The Roles of Polysaccharides in Carp Farming: A Review
Abstract
:Simple Summary
Abstract
1. Introduction
2. Polysaccharide
3. Role of Polysaccharides and Growth Performance Improvement in Carp Farming
Polysaccharides (Category) | Species and Weight | Dose | Duration/Degree of Growth Improvement | Reference |
---|---|---|---|---|
Rare earth–chitosan chelate (Chitin) | Gibel carp, Carassius auratus gibelio; 14.3 g | 0.8 g/kg diet | 12 weeks 12–20% higher than control | [44] |
Porphyra yezoensis polysaccharide (Pectin) | Grass carp, Ctenopharyngodon Idella; 6.12 g | 3 g/kg diet | 60 days >8% higher than control | [30] |
Radix rehmanniae preparata polysaccharide (Inulin) | Luciobarbus capito; 46 g | 0.05–0.4% of diet | 60 days 2–18% higher than control | [45] |
Fucoidan derived from Undaria pinnatifida (Pectin) | Gibel carp, Carassius auratus gibelio; 5 g | 30 g/kg diet | 6 weeks 16–32% higher than control | [31] |
Enteromorpha prolifera polysaccharide (Pectin) | Crucian carp, Carassius auratus; 51.24 g | 20–40 g/kg diet | 60 days 18–38% higher than control | [32] |
Fermented wheat bran polysaccharide (Starch) | Common carp, Cyprinus carpio; 10 g | 1–4 g/kg diet | 8 weeks 14–26% higher than control | [4] |
Astragalus membranaceus polysaccharide (Hemicellulose) | Crucian carp, Carassius auratus; 1.04 g | 50–100 mg/kg diet | 60 days 10–20% higher than control | [22] |
Xylooligosaccharide (XOS) (Hemicellulose) | Grass carp, Ctenopharyngodon Idella; 3.05 g | 0.05–0.2% of diet | 8 weeks 16–18% higher than control | [46] |
Pectin derived from orange peel (Pectin) | Common carp, Cyprinus carpio; 16.9 g | 0.5–2% of diet | 8 weeks 12–34% higher than control | [38] |
Pectin derived from apple peel (Pectin) | Common carp, Cyprinus carpio; 16.89 g | 0.5–2% of diet | 8 weeks 38–53% higher than control | [39] |
Non-starch polysaccharide (Hemicellulose) | Yellow River carp, Cyprinus carpio; 49.82 g | 0.05–0.1% of diet | 56 days 2–16% higher than control | [47] |
Alginate oligosaccharide (Hemicellulose) | Grass carp, Ctenopharyngodon; 6.12 g | 100–400 mg/kg diet | 60 days 12–32% higher than control | [33] |
Ficus carica polysaccharide (FCP) (Pectin) | Crucian carp, Carassius auratus; 40.16 g | 0.01–0.4% of diet | 21 days 43–107% higher than control | [23] |
Astragalus polysaccharide (APS) (Hemicellulose) | Catla, Catla catla; 41.7 g | 200–300 mg/kg diet | 8 weeks 16–97% higher than control | [24] |
Taraxacum mongolicum polysaccharide (Hemicellulose) | Jian carp, Cyprinus carpio var Jian; 5 g | 0.5–2 g/kg diet | 56 days 21–69% higher than control | [25] |
4. Role of Polysaccharides and Innate Immunity Activation in Carp Farming
Polysaccharides (Category) and Dose | Species and Weight | Indicator of Immunity | Duration | References |
---|---|---|---|---|
APS (Hemicellulose) 5–50 mg/kg fish | Common carp, Cyprinus carpio, 80 g | Gene expression | Intraperitoneal injection | [53] |
Coriolus versicolor polysaccharide (CVP) (Pectin), 0.5–1 g/kg diet | Crucian carp, Carassius auratus, 58.3 g | Hematological and biochemical parameters | 5 weeks | [66] |
β-glucan (Starch) (MacroGard), 1–2% of diet | Mirror carp, Cyprinus carpio, 40 g | Hematological and blood biochemical parameters | 8 weeks | [63] |
β-glucan (MacroGard), 0.1% of diet | Common carp, Cyprinus carpio, 40 g | Gene expression | 25 days | [64,65] |
LBP, 0.5–1% of diet | Common carp, Cyprinus carpio, 150 g | Serum and blood biochemical parameters | 60 days | [67] |
Rare earth–chitosan chelate (Chitin), 0.8 g/kg diet | Gibel carp, Carassius auratus gibelio, 14.3 g | Blood biochemical parameters | 12 weeks | [44] |
Hericium caput-medusae polysaccharide (Pectin), 800–1200 mg/kg diet | Grass carp, Ctenopharyngodon Idella, 15.3 g | Blood biochemical parameters, Gene expression | 2–3 weeks | [68] |
Radix rehmanniae preparata polysaccharide (Inulin), 0.2% of diet | Common carp, Cyprinus carpio, 46 g | Gene expression | 60 days | [45] |
Pectin derived from orange peel (Pectin), 0.5–2% of diet | Luciobarbus capito, 16.9 g | Blood biochemical parameters | 8 weeks | [38] |
XOS, 0.1% of diet | Grass carp, Ctenopharyngodon Idella, 3.05 g | Blood biochemical parameters | 8 weeks | [46] |
APS (Hemicellulose), 1 g/kg diet | Grass carp, Ctenopharyngodon Idella, N.A | Blood biochemical parameters, Gene expression | 56 days | [54] |
Alginate oligosaccharide, 100–400 mg/kg diet | Grass carp, Ctenopharyngodon idella, 6.12 g | Blood biochemical parameters, Gene expression | 60 days | [33] |
Pectin derived from apple peel (Pectin), 0.5–2% of diet | Common carp, Cyprinus carpio, 16.89 g | Blood biochemical parameters | 8 weeks | [39] |
FCP, 0.4% of diet | Crucian carp, Carassius auratus, 40.16 g | Blood biochemical parameters | 21 days | [23] |
APS (Hemicellulose), 200 mg/kg diet | Catla, Catla catla, 41.7 g | Blood biochemical parameters, Gene expression | 8 weeks | [24] |
Taraxacum mongolicum polysaccharide (Hemicellulose), 1 g/kg diet | Jian carp, Cyprinus carpio var Jian, 5 g | Blood biochemical parameters, Gene expression | 56 days | [25] |
5. Roles and Mode of Action of Polysaccharides and Disease Resistance Enhancement in Carp Farming
6. The Role of Polysaccharides in Alleviating Abiotic Stress for Carp Farming
7. Combination of Polysaccharides and Other Prophylactic Agents to Improve Carp Farming
8. Conclusions and Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. The State of World Fisheries and Aquaculture 2020; FAO: Rome, Italy, 2020. [Google Scholar]
- Miao, W.; Wang, W. Trends of aquaculture production and trade: Carp, tilapia, and shrimp. Asian Fish. Sci. 2020, 33, 1–10. [Google Scholar] [CrossRef]
- Wu, Z.-Q.; Jiang, C.; Ling, F.; Wang, G.-X. Effects of dietary supplementation of intestinal autochthonous bacteria on the innate immunity and disease resistance of grass carp (Ctenopharyngodon idellus). Aquaculture 2015, 438, 105–114. [Google Scholar] [CrossRef]
- Wang, R.F.; An, X.P.; Wang, Y.; Qi, J.W.; Zhang, J.; Liu, Y.H.; Weng, M.Q.; Yang, Y.P.; Gao, A.Q. Effects of polysaccharide from fermented wheat bran on growth performance, muscle composition, digestive enzyme activities and intestinal microbiota in juvenile common carp. Aquac. Nutr. 2020, 26, 1096–1107. [Google Scholar] [CrossRef]
- Ummey, S.; Khan, S.; Vijayakumar, P.; Ramya, A. Enteric Red Mouth disease and its causative bacterium, Yersinia ruckeri, in Indian Major Carps from culture ponds in Andhra Pradesh, India. Aquac. Fish. 2021, 6, 289–299. [Google Scholar] [CrossRef]
- Jeney, Z.; Jeney, G. Recent achievements in studies on diseases of common carp (Cyprinus carpio L.). Aquaculture 1995, 129, 397–420. [Google Scholar] [CrossRef]
- Sunarto, A.; Taukhid, R.A.; Koesharyani, I.; Supriyadi, H.; Huminto, H.; Agungpriyono, D.R.; Pasaribu, F.H.; Widodo, H.D.; Rukmono, D.; Prayitno, S. Field investigations on a serious disease outbreak among koi and common carp (Cyprinus carpio) in Indonesia. In Proceedings of the 5th Symposium on Diseases in Asian Aquaculture 2002, Queensland, Australia, 24–28 November 2002. [Google Scholar]
- Ouyang, P.; Zhou, Y.; Yang, R.; Yang, Z.; Wang, K.; Geng, Y.; Lai, W.; Huang, X.; Chen, D.; Fang, J. Outbreak of carp edema virus disease in cultured ornamental koi in a lower temperature in China. Aquac. Int. 2020, 28, 525–537. [Google Scholar] [CrossRef]
- Udayan, A.; Arumugam, M.; Pandey, A. Nutraceuticals from algae and cyanobacteria. In Algal Green Chemistry; Elsevier: Amsterdam, The Netherlands, 2017; pp. 65–89. [Google Scholar]
- Al-Assaf, S. Chapter 2. Polysaccharides: Origin, Source and Properties. In The Radiation Chemistry of Polysaccharides; International Atomic Energy Agency: Vienna, Austria, 2016. [Google Scholar]
- Zhang, W.; Xu, P.; Zhang, H. Pectin in cancer therapy: A review. Trends Food Sci. Technol. 2015, 44, 258–271. [Google Scholar] [CrossRef]
- Wijesekara, I.; Pangestuti, R.; Kim, S.-K. Biological activities and potential health benefits of sulfated polysaccharides derived from marine algae. Carbohydr. Polym. 2011, 84, 14–21. [Google Scholar] [CrossRef]
- Rinaudo, M. Chitin and chitosan: Properties and applications. Prog. Polym. Sci. 2006, 31, 603–632. [Google Scholar] [CrossRef]
- Thanou, M.; Junginger, H. Pharmaceutical applications of chitosan and derivatives. In Polysaccharides. Structural Diversity and Functional Versatility, 2nd ed.; Marcel Dekker Publisher: New York, NY, USA, 2005; pp. 661–677. [Google Scholar]
- Verma, A.K.; Kumar, A. Pharmacokinetics and biodistribution of negatively charged pectin nanoparticles encapsulating paclitaxel. Cancer Nanotechnol. 2013, 4, 99–102. [Google Scholar] [CrossRef]
- Brouns, F.; Theuwissen, E.; Adam, A.; Bell, M.; Berger, A.; Mensink, R.P. Cholesterol-lowering properties of different pectin types in mildly hyper-cholesterolemic men and women. Eur. J. Clin. Nutr. 2012, 66, 591–599. [Google Scholar] [CrossRef] [Green Version]
- Spiridon, I.; Popa, V.I. Chapter 13—Hemicelluloses: Major Sources, Properties and Applications. In Monomers, Polymers and Composites from Renewable Resources; Belgacem, M.N., Gandini, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2008; pp. 289–304. [Google Scholar]
- Gupta, N.; Jangid, A.K.; Pooja, D.; Kulhari, H. Inulin: A novel and stretchy polysaccharide tool for biomedical and nutritional applications. Int. J. Biol. Macromol. 2019, 132, 852–863. [Google Scholar] [CrossRef]
- Gregory, A.; Bolwell, G.P. 3.17—Hemicelluloses. In Comprehensive Natural Products Chemistry; Barton, S.D., Nakanishi, K., Meth-Cohn, O., Eds.; Pergamon: Oxford, UK, 1999; pp. 599–615. [Google Scholar]
- Loghmanifar, S.; Nasiraie, L.R.; Nouri, H.; Jafarian, S. Comparison of Fresh and Aged Garlic Extracts in Terms of Antioxidative Power and Allicin Content. J. Med. Plants Prod. 2022, 11, 29–35. [Google Scholar]
- Zhang, X.; Xiao, J.; Guo, Z.; Zhong, H.; Luo, Y.; Wang, J.; Tang, Z.; Huang, T.; Li, M.; Zhu, J. Transcriptomics integrated with metabolomics reveals the effect of Lycium barbarum polysaccharide on apoptosis in Nile tilapia (Oreochromis niloticus). Genomics 2022, 114, 229–240. [Google Scholar] [CrossRef]
- Wu, S. Dietary Astragalus membranaceus polysaccharide ameliorates the growth performance and innate immunity of juvenile crucian carp (Carassius auratus). Int. J. Biol. Macromol. 2020, 149, 877–881. [Google Scholar] [CrossRef]
- Wang, E.; Chen, X.; Liu, T.; Wang, K. Effect of dietary Ficus carica polysaccharides on the growth performance, innate immune response and survival of crucian carp against Aeromonas hydrophila infection. Fish Shellfish Immunol. 2022, 120, 434–440. [Google Scholar] [CrossRef]
- Harikrishnan, R.; Devi, G.; van Doan, H.; Tapingkae, W.; Balasundaram, C.; Arockiaraj, J.; Ringø, E. Changes in immune genes expression, immune response, digestive enzymes-antioxidant status, and growth of catla (Catla catla) fed with Astragalus polysaccharides against edwardsiellosis disease. Fish Shellfish Immunol. 2022, 121, 418–436. [Google Scholar] [CrossRef]
- Yu, Z.; Zhao, L.; Zhao, J.-L.; Xu, W.; Guo, Z.; Zhang, A.-Z.; Li, M.-Y. Dietary Taraxacum mongolicum polysaccharide ameliorates the growth, immune response, and antioxidant status in association with NF-κB, Nrf2 and TOR in Jian carp (Cyprinus carpio var. Jian). Aquaculture 2022, 547, 737522. [Google Scholar] [CrossRef]
- Wink, M. Modes of action of herbal medicines and plant secondary metabolites. Medicines 2015, 2, 251–286. [Google Scholar] [CrossRef]
- Soltani, M.; Lymbery, A.; Song, S.K.; Shekarabi, P.H. Adjuvant effects of medicinal herbs and probiotics for fish vaccines. Rev. Aquac. 2019, 11, 1325–1341. [Google Scholar] [CrossRef]
- Awad, E.; Awaad, A. Role of medicinal plants on growth performance and immune status in fish. Fish Shellfish Immunol. 2017, 67, 40–54. [Google Scholar] [CrossRef] [PubMed]
- Aydın, B. A preliminary assessment of the effects of dietary black cumin seed cake on growth performance, serum biochemical parameters and fatty acid composition of mirror carp (Cyprinus carpio var. specularis) fingerlings. Aquac. Rep. 2021, 21, 100847. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, Y. The growth performance and nonspecific immunity of juvenile grass carp (Ctenopharyngodon idella) affected by dietary Porphyra yezoensis polysaccharide supplementation. Fish Shellfish Immunol. 2019, 87, 615–619. [Google Scholar] [CrossRef] [PubMed]
- Cui, H.; Wang, Z.; Liu, J.; Wang, Y.; Wang, Z.; Fu, J.; Wan, Z.; Li, R.; Li, Q.; Fitton, J.H. Effects of a highly purified fucoidan from Undaria pinnatifida on growth performance and intestine health status of gibel carp Carassius auratus gibelio. Aquac. Nutr. 2020, 26, 47–59. [Google Scholar] [CrossRef]
- Zhou, Z.; Pan, S.; Wu, S. Modulation of the growth performance, body composition and nonspecific immunity of crucian carp Carassius auratus upon Enteromorpha prolifera polysaccharide. Int. J. Biol. Macromol. 2020, 147, 29–33. [Google Scholar] [CrossRef]
- Hu, J.; Zhang, J.; Wu, S. The growth performance and non-specific immunity of juvenile grass carp (Ctenopharyngodon idella) affected by dietary alginate oligosaccharide. 3 Biotech 2021, 11, 46. [Google Scholar] [CrossRef]
- Ali, O.; Ramsubhag, A.; Jayaraman, J. Biostimulant properties of seaweed extracts in plants: Implications towards sustainable crop production. Plants 2021, 10, 531. [Google Scholar] [CrossRef]
- Hindu, S.V.; Chandrasekaran, N.; Mukherjee, A.; Thomas, J. A review on the impact of seaweed polysaccharide on the growth of probiotic bacteria and its application in aquaculture. Aquac. Int. 2019, 27, 227–238. [Google Scholar] [CrossRef]
- FAO. World Food and Agriculture—Statistical Yearbook 2021; FAO: Rome, Italy, 2021. [Google Scholar]
- Duque-Acevedo, M.; Belmonte-Urena, L.J.; Cortés-García, F.J.; Camacho-Ferre, F. Agricultural waste: Review of the evolution, approaches and perspectives on alternative uses. Glob. Ecol. Conserv. 2020, 22, e00902. [Google Scholar] [CrossRef]
- Hosseini, S.M.; Hoseinifar, S.H.; Mazandarani, M.; Paknejad, H.; van Doan, H.; El-Haroun, E.R. The potential benefits of orange peels derived pectin on serum and skin mucus immune parameters, antioxidant defence and growth performance in common carp (Cyprinus carpio). Fish Shellfish. Immunol. 2020, 103, 17–22. [Google Scholar] [CrossRef]
- Hoseinifar, S.H.; Jahazi, M.A.; Mohseni, R.; Yousefi, M.; Bayani, M.; Mazandarani, M.; van Doan, H.; El-Haroun, E.R. Dietary apple peel-derived pectin improved growth performance, antioxidant enzymes and immune response in common carp, Cyprinus carpio (Linnaeus, 1758). Aquaculture 2021, 535, 736311. [Google Scholar] [CrossRef]
- Śliżewska, K.; Chlebicz-Wójcik, A. The in vitro analysis of prebiotics to be used as a component of a synbiotic preparation. Nutrients 2020, 12, 1272. [Google Scholar] [CrossRef]
- Hossain, M.; Focken, U.; Becker, K. Galactomannan-rich endosperm of Sesbania (Sesbania aculeata) seeds responsible for retardation of growth and feed utilisation in common carp, Cyprinus carpio L. Aquaculture 2001, 203, 121–132. [Google Scholar] [CrossRef]
- Chen, Y.; Zhu, X.; Yang, Y.; Han, D.; Jin, J.; Xie, S. Effect of dietary chitosan on growth performance, haematology, immune response, intestine morphology, intestine microbiota and disease resistance in gibel carp (Carassius auratus gibelio). Aquac. Nutr. 2014, 20, 532–546. [Google Scholar] [CrossRef]
- Gao, S.; Han, D.; Zhu, X.; Yang, Y.; Liu, H.; Xie, S.; Jin, J. Effects of guar gum on the growth performance and intestinal histology of gibel carp (Carassius gibelio). Aquaculture 2019, 501, 90–96. [Google Scholar] [CrossRef]
- Zhou, Q.-l.; Xie, J.; Ge, X.-p.; Habte-Tsion, H.M.; Liu, B.; Ren, M. Growth performance and immune responses of gibel carp, Carassius auratus gibelio, fed with graded level of rare earth-chitosan chelate. Aquac. Int. 2016, 24, 453–463. [Google Scholar] [CrossRef]
- Wu, C.; Shan, J.; Feng, J.; Wang, J.; Qin, C.; Nie, G.; Ding, C. Effects of dietary Radix Rehmanniae Preparata polysaccharides on the growth performance, immune response and disease resistance of Luciobarbus capito. Fish Shellfish Immunol. 2019, 89, 641–646. [Google Scholar] [CrossRef]
- Zhang, Z.-H.; Chen, M.; Xie, S.-W.; Chen, X.-Q.; Liu, Y.-J.; Tian, L.-X.; Niu, J. Effects of dietary xylooligosaccharide on growth performance, enzyme activity and immunity of juvenile grass carp, Ctenopharyngodon idellus. Aquac. Rep. 2020, 18, 100519. [Google Scholar] [CrossRef]
- Guan, D.; Wang, Z.; Han, H.; Sun, H.; Li, Y.; Wan, W.; Wang, J. Effects of non-starch polysaccharide hydrolase of plant protein-based diets on growth, nutrient digestibility, and protease/amylase activities of Yellow River carp, Cyprinus carpio. J. World Aquac. Soc. 2021, 52, 805–819. [Google Scholar] [CrossRef]
- Álvarez-Mercado, A.I.; Plaza-Diaz, J. Dietary Polysaccharides as Modulators of the Gut Microbiota Ecosystem: An Update on Their Impact on Health. Nutrients 2022, 14, 4116. [Google Scholar] [CrossRef]
- Martin-Gallausiaux, C.; Marinelli, L.; Blottière, H.M.; Larraufie, P.; Lapaque, N. SCFA: Mechanisms and functional importance in the gut. Proc. Nutr. Soc. 2021, 80, 37–49. [Google Scholar] [CrossRef] [PubMed]
- Chaplin, D.D. Overview of the immune response. J. Allergy Clin. Immunol. 2010, 125, S3–S23. [Google Scholar] [CrossRef] [PubMed]
- Sindhu, R.K.; Goyal, A.; Das, J.; Choden, S.; Kumar, P. Immunomodulatory potential of polysaccharides derived from plants and microbes: A narrative review. Carbohydr. Polym. Technol. Appl. 2021, 2, 100044. [Google Scholar] [CrossRef]
- Barbosa, J.R.; de Junior, R.N.C. Polysaccharides obtained from natural edible sources and their role in modulating the immune system: Biologically active potential that can be exploited against COVID-19. Trends Food Sci. Technol. 2021, 108, 223–235. [Google Scholar] [CrossRef] [PubMed]
- Yuan, C.; Pan, X.; Gong, Y.; Xia, A.; Wu, G.; Tang, J.; Han, X. Effects of Astragalus polysaccharides (APS) on the expression of immune response genes in head kidney, gill and spleen of the common carp, Cyprinus carpio L. Int. Immunopharmacol. 2008, 8, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Shi, F.; Lu, Z.; Yang, M.; Li, F.; Zhan, F.; Zhao, L.; Li, Y.; Li, Q.; Li, J.; Li, J. Astragalus polysaccharides mediate the immune response and intestinal microbiota in grass carp (Ctenopharyngodon idellus). Aquaculture 2021, 534, 736205. [Google Scholar] [CrossRef]
- Zhou, F.; Jiang, X.; Wang, T.; Zhang, B.; Zhao, H. Lycium barbarum polysaccharide (LBP): A novel prebiotics candidate for Bifidobacterium and Lactobacillus. Front. Microbiol. 2018, 9, 1034. [Google Scholar] [CrossRef]
- Zhu, W.; Zhou, S.; Liu, J.; McLean, R.J.; Chu, W. Prebiotic, immuno-stimulating and gut microbiota-modulating effects of Lycium barbarum polysaccharide. Biomed. Pharmacother. 2020, 121, 109591. [Google Scholar] [CrossRef]
- Lin, S.-H.; Chou, L.-M.; Chien, Y.-W.; Chang, J.-S.; Lin, C.-I. Prebiotic effects of xylooligosaccharides on the improvement of microbiota balance in human subjects. Gastroenterol. Res. Pract. 2016, 2016, 5789232. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Wu, Y.; Xu, H.; Yao, Y. Effects of oxidized konjac glucomannan on the intestinal microbial flora and intestinal morphology of Schizothorax prenanti. Aquac. Int. 2017, 25, 233–250. [Google Scholar] [CrossRef]
- Kim, H.S.; Hong, J.T.; Kim, Y.; Han, S.-B. Stimulatory effect of β-glucans on immune cells. Immune Netw. 2011, 11, 191–195. [Google Scholar] [CrossRef]
- Meena, D.K.; Das, P.; Kumar, S.; Mandal, S.C.; Prusty, A.K.; Singh, S.K.; Akhtar, M.S.; Behera, B.K.; Kumar, K.; Pal, A.K.; et al. Beta-glucan: An ideal immunostimulant in aquaculture (a review). Fish Physiol. Biochem. 2013, 39, 431–457. [Google Scholar] [CrossRef]
- De, B.C.; Meena, D.K.; Behera, B.K.; Das, P.; Mohapatra, P.K.D.; Sharma, A.P. Probiotics in fish and shellfish culture: Immunomodulatory and ecophysiological responses. Fish Physiol. Biochem. 2014, 40, 921–971. [Google Scholar]
- Kumar, V.; Roy, S.; Meena, D.K.; Sarkar, U.K. Application of probiotics in shrimp aquaculture: Importance, mechanisms of action, and methods of administration. Rev. Fish. Sci. Aquac. 2016, 24, 342–368. [Google Scholar] [CrossRef]
- Kühlwein, H.; Merrifield, D.; Rawling, M.; Foey, A.; Davies, S. Effects of dietary β-(1, 3)(1, 6)-D-glucan supplementation on growth performance, intestinal morphology and haemato-immunological profile of mirror carp (Cyprinus carpio L.). J. Anim. Physiol. Anim. Nutr. 2014, 98, 279–289. [Google Scholar] [CrossRef]
- Falco, A.; Miest, J.J.; Pionnier, N.; Pietretti, D.; Forlenza, M.; Wiegertjes, G.F.; Hoole, D. β-Glucan-supplemented diets increase poly (I: C)-induced gene expression of Mx, possibly via Tlr3-mediated recognition mechanism in common carp (Cyprinus carpio). Fish Shellfish Immunol. 2014, 36, 494–502. [Google Scholar] [CrossRef]
- Pionnier, N.; Falco, A.; Miest, J.J.; Shrive, A.K.; Hoole, D. Feeding common carp Cyprinus carpio with β-glucan supplemented diet stimulates C-reactive protein and complement immune acute phase responses following PAMPs injection. Fish Shellfish Immunol. 2014, 39, 285–295. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.-X.; Pang, S.-F.; Chen, X.-X.; Yu, Y.-M.; Zhou, J.-M.; Chen, X.; Pang, L.-J. Effect of Coriolus versicolor polysaccharides on the hematological and biochemical parameters and protection against Aeromonas hydrophila in allogynogenetic crucian carp (Carassius auratus gibelio). Fish Physiol. Biochem. 2013, 39, 181–190. [Google Scholar] [CrossRef]
- Liu, Y.; Cao, L.; Du, J.; Jia, R.; Wang, J.; Xu, P.; Yin, G. Protective effects of Lycium barbarum polysaccharides against carbon tetrachloride-induced hepatotoxicity in precision-cut liver slices in vitro and in vivo in common carp (Cyprinus carpio L.). Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2015, 169, 65–72. [Google Scholar] [CrossRef]
- Gou, C.; Wang, J.; Wang, Y.; Dong, W.; Shan, X.; Lou, Y.; Gao, Y. Hericium caput-medusae (Bull.: Fr.) Pers. polysaccharide enhance innate immune response, immune-related genes expression and disease resistance against Aeromonas hydrophila in grass carp (Ctenopharyngodon idella). Fish Shellfish Immunol. 2018, 72, 604–610. [Google Scholar] [CrossRef]
- Yano, T.; Matsuyama, H.; Mangindaan, R. Polysaccharide-induced protection of carp, Cyprinus carpio L. against bacterial infection. J. Fish Dis. 1991, 14, 577–582. [Google Scholar] [CrossRef]
- Wang, W.-S.; Wang, D.-H. Enhancement of the resistance of tilapia and grass carp to experimental Aeromonas hydrophila and Edwardsiella tarda infections by several polysaccharides. Comp. Immunol. Microbiol. Infect. Dis. 1997, 20, 261–270. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Chang, X.; Zhang, Y.; Lu, R.; Meng, X.; Song, D.; Yan, X.; Zhang, J.; Nie, G. Characterization of a polysaccharide HP-02 from Honeysuckle flowers and its immunoregulatory and anti-Aeromonas hydrophila effects in Cyprinus carpio L. Int. J. Biol. Macromol. 2019, 140, 477–483. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-S.; Ke, F.; Zhang, Q.-Y. Effect of β-glucan on activity of antioxidant enzymes and Mx gene expression in virus infected grass carp. Fish Shellfish Immunol. 2009, 27, 336–340. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhang, P.; Wang, B.; Lu, Y.; Li, L.; Li, Y.; Liu, S. Evaluation of the effects of Astragalus polysaccharides as immunostimulants on the immune response of crucian carp and against SVCV in vitro and in vivo. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2022, 253, 109249. [Google Scholar] [CrossRef]
- Rajendran, P.; Subramani, P.A.; Michael, D. Polysaccharides from marine macroalga, Padina gymnospora improve the nonspecific and specific immune responses of Cyprinus carpio and protect it from different pathogens. Fish Shellfish Immunol. 2016, 58, 220–228. [Google Scholar] [CrossRef]
- Younus, N.; Zuberi, A.; Mahmoood, T.; Akram, W.; Ahmad, M. Comparative effects of dietary micro-and nano-scale chitosan on the growth performance, non-specific immunity, and resistance of silver carp Hypophthalmichthys molitrix against Staphylococcus aureus infection. Aquac. Int. 2020, 28, 2363–2378. [Google Scholar] [CrossRef]
- Tzianabos, A.O. Polysaccharide immunomodulators as therapeutic agents: Structural aspects and biologic function. Clin. Microbiol. Rev. 2000, 13, 523–533. [Google Scholar] [CrossRef]
- Zhang, Q.-H.; Zhang, Y.; Liu, J.; Cao, Y.-M. The shiitake mushroom-derived immuno-stimulant lentinan protects against murine malaria blood-stage infection by evoking adaptive immune-responses. Int. Immunopharmacol. 2009, 9, 455–462. [Google Scholar]
- Przybylska-Diaz, D.; Schmidt, J.; Vera-Jimenez, N.; Steinhagen, D.; Nielsen, M.E. β-glucan enriched bath directly stimulates the wound healing process in common carp (Cyprinus carpio L.). Fish Shellfish Immunol. 2013, 35, 998–1006. [Google Scholar] [CrossRef] [Green Version]
- Fujiki, K.; Matsuyama, H.; Yano, T. Protective effect of sodium alginates against bacterial infection in common carp, Cyprinus carpio L. J. Fish Dis. 1994, 17, 349–355. [Google Scholar] [CrossRef]
- Selvaraj, V.; Sampath, K.; Sekar, V. Administration of lipopolysaccharide increases specific and non-specific immune parameters and survival in carp (Cyprinus carpio) infected with Aeromonas hydrophila. Aquaculture 2009, 286, 176–183. [Google Scholar] [CrossRef]
- Falco, A.; Frost, P.; Miest, J.; Pionnier, N.; Irnazarow, I.; Hoole, D. Reduced inflammatory response to Aeromonas salmonicida infection in common carp (Cyprinus carpio L.) fed with β-glucan supplements. Fish Shellfish Immunol. 2012, 32, 1051–1057. [Google Scholar] [CrossRef]
- Liu, B.; Xu, L.; Ge, X.; Xie, J.; Xu, P.; Zhou, Q.; Pan, L.; Zhang, Y. Effects of mannan oligosaccharide on the physiological responses, HSP70 gene expression and disease resistance of Allogynogenetic crucian carp (Carassius auratus gibelio) under Aeromonas hydrophila infection. Fish Shellfish Immunol. 2013, 34, 1395–1403. [Google Scholar] [CrossRef]
- Pionnier, N.; Falco, A.; Miest, J.; Frost, P.; Irnazarow, I.; Shrive, A.; Hoole, D. Dietary β-glucan stimulate complement and C-reactive protein acute phase responses in common carp (Cyprinus carpio) during an Aeromonas salmonicida infection. Fish Shellfish Immunol. 2013, 34, 819–831. [Google Scholar] [CrossRef]
- Yang, X.; Guo, J.L.; Ye, J.Y.; Zhang, Y.X.; Wang, W. The effects of Ficus carica polysaccharide on immune response and expression of some immune-related genes in grass carp, Ctenopharyngodon idella. Fish Shellfish Immunol. 2015, 42, 132–137. [Google Scholar] [CrossRef]
- Wang, E.; Chen, X.; Wang, K.; Wang, J.; Chen, D.; Geng, Y.; Lai, W.; Wei, X. Plant polysaccharides used as immunostimulants enhance innate immune response and disease resistance against Aeromonas hydrophila infection in fish. Fish Shellfish Immunol. 2016, 59, 196–202. [Google Scholar] [CrossRef]
- Lu, Z.-Y.; Jiang, W.-D.; Wu, P.; Liu, Y.; Kuang, S.-Y.; Tang, L.; Yang, J.; Zhou, X.-Q.; Feng, L. Mannan oligosaccharides supplementation enhanced head-kidney and spleen immune function in on-growing grass carp (Ctenopharyngodon idella). Fish Shellfish Immunol. 2020, 106, 596–608. [Google Scholar] [CrossRef]
- Feng, J.; Cai, Z.; Chen, Y.; Zhu, H.; Chang, X.; Wang, X.; Liu, Z.; Zhang, J.; Nie, G. Effects of an exopolysaccharide from Lactococcus lactis Z-2 on innate immune response, antioxidant activity, and disease resistance against Aeromonas hydrophila in Cyprinus carpio L. Fish Shellfish Immunol. 2020, 98, 324–333. [Google Scholar] [CrossRef]
- Harikrishnan, R.; Devi, G.; Van Doan, H.; Balasundaram, C.; Thamizharasan, S.; Hoseinifar, S.H.; Abdel-Tawwab, M. Effect of diet enriched with Agaricus bisporus polysaccharides (ABPs) on antioxidant property, innate-adaptive immune response and pro-anti inflammatory genes expression in Ctenopharyngodon idella against Aeromonas hydrophila. Fish Shellfish Immunol. 2021, 114, 238–252. [Google Scholar] [CrossRef]
- Mugwanya, M.; Dawood, M.A.; Kimera, F.; Sewilam, H. Anthropogenic temperature fluctuations and their effect on aquaculture: A comprehensive review. Aquac. Fish. 2022, 7, 223–243. [Google Scholar] [CrossRef]
- Liang, Q.; Newman, P.A.; Daniel, J.S.; Reimann, S.; Hall, B.D.; Dutton, G.; Kuijpers, L.J. Constraining the carbon tetrachloride (CCl4) budget using its global trend and inter-hemispheric gradient. Geophys. Res. Lett. 2014, 41, 5307–5315. [Google Scholar] [CrossRef] [Green Version]
- Du, J.; Cao, L.; Jia, R.; Yin, G. Hepatoprotective and antioxidant effects of dietary Glycyrrhiza polysaccharide against TCDD-induced hepatic injury and RT-PCR quantification of AHR2, ARNT2, CYP1A mRNA in Jian Carp (Cyprinus carpio var. Jian). J. Environ. Sci. 2017, 51, 181–190. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhang, C.; Du, J.; Jia, R.; Cao, L.; Jeney, G.; Teraoka, H.; Xu, P.; Yin, G. Protective effect of Ganoderma lucidum polysaccharide against carbon tetrachloride-induced hepatic damage in precision-cut carp liver slices. Fish Physiol. Biochem. 2017, 43, 1209–1221. [Google Scholar] [CrossRef] [PubMed]
- Hites, R.A. Dioxins: An overview and history. Environ. Sci. Technol. 2011, 45, 16–20. [Google Scholar] [CrossRef]
- Gibson, G.R.; Roberfroid, M.B. Dietary modulation of the human colonic microbiota: Introducing the concept of prebiotics. J. Nutr. 1995, 125, 1401–1412. [Google Scholar] [CrossRef]
- Markowiak, P.; Śliżewska, K. Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients 2017, 9, 1021. [Google Scholar] [CrossRef]
- Dawood, M.A.; Abo-Al-Ela, H.G.; Hasan, M.T. Modulation of transcriptomic profile in aquatic animals: Probiotics, prebiotics and synbiotics scenarios. Fish Shellfish Immunol. 2020, 97, 268–282. [Google Scholar] [CrossRef]
- Modanloo, M.; Soltanian, S.; Akhlaghi, M.; Hoseinifar, S.H. The effects of single or combined administration of galactooligosaccharide and Pediococcus acidilactici on cutaneous mucus immune parameters, humoral immune responses and immune related genes expression in common carp (Cyprinus carpio) fingerlings. Fish Shellfish Immunol. 2017, 70, 391–397. [Google Scholar] [CrossRef]
- Mohammadian, T.; Nasirpour, M.; Tabandeh, M.R.; Mesbah, M. Synbiotic effects of β-glucan, mannan oligosaccharide and Lactobacillus casei on growth performance, intestine enzymes activities, immune-hematological parameters and immune-related gene expression in common carp, Cyprinus carpio: An experimental infection with Aeromonas hydrophila. Aquaculture 2019, 511, 634197. [Google Scholar]
- Liu, J.; Wang, B.; Lai, Q.; Lu, Y.; Li, L.; Li, Y.; Liu, S. Boosted growth performance, immunity, antioxidant capacity and disease resistance of crucian carp (Carassius auratus) by single or in combination dietary Bacillus subtilis and xylo-oligosaccharides. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2022, 256, 109296. [Google Scholar] [CrossRef]
- Huynh, T.-G.; Shiu, Y.-L.; Nguyen, T.-P.; Truong, Q.-P.; Chen, J.-C.; Liu, C.-H. Current applications, selection, and possible mechanisms of actions of synbiotics in improving the growth and health status in aquaculture: A review. Fish Shellfish Immunol. 2017, 64, 367–382. [Google Scholar] [CrossRef]
Polysaccharides (Category) | Species and Weight | Dose and Duration | Pathogen and Dose | Reference |
---|---|---|---|---|
Lentinan, Schizophyllan, scleroglