | 0.3 ± 0.7 | X2 = 1.3, p = 0.5 | |
Snort | 3.4 ± 2.2 | 4.8 ± 3.1 | 5.9 ± 3.9 | X2 = 3.1, p = 0.20 | |
Snore | 0 ± 0.4 | 0 ± 0.6 | 0.2 ± 0.5 | NA | |
Sigh | 1.5 ± 1.4 | 1.4 ± 1 | 1.5 ± 1.6 | X2 = 0.3, p = 0.8 | |
Nicker | 0 ± 0.2 | 0 ± 1 | 0 ± 0.3 | NA | |
Grunt | 2 ± 5.3 | 1 ± 1.7 | 0.5 ± 0.7 | X2 = 0.3, p = 0.8 | |
Scan sampling (% of time) | Feeding | 27 ± 4.3 | 26.2 ± 5.7 | 39.7 ± 9.0 | X2 = 12.5, p = 0.002 |
Observation | 15.6 ± 6.4 | 16.4 ± 9.3 | 11.4 ± 5.7 | X2 = 8.2, p = 0.02 | |
Fixed gazes | 15.2 ± 7.7 | 5.7 ± 3.9 | 5.0 ± 3.0 | X2 = 18.0, p = 0.0001 | |
Social | 0.8 ± 0.7 | 0.7 ± 1.5 | 1.4 ± 4.0 | X2 = 9.3, p = 0.009 | |
Locomotion | 1.7 ± 1.4 | 0.9 ± 0.9 | 0.4 ± 0.3 | X2 = 4.2, p = 0.1 | |
Exploration of environment | 2.7 ± 1.8 | 1.0 ± 1.2 | 1.6 ± 1.8 | X2 = 7.2, p = 0.03 | |
Maintenance | 2.9 ± 1.6 | 2.1 ± 0.9 | 2.9 ± 1.4 | X2 = 2.9, p = 0.2 | |
Rest | 19.2 ± 7.8 | 30.5 ± 13.6 | 21.4 ± 7.8 | X2 = 1.5, p = 0.5 | |
Physiological measures | Red Blood Cells (RBC) | 9.1 × 106 ± 1.1 × 106 | 9.1 × 106 ± 1.4 × 106 | 9.3 × 106 ± 1 × 106 | X2 = 0.5, p = 0.8 |
White Blood cells (WBC) (1012/L) | 6685 ± 1193 | 7599 ± 1232 | 7986 ± 1017 | X2 = 7.1, p = 0.03 | |
Haemoglobin (g/dL) | 14.1 ± 1.5 | 14.3 ± 1.7 | 14.7 ± 1.7 | X2 = 0.5, p = 0.8 | |
Eosinophils (%) | 0.6 ± 1.4 | 0.4 ± 0.6 | 0.5 ± 0.4 | X2 = 3.8, p = 0.2 | |
Basophils (%) | 0.6 ± 0.6 | 0.4 ± 0.1 | 0.5 ± 0.1 | X2 = 2.5, p = 0.3 | |
Monocytes (%) | 2.3 ± 0.9 | 1.6 ± 0.4 | 2.3 ± 0.8 | X2 = 5.3, p = 0.07 | |
Lymphocytes (%) | 21.7 ± 4.3 | 17.6 ± 3.3 | 18.4 ± 4 | X2 = 12.2, p = 0.002 | |
Platelets | 1.3 × 105 | 1.3 × 105 | 1.3 × 105 | X2 = 0.6, p = 0.7 | |
Mean corpuscular hemoglobin concentration (MCHC) (g/dL) | 32.8 ± 0.8 | 34 ± 0.7 | 34 ± 0.6 | X2 = 16.3, p = 0.0003 | |
Mean corpuscular volume (MCV) (fl) | 47.6 ± 4 | 46.5 ± 3.6 | 46.1 ± 3.8 | X2 = 18.7, p = 0.00009 |
References
- Kühlmann, A.Y.; Etnel, J.R.; Roos-Hesselink, J.W.; Jeekel, J.; Bogers, A.J.; Takkenberg, J.J. Systematic review and meta-analysis of music interventions in hypertension treatment: A quest for answers. BMC Cardiovasc. Disord. 2016, 16, 69. [Google Scholar] [CrossRef] [PubMed]
- Ciborowska, P.; Michalczuk, M.; Bień, D. The effect of music on livestock: Cattle, poultry and pigs. Animals 2021, 11, 3572. [Google Scholar] [CrossRef] [PubMed]
- Mojtabavi, H.; Saghazadeh, A.; Valenti, V.E.; Rezaei, N. Can music influence cardiac autonomic system? A systematic review and narrative synthesis to evaluate its impact on heart rate variability. Complement. Ther. Clin. Pract. 2020, 39, 101162. [Google Scholar] [CrossRef]
- Naghdi, L.; Ahonen, H.; Macario, P.; Bartel, L. The Effect of Low-Frequency Sound Stimulation on Patients with Fibromyalgia: A Clinical Study. Pain Res. Manag. J. Appl. Life Sci. Int. 2015, 3, 103–113. [Google Scholar] [CrossRef] [PubMed]
- Chanda, M.L.; Levitin, D.J. The neurochemistry of music. Trends Cogn. Sci. 2013, 17, 179–193. [Google Scholar] [CrossRef] [PubMed]
- Feng, K.; Shen, C.-Y.; Ma, X.-Y.; Chen, G.-F.; Zhang, M.-L.; Xu, B.; Liu, X.-M.; Sun, J.-J.; Zhang, X.-Q.; Liu, P.-Z. Effects of music therapy on major depressive disorder: A study of prefrontal hemodynamic functions using fNIRS. Psychiatry Res. 2019, 275, 86–93. [Google Scholar] [CrossRef] [PubMed]
- Wells, D.L. Sensory stimulation as environmental enrichment for captive animals: A review. Appl. Anim. Behav. Sci. 2009, 118, 1–11. [Google Scholar] [CrossRef]
- Petrovsky, D.V.; Ramesh, P.; McPhillips, M.V.; Hodgson, N.A. Effects of music interventions on sleep in older adults: A systematic review. Geriatr. Nurs. 2021, 42, 869–879. [Google Scholar] [CrossRef]
- Calamassi, D.; Pomponi, G.P. Music tuned to 440 Hz versus 432 Hz and the health effects: A double-blind cross-over pilot study. Explore 2019, 15, 283–290. [Google Scholar] [CrossRef]
- Clements-Cortes, A.; Bartel, L. Are we doing more than we know? Possible mechanisms of response to music therapy. Front. Med. 2018, 5, 255. [Google Scholar] [CrossRef]
- Hausberger, M.; Henry, S. Equine Sensory Systems. In Encyclopedia of Animal 1053 Cognition and Behavior; Vonk, J., Shackelford, T., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 1–11. [Google Scholar] [CrossRef]
- Wiśniewska, A.; Janczarek, I.; Ryżak, M.; Tkaczyk, E.; Kędzierski, W. Behavioural responses of Konik Polski horses to natural, familiar sound of thunderstorm, and unfamiliar similar-sounding sounds of volcanic eruption and 1056 sea storms. BMC Vet. Res. 2022, 18, 207. [Google Scholar] [CrossRef] [PubMed]
- Yeon, S.C. Acoustic communication in the domestic horse (Equus caballus). J. Vet. Behav. 2012, 7, 179–185. [Google Scholar] [CrossRef]
- Popescu, S.; Diugan, E.A. The relationship between the welfare quality and stress index in working and breeding horses. Res. Vet. Sci. 2017, 115, 442–450. [Google Scholar] [CrossRef] [PubMed]
- Lesimple, C.; Poissonnet, A.; Hausberger, M. How to keep your horse safe? An epidemiological study about management practices. Appl. Anim. Behav. Sci. 2016, 181, 105–114. [Google Scholar] [CrossRef]
- Lesimple, C.; Fureix, C.; Aube, L.; Hausberger, M. Detecting and Measuring Back Disorders in Nonverbal Individuals: The Example of Domestic Horses. Anim. Behav. Cogn. 2016, 3, 159–179. [Google Scholar] [CrossRef]
- Lesimple, C. Indicators of Horse Welfare: State-of-the-Art. Animals 2020, 10, 294. [Google Scholar] [CrossRef] [PubMed]
- Fureix, C.; Menguy, H.; Hausberger, M. Partners with Bad Temper: Reject or Cure? A Study of Chronic Pain and Aggression in Horses. PLoS ONE 2010, 5, e12434. [Google Scholar] [CrossRef]
- Fureix, C.; Jego, P.; Henry, S.; Lansade, L.; Hausberger, M. Towards an Ethological Animal Model of Depression? A Study on Horses. PLoS ONE 2012, 7, e39280. [Google Scholar] [CrossRef]
- Crawford, K.L.; Finnane, A.; Greer, R.M.; Phillips, C.J.; Woldeyohannes, S.M.; Perkins, N.R.; Ahern, B.J. Appraising the welfare of Thoroughbred racehorses in training in Queensland, Australia: The incidence and type of musculoskeletal injuries vary between two-year-old and older Thoroughbred racehorses. Animals 2020, 10, 2046. [Google Scholar] [CrossRef]
- Cappelli, K.; Amadori, M.; Mecocci, S.; Miglio, A.; Antognoni, M.T.; Razzuoli, E. Immune response in young thoroughbred racehorses under training. Animals 2020, 10, 1809. [Google Scholar] [CrossRef]
- Stomp, M.; d’Ingeo, S.; Henry, S.; Lesimple, C.; Cousillas, H.; Hausberger, M. EEG individual power profiles correlate with tension along spine in horses. PLoS ONE 2020, 15, e0243970. [Google Scholar] [CrossRef] [PubMed]
- Stomp, M.; d’Ingeo, S.; Henry, S.; Cousillas, H.; Hausberger, M. Brain activity reflects (chronic) welfare state: Evidence from individual electroencephalography profiles in an animal model. Appl. Anim. Behav. Sci. 2021, 236, 105271. [Google Scholar] [CrossRef]
- Hartman, N.; Greening, L.M. A preliminary study investigating the influence of auditory stimulation on the occurrence of nocturnal equine sleep-related behavior in stabled horses. J. Equine Vet. Sci. 2021, 82, 102782. [Google Scholar] [CrossRef] [PubMed]
- Huo, X.; Wongkwanklom, M.; Phonraksa, T.; Na-Lampang, P. Effects of playing classical music on behavior of stabled horses. Vet. Integr. Sci. 2021, 19, 259–267. [Google Scholar] [CrossRef]
- Wiśniewska, M.; Janczarek, I.; Wilk, I.; Wnuk-Pawlak, E. Use of music therapy in aiding the relaxation of geriatric horses. J. Equine Vet. Sci. 2019, 78, 89–93. [Google Scholar] [CrossRef] [PubMed]
- Sammler, D.; Grigutsch, M.; Fritz, T.; Koelsch, S. Music and emotion: Electrophysiological correlates of the processing of pleasant and unpleasant music. Psychophysiology 2007, 44, 293–304. [Google Scholar] [CrossRef] [PubMed]
- Yehuda, N. Music and stress. J. Adult Dev. 2011, 18, 85–94. [Google Scholar] [CrossRef]
- Di Nasso, L.; Nizzardo, A.; Pace, R.; Pierleoni, F.; Pagavino, G.; Giuliani, V. Influences of 432 Hz music on the perception of anxiety during endodontic treatment: A randomized controlled clinical trial. J. Endod. 2016, 42, 1338–1343. [Google Scholar] [CrossRef]
- Millares-Ramirez, E.M.; Le Jeune, S.S. Girthiness: Retrospective Study of 37 Horses (2004–2016). J. Equine Vet. Sci. 2019, 79, 100–104. [Google Scholar] [CrossRef]
- Fureix, C.; Jego, P.; Sankey, C.; Hausberger, M. How horses (Equus caballus) see the world: Humans as significant “objects”. Anim. Cogn. 2009, 12, 643–654. [Google Scholar] [CrossRef]
- De Boyer Des Roches, A.; Richard-Yris, M.-A.; Henry, S.; Ezzaouïa, M.; Hausberger, M. Laterality and emotions: Visual laterality in the domestic horse (Equus caballus) differs with objects’ emotional value. Physiol. Behav. 2008, 94, 487–490. [Google Scholar] [CrossRef] [PubMed]
- Clegg, H.A.; Buckley, P.; Friend, M.A.; McGreevy, P.D. The ethological and physiological characteristics of cribbing and weaving horses. Appl. Anim. Behav. Sci. 2008, 109, 68–76. [Google Scholar] [CrossRef]
- Lebelt, D.; Zanella, A.J.; Unshelm, J. Physiological correlates associated with cribbing behaviour in horses: Changes in thermal threshold, heart rate, plasma β-endorphin and serotonin. Equine Vet. J. 1998, 30, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Hausberger, M.; Fureix, C.; Lesimple, C. Detecting horses’ sickness: In search of visible signs. Appl. Anim. Behav. Sci. 2016, 175, 41–49. [Google Scholar] [CrossRef]
- Harewood, E.J.; McGowan, C.M. Behavioral and physiological responses to stabling in I horses. J. Equine Vet. Sci. 2005, 25, 164–170. [Google Scholar] [CrossRef]
- Otovic, P.; Hutchinson, E. Limits to using HPA axis activity as an indication of animal welfare. ALTEX-Altern. Anim. Exp. 2015, 32, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Pawluski, J.; Jego, P.; Henry, S.; Bruchet, A.; Palme, R.; Coste, C.; Hausberger, M. Low plasma cortisol and fecal cortisol metabolite measures as indicators of compromised welfare in domestic horses (Equus caballus). PLoS ONE 2017, 12, e0182257. [Google Scholar] [CrossRef] [PubMed]
- Fureix, C.; Benhajali, H.; Henry, S.; Bruchet, A.; Prunier, A.; Ezzaouia, M.; Coste, C.; Hausberger, M.; Palme, R.; Jego, P. Plasma cortisol and faecal cortisol metabolites concentrations in stereotypic and non-stereotypic horses: Do stereotypic horses cope better with poor environmental conditions? BMC Vet. Res. 2013, 9, 3. [Google Scholar] [CrossRef]
- Tyler-Mcgowan, C.M.; Golland, L.C.; Evans, D.L.; Hodgson, D.R.; Rose, R.J. Haematological and biochemical responses to training and overtraining. Equine Vet. J. 1999, 31, 621–625. [Google Scholar] [CrossRef]
- Mason, G.J. Stereotypies: A critical review. Anim. Behav. 1991, 41, 1015–1037. [Google Scholar] [CrossRef]
- Mills, D.S. Repetitive movement problems in the horse. In The Domestic Horse, the Origins, Development and Management of Its Behaviour; Cambridge University Press: Cambridge, UK, 2005; pp. 212–227. [Google Scholar]
- Borthwick, E.J.; Preshaw, L.; Wheeler-Launder, C.; Challinor, C.; Housby-Skeggs, N.; Boalch, E.; Brown, S.M.; Pearson, G. Stable Design Influences Relaxation and Affiliative Behaviour in Horses During Short Isolation Bouts. SSRN Electron. J. 2022. [Google Scholar] [CrossRef]
- Mactaggart, A.G.; Phillips, C.J.C. Validating a Thoroughbred Racehorse Welfare Index through Horse Behaviour and Trainers’ Reports of Welfare Issues in Their Horses. Animals 2023, 13, 282. [Google Scholar] [CrossRef] [PubMed]
- Budzynska, M.; Janicka, W.; Michalska, M.; Kapustka, J. Dependencies between animal and environmental factors and behavioral problems in horses: A survey-based analysis. Anim. Sci. Genet. 2022, 18, 15–31. [Google Scholar] [CrossRef]
- Ruet, A.; Arnould, C.; Lemarchand, J.; Parias, C.; Mach, N.; Moisan, M.P.; Foury, A.; Briant, C.; Lansade, L. Horse welfare: A joint assessment of four categories of behavioural indicators using the AWIN protocol, scan sampling and surveys. Anim. Welf. 2022, 31, 455–466. [Google Scholar] [CrossRef]
- Pearson, G.; Waran, N.K.; Fraser, A.F. Undesirable Behaviour and Stress. In Fraser’s The Behaviour and Welfare of the Horse; CABI GB: Wallingford, UK, 2022; pp. 179–194. [Google Scholar]
- KW, A.M.; Gouri, M.D.; Patil, V.M.; Rajeshwari, Y.B.; Prasanna, S.B.; Umashankar, B.C. Influence of different bedding material on locomotor behaviour of thoroughbred horses housed in individual stalls. Indian J. Anim. Prod. Manag. 2023, 37, 65–68. [Google Scholar]
- Hausberger, M.; Lerch, N.; Guilbaud, E.; Stomp, M.; Grandgeorge, M.; Henry, S.; Lesimple, C. On-Farm Welfare Assessment of Horses: The Risks of Putting the Cart before the Horse. Animals 2020, 10, 371. [Google Scholar] [CrossRef] [PubMed]
- Lesimple, C.; Reverchon-Billot, L.; Galloux, P.; Stomp, M.; Boichot, L.; Coste, C.; Henry, S.; Hausberger, M. Free movement: A key for welfare improvement in sport horses? Appl. Anim. Behav. Sci. 2020, 225, 104972. [Google Scholar] [CrossRef]
- Hausberger, M.; Gautier, E.; Biquand, V.; Lunel, C.; Jégo, P. Could Work Be a Source of Behavioural Disorders? A Study in Horses. PLoS ONE 2009, 4, e7625. [Google Scholar] [CrossRef]
- Fureix, C.; Gorecka-Bruzda, A.; Gautier, E.; Hausberger, M. Cooccurrence of Yawning and Stereotypic Behaviour in Horses (Equus caballus). ISRN Zool. 2011, 2011, 271209. [Google Scholar] [CrossRef]
- Bergeron, R.; Badnell-Waters, A.J.; Lambton, S.; Mason, G. Stereotypic oral behaviour in captive ungulates: Foraging, diet and gastrointestinal function. In Stereotypic Animal Behaviour: Fundamentals and Applications to Welfare; CABI: Wallingford, UK, 2008; pp. 19–57. [Google Scholar]
- d’Ingeo, S.; Quaranta, A.; Siniscalchi, M.; Stomp, M.; Coste, C.; Bagnard, C.; Hausberger, M.; Cousillas, H. Horses associate individual human voices with the valence of past interactions: A behavioural and electrophysiological study. Sci. Rep. 2019, 9, 11568. [Google Scholar] [CrossRef]
- Stomp, M.; Leroux, M.; Cellier, M.; Henry, S.; Lemasson, A.; Hausberger, M. An unexpected acoustic indicator of positive emotions in horses. PLoS ONE 2018, 13, e0197898. [Google Scholar] [CrossRef]
- Scopa, C.; Palagi, E.; Sighieri, C.; Baragli, P. Physiological outcomes of calming behaviors support the resilience hypothesis in horses. Sci. Rep. 2018, 8, 17501. [Google Scholar] [CrossRef] [PubMed]
- Contreras-Aguilar, M.D.; Henry, S.; Coste, C.; Tecles, F.; Escribano, D.; Cerón, J.J.; Hausberger, M. Changes in saliva analytes correlate with Horses’ Behavioural reactions to an acute stressor: A pilot study. Animals 2019, 9, 993. [Google Scholar] [CrossRef] [PubMed]
- Lundqvist, H.; Müller, C.E. Feeding time in horses provided roughage in different combinations of haynets and on the stable floor. Appl. Anim. Behav. Sci. 2022, 253, 105685. [Google Scholar] [CrossRef]
- Waters, A.J.; Nicol, C.J.; French, N.P. Factors influencing the development of stereotypic and redirected behaviours in young horses: Findings of a four year prospective epidemiological study. Equine Vet. J. 2002, 34, 572–579. [Google Scholar] [CrossRef] [PubMed]
- Ransom, J.I.; Cade, B.S.; Hobbs, N.T. Influences of immunocontraception on time budgets, social behavior, and body condition in feral horses. Appl. Anim. Behav. Sci. 2010, 124, 51–60. [Google Scholar] [CrossRef]
- Benhajali, H.; Richard-Yris, M.-A.; Ezzaouia, M.; Charfi, F.; Hausberger, M. Reproductive status and stereotypies in breeding mares: A brief report. Appl. Anim. Behav. Sci. 2010, 128, 64–68. [Google Scholar] [CrossRef]
- Rochais, C.; Fureix, C.; Lesimple, C.; Hausberger, M. Lower attention to daily environment: A novel cue for detecting chronic horses’ back pain? Sci. Rep. 2016, 6, 20117. [Google Scholar] [CrossRef]
- Rochais, C.; Stomp, M.; Sébilleau, M.; Houdebine, M.; Henry, S.; Hausberger, M. Horses’ attentional characteristics differ according to the type of work. PLoS ONE 2022, 17, e0269974. [Google Scholar] [CrossRef]
- McGowan, C. Clinical pathology in the racing horse: The role of clinical pathology in assessing fitness and performance in the racehorse. Vet. Clin. N. Am. Equine Pract. 2008, 24, 405–421. [Google Scholar] [CrossRef]
- Rossdales Laboratories. Available online: https://www.rossdales.com/laboratories/reference-ranges (accessed on 20 February 2023).
- Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Methodol. 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Stachurska, A.; Janczarek, I.; Wilk, I.; Kędzierski, W. Does music influence emotional state in race horses? J. Equine Vet. Sci. 2015, 35, 650–656. [Google Scholar] [CrossRef]
- Houpt, K.; Marrow, M.; Seeliger, M. A preliminary study of the effect of music on equine behavior. J. Equine Vet. Sci. 2000, 20, 691–737. [Google Scholar] [CrossRef]
- Maśko, M.; Domino, M.; Jasiński, T.; Witkowska-Piłaszewicz, O. The physical activity-dependent hematological and biochemical changes in school horses in comparison to blood profiles in endurance and race horses. Animals 2021, 11, 1128. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.; Kim, J.-W.; Seo, J. Comparison of the methods for platelet rich plasma preparation in horses. J. Anim. Sci. Technol. 2018, 60, 20. [Google Scholar] [CrossRef] [PubMed]
- Williams, D.C.; Aleman, M.; Holliday, T.A.; Fletcher, D.J.; Tharp, B.; Kass, P.H.; Steffey, E.P.; Le Couteur, R.A. Qualitative and quantitative characteristics of the electroencephalogram in normal horses during spontaneous drowsiness and sleep. J. Vet. Internal. Med. 2008, 22, 630–638. [Google Scholar] [CrossRef] [PubMed]
- Hamlin, M.J.; Deuchrass, R.W.; Olsen, P.D.; Choukri, M.A.; Marshall, H.C.; Lizamore, C.A.; Leong, C.; Elliot, C.A. The effect of sleep quality and quantity on athlete’s health and perceived training quality. Front. Sports Act. Living 2021, 3, 705650. [Google Scholar] [CrossRef]
- Wells, D.L.; Graham, L.; Hepper, P.G. The influence of auditory stimulation on the behaviour of dogs housed in a rescue shelter. Anim. Welf. 2002, 11, 385–393. [Google Scholar] [CrossRef]
- Bowman, A.; Scottish, S.; Dowell, F.J.; Evans, N.P. ‘Four Seasons’ in an animal rescue centre; classical music reduces environmental stress in kennelled dogs. Physiol. Behav. 2015, 143, 70–82. [Google Scholar] [CrossRef]
- Bowman, A.; Scottish, S.; Dowell, F.J.; Evans, N.P. The effect of different genres of music on the stress levels of kennelled dogs. Physiol. Behav. 2017, 171, 207–215. [Google Scholar] [CrossRef]
- Wells, D.L.; Coleman, D.; Challis, M.G. A note on the effect of auditory stimulation on the behaviour and welfare of zoo-housed gorillas. Appl. Anim. Behav. Sci. 2006, 100, 327–332. [Google Scholar] [CrossRef]
- Wells, D.L.; Irwin, R.M. Auditory stimulation as enrichment for zoo-housed Asian elephants (Elephas maximus). Anim. Welf. 2008, 17, 335–340. [Google Scholar] [CrossRef]
- Robbins, L.; Margulis, S.W. Music for the birds: Effects of auditory enrichment on captive bird species. Zoo Biol. 2016, 35, 29–34. [Google Scholar] [CrossRef] [PubMed]
- McDermott, J.; Hauser, M.D. Nonhuman primates prefer slow tempos but dislike music overall. Cognition 2007, 104, 654–668. [Google Scholar] [CrossRef] [PubMed]
- Ritvo, S.E.; MacDonald, S.E. Music as enrichment for Sumatran orangutans (Pongo abelii). J. Zoo Aquar. Res. 2016, 4, 156–163. [Google Scholar]
- Donghai, W.; Xiaoyan, M.; Yufei, W.; Chenglong, L.; Xiong, Y. Effects of Latin, Rock and African Percussion Music on Protein and Energy Metabolism in Cow. Meteorol. Environ. Res. 2018, 9, 87–91. [Google Scholar]
- Papoutsoglou, S.E.; Karakatsouli, N.; Batzina, A.; Papoutsoglou, E.S.; Tsopelakos, A. Effect of music stimulus on gilthead seabream Sparus aurata physiology under different light intensity in a re-circulating water system. J. Fish Biol. 2008, 73, 980–1004. [Google Scholar] [CrossRef]
- Papoutsoglou, S.E.; Karakatsouli, N.; Papoutsoglou, E.S.; Vasilikos, G. Common carp (Cyprinus carpio) response to two pieces of music (“Eine Kleine Nachtmusik” and “Romanza”) combined with light intensity, using recirculating water system. Fish Physiol. Biochem. 2010, 36, 539–554. [Google Scholar] [CrossRef] [PubMed]
- Trochidis, K.; Bigand, E. EEG-based emotion perception during music listening. In Proceedings of the 12th International Conference on Music Perception and Cognition and the 8th Triennial Conference of the European Society for the Cognitive Sciences of Music, Thessaloniki, Greece, 23–28 July 2012; pp. 1018–1021. [Google Scholar]
- González-Grajales, L.A.; Pieper, L.; Görner, P.; Görner, S.; Staufenbiel, R. Effects of auditory and visual stimuli on glucose metabolism in Holstein dairy cattle. Acta Vet. Scand. 2019, 61, 2. [Google Scholar] [CrossRef] [PubMed]
- Silva, F.R.; Miranda, K.O.d.S.; Piedade, S.M.d.S.; Salgado, D.D. Effect of auditory enrichment (music) in pregnant sows welfare. Eng. Agríc. 2017, 37, 215–225. [Google Scholar] [CrossRef]
- Ramirez, R.; Palencia-Lefler, M.; Giraldo, S.; Vamvakousis, Z. Musical neurofeedback for treating depression in elderly people. Front. Neurosci. 2015, 9, 354. [Google Scholar] [CrossRef] [PubMed]
- Çatlı, T.; Yıldırım, Ö.; Türker, A. The effect of different tempos of music during feeding, on growth performance, chemical body composition, and feed utilization of turbot (Psetta maeotica, Pallas 1814). Isr. J. Aquac. Bamidgeh 2015, 67. [Google Scholar] [CrossRef]
- Papadakakis, A.; Sidiropoulou, K.; Panagis, G. Music exposure attenuates anxiety-and depression-like behaviors and increases hippocampal spine density in male rats. Behav. Brain Res. 2015, 372, 112023. [Google Scholar] [CrossRef] [PubMed]
- Escribano, B.; Quero, I.; Feijóo, M.; Tasset, I.; Montilla, P.; Túnez, I. Role of noise and music as anxiety modulators: Relationship with ovarian hormones in the rat. Appl. Anim. Behav. Sci. 2014, 152, 73–82. [Google Scholar] [CrossRef]
- Barcellos, H.H.; Koakoski, G.; Chaulet, F.; Kirsten, K.S.; Kreutz, L.C.; Kalueff, A.V.; Barcellos, L.J. The effects of auditory enrichment on zebrafish behavior and physiology. Peer J. 2018, 6, e5162. [Google Scholar] [CrossRef]
- Dávila, S.G.; Campo, J.L.; Gil, M.G.; Prieto, M.T.; Torres, O. Effects of auditory and physical enrichment on 3 measurements of fear and stress (tonic immobility duration, heterophil to lymphocyte ratio, and fluctuating asymmetry) in several breeds of layer chicks. Poult. Sci. 2011, 90, 2459–2466. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, A.; Sanyal, S.; Patranabis, A.; Banerjee, K.; Guhathakurta, T.; Sengupta, R.; Ghosh, D.; Ghose, P. Study on brain dynamics by non linear analysis of music induced EEG signals. Phys. A Stat. Mech. Its Appl. 2016, 444, 110–120. [Google Scholar] [CrossRef]
- Rauscher, F.H.; Shaw, G.L.; Ky, C.N. Music and spatial task performance. Nature 1993, 365, 611. [Google Scholar] [CrossRef]
- Rauscher, F.H.; Shaw, G.L.; Ky, K.N. Listening to Mozart enhances spatial-temporal reasoning: Towards a neurophysiological basis. Neurosci. Lett. 1995, 185, 44–47. [Google Scholar] [CrossRef]
- Jenkins, J.S. The Mozart effect. J. R. Soc. Med. 2001, 94, 170–172. [Google Scholar] [CrossRef]
- Sartor, K.; de Freitas, B.F.; de Souza Granja Barros, J.; Rossi, L.A. Environmental enrichment in piglet creeps: Behavior and productive performance. BioRxiv 2018, 2018, 346023. [Google Scholar]
- Snowdon, C.T.; Teie, D.; Savage, M. Cats prefer species-appropriate music. Appl. Anim. Behav. Sci. 2015, 166, 106–111. [Google Scholar] [CrossRef]
- Koike, Y.; Iwamoto, S.; Kimata, Y.; Nohno, T.; Hiragami, F.; Kawamura, K.; Numata, K.; Murai, H.; Okisima, K.; Iwata, M. Low-frequency vibratory sound induces neurite outgrowth in PC12m3 cells in which nerve growth factor-induced neurite outgrowth is impaired. Tissue Cult. Res. Commun. 2004, 23, 81–90. [Google Scholar]
- Tallet, C.; Rakotomahandry, M.; Guérin, C.; Lemasson, A.; Hausberger, M. Postnatal auditory preferences in piglets differ according to maternal emotional experience with the same sounds during gestation. Sci. Rep. 2016, 6, 37238. [Google Scholar] [CrossRef] [PubMed]
- Snowdon, C.T. Animal signals, music and emotional well-being. Animals 2021, 11, 2670. [Google Scholar] [CrossRef] [PubMed]
- Aggio, R.B.M.; Obolonkin, V.; Villas-Bôas, S.G. Sonic vibration affects the metabolism of yeast cells growing in liquid culture: A metabolomic study. Metabolomics 2012, 8, 670–678. [Google Scholar] [CrossRef]
- McBride, S.D.; Hemmings, A. Altered mesoaccumbens and nigro-striatal dopamine physiology is associated with stereotypy development in a non-rodent species. Behav. Brain Res. 2005, 159, 113–118. [Google Scholar] [CrossRef]
- Russo, C.; Russo, A.; Gulino, R.; Pellitteri, R.; Stanzani, S. Effects of different musical frequencies on NPY and Ghrelin secretion in the rat hypothalamus. Brain Res. Bull. 2017, 132, 204–212. [Google Scholar] [CrossRef]
- Trappe, H.-J. Music and medicine: The effects of music on the human being. Appl. Cardiopulm. Pathophysiol. 2012, 16, 133–142. [Google Scholar]
- Sharot, T.; Guitart-Masip, M.; Korn, C.W.; Chowdhury, R.; Dolan, R.J. How dopamine enhances an optimism bias in humans. Curr. Biol. 2012, 22, 1477–1481. [Google Scholar] [CrossRef]
- Hausberger, M.; Stomp, M.; Sankey, C.; Brajon, S.; Lunel, C.; Henry, S. Mutual interactions between cognition and welfare: The horse as an animal model. Neurosci. Biobehav. Rev. 2019, 107, 540–559. [Google Scholar] [CrossRef] [PubMed]
- Dionidream. Perché Mozart, Verdi, Pink Floyd ed Altri Usavano la Frequenza di 432 Hz? Why did Mozart, Verdi, Pink Floyd and Others Use the 432 Hz Frequency? Available online: https://www.dionidream.com/perche-mozart-verdi-pink-floyd-e-altri-usavano-la-frequenza-di-432hz/ (accessed on 10 March 2020).
- Menziletoglu, D.; Guler, A.Y.; Cayır, T.; Isik, B.K. Binaural beats or 432 Hz music? Which method is more effective for reducing preoperative dental anxiety? Med. Oral Patol. Oral Y Cirugía Bucal 2021, 26, e972021. [Google Scholar] [CrossRef] [PubMed]
- Sugimoto, T.; Kobayashi, H.; Nobuyoshi, N.; Kiriyama, Y.; Takeshita, H.; Nakamura, T.; Hashiya, K. Preference for consonant music over dissonant music by an infant chimpanzee. Primates 2010, 51, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Chiandetti, C.; Vallortigara, G. Chicks like consonant music. Psychol. Sci. 2011, 22, 1270–1273. [Google Scholar] [CrossRef] [PubMed]
- Ubiema, G.; Siwiaszczyk, M.; Parias, C.; Bresso, R.; Hay, C.; Mulot, B.; Love, S.A.; Chaillou, E. The Use and Impact of Auditory Stimulation in Animals. J. Interdiscip. Methodol. Issues Sci. 2022, 9, 405. [Google Scholar]
- Zapata Cardona, J.; Ceballos, M.C.; Tarazona Morales, A.M.; David Jaramillo, E.; Rodríguez, B.d.J. Music modulates emotional responses in growing pigs. Sci. Rep. 2022, 12, 3382. [Google Scholar] [CrossRef] [PubMed]
- Asif, A.; Majid, M.; Anwar, S.M. Human stress classification using EEG signals in response to music tracks. Comput. Biol. Med. 2019, 107, 182–196. [Google Scholar] [CrossRef]
- Mahmood, D.; Nisar, H.; Yap, V.V.; Tsai, C.-Y. The Effect of Music Listening on EEG Functional Connectivity of Brain: A Short-Duration and Long-Duration Study. Mathematics 2022, 10, 349. [Google Scholar] [CrossRef]
- Paszkiel, S.; Dobrakowski, P.; Lysiak, A. The impact of different sounds on stress level in the context of EEG, cardiac measures and subjective stress level: A pilot study. Brain Sci. 2020, 10, 728. [Google Scholar] [CrossRef]
- Helman, A.A.; Amin, M.K.M.; Islam, A.M.; Mikami, O. Neuroimaging Electroencephahlography (eeg) Application on Human Electrical Brain Activities during Meditation and Music Listening. J. Adv. Manuf. Technol. (JAMT) 2020, 10, 728. [Google Scholar]
- Destexhe, A.; Foubert, L. A method to convert neural signals into sound sequences. J. Acoust. Soc. Am. 2022, 151, 3685–3689. [Google Scholar] [CrossRef] [PubMed]
- Wu, D. Hearing the sound in the brain: Influences of different EEG references. Front. Neurosci. 2018, 12, 148. [Google Scholar] [CrossRef] [PubMed]
- Angelakis, E.; Stathopoulou, S.; Frymiare, J.L.; Green, D.L.; Lubar, J.F.; Kounios, J. EEG neurofeedback: A brief overview and an example of peak alpha frequency training for cognitive enhancement in the elderly. Clin. Neuropsychol. 2007, 21, 110–129. [Google Scholar] [CrossRef] [PubMed]
- Peniston, E.G.; Kulkosky, P.J. α-Theta Brainwave Training and β-Endorphin Levels in Alcoholics. Alcohol. Clin. Exp. Res. 1989, 13, 271–279. [Google Scholar] [CrossRef] [PubMed]
- Tranchant, P.; Shiell, M.M.; Giordano, M.; Nadeau, A.; Peretz, I.; Zatorre, R.J. Feeling the beat: Bouncing synchronization to vibrotactile music in hearing and early deaf people. Front. Neurosci. 2017, 11, 507. [Google Scholar] [CrossRef] [PubMed]
- Levänen, S.; Hamdorf, D. Feeling vibrations: Enhanced tactile sensitivity in congenitally deaf humans. Neurosci. Lett. 2001, 301, 75–77. [Google Scholar] [CrossRef] [PubMed]
- Pereira, C. Enhanced cognitive effects in snails (Physa acuta) after exposure to meditational music and low-level near-infrared laser. J. Zool. Stud. 2015, 2, 14–21. [Google Scholar]
- Xu, H.; Ohgami, N.; He, T.; Hashimoto, K.; Tazaki, A.; Ohgami, K.; Takeda, K.; Kato, M. Improvement of balance in young adults by a sound component at 100 Hz in music. Sci. Rep. 2018, 8, 16894. [Google Scholar] [CrossRef]
- Good, A.; Reed, M.J.; Russo, F.A. Compensatory plasticity in the deaf brain: Effects on perception of music. Brain Sci. 2014, 4, 560–574. [Google Scholar] [CrossRef]
- Basner, M.; Babisch, W.; Davis, A.; Brink, M.; Clark, C.; Janssen, S.; Stansfeld, S. Auditory and non-auditory effects of noise on health. Lancet 2014, 383, 1325–1332. [Google Scholar] [CrossRef]
- Muehsam, D.; Ventura, C. Life rhythm as a symphony of oscillatory patterns: Electromagnetic energy and sound vibration modulates gene expression for biological signaling and healing. Glob. Adv. Health Med. 2014, 3, 40–55. [Google Scholar] [CrossRef] [PubMed]
- Zheng, A.; Sakari, R.; Cheng, S.M.; Hietikko, A.; Moilanen, P.; Timonen, J.; Fagerlund, K.M.; Kärkkäinen, M.; Alèn, M.; Cheng, S. Effects of a low-frequency sound wave therapy programme on functional capacity, blood circulation and bone metabolism in frail old men and women. Clin. Rehabil. 2009, 23, 897–908. [Google Scholar] [CrossRef] [PubMed]
- Chiandetti, C. Commentary: Cats prefer species-appropriate music. Front. Psychol. 2016, 7, 594. [Google Scholar] [CrossRef] [PubMed]
- Søndergaard, E.; Jensen, M.B.; Nicol, C.J. Motivation for social contact in horses measured by operant conditioning. Appl. Anim. Behav. Sci. 2011, 132, 131–137. [Google Scholar] [CrossRef]
- Altman, J. Observational study of behaviour: Sampling methods. Behaviour 1974, 9, 227–265. [Google Scholar] [CrossRef] [PubMed]
- Waring, G.H. Horse Behavior. The Behavioral Traits and Adaptations of Domestic and Wild Horses, Including Ponies; Noyes Publications: Devon, UK, 1983. [Google Scholar]
- Ashley, F.H.; Waterman-Pearson, A.E.; Whay, H.R. Behavioural assessment of pain in horses and donkeys: Application to clinical practice and future studies. Equine Vet. J. 2005, 37, 565–575. [Google Scholar] [CrossRef] [PubMed]
- Wolff, A.; Hausberger, M.; Le Scolan, N. Experimental tests to assess emotionality in horses. Behav. Process. 1997, 40, 209–221. [Google Scholar] [CrossRef]
- Benhajali, H.; Richard-yris, M.A.; Leroux, M.; Ezzaouia, M.; Charfi, F.; Hausberger, M. A note on time budget and social behaviour of densely housed horses: A case study in Arab breeding mares. Appl. Anim. Behav. Sci. 2008, 112, 196–200. [Google Scholar] [CrossRef]
- Lesimple, C.; Gautier, E.; Benhajali, H.; Rochais, C.; Lunel, C.; Bensaïd, S.; Khalloufi, A.; Henry, S.; Hausberger, M. Stall architecture influences horses’ behaviour and the prevalence and type of stereotypies. Appl. Anim. Behav. Sci. 2019, 219, 104833. [Google Scholar] [CrossRef]
- Fureix, C.; Beaulieu, C.; Argaud, S.; Rochais, C.; Quinton, M.; Henry, S.; Hausberger, M.; Mason, G. Investigating anhedonia in a non-conventional species: Do some riding horses Equus caballus display symptoms of depression? Appl. Anim. Behav. Sci. 2015, 162, 26–36. [Google Scholar] [CrossRef]
- McDonnell, S. Practical Field Guide to Horse Behavior: The Equid Ethogram; The Blood-Horse, Inc.: Lexington, KY, USA, 2003. [Google Scholar]
- Waring, G.H. Horse Behavior, 2nd ed.; Noyes Publications; William Andrew Publishing: Amsterdam, The Netherlands, 2003. [Google Scholar]
- Rochais, C.; Sébilleau, M.; Houdebine, M.; Bec, P.; Hausberger, M.; Henry, S. A novel test for evaluating horses’ spontaneous visual attention is predictive of attention in operant learning tasks. Sci. Nat. 2017, 104, 61. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gueguen, L.; Henry, S.; Delbos, M.; Lemasson, A.; Hausberger, M. Selected Acoustic Frequencies Have a Positive Impact on Behavioural and Physiological Welfare Indicators in Thoroughbred Racehorses. Animals 2023, 13, 2970. https://doi.org/10.3390/ani13182970
Gueguen L, Henry S, Delbos M, Lemasson A, Hausberger M. Selected Acoustic Frequencies Have a Positive Impact on Behavioural and Physiological Welfare Indicators in Thoroughbred Racehorses. Animals. 2023; 13(18):2970. https://doi.org/10.3390/ani13182970
Chicago/Turabian StyleGueguen, Léa, Séverine Henry, Maëlle Delbos, Alban Lemasson, and Martine Hausberger. 2023. "Selected Acoustic Frequencies Have a Positive Impact on Behavioural and Physiological Welfare Indicators in Thoroughbred Racehorses" Animals 13, no. 18: 2970. https://doi.org/10.3390/ani13182970
APA StyleGueguen, L., Henry, S., Delbos, M., Lemasson, A., & Hausberger, M. (2023). Selected Acoustic Frequencies Have a Positive Impact on Behavioural and Physiological Welfare Indicators in Thoroughbred Racehorses. Animals, 13(18), 2970. https://doi.org/10.3390/ani13182970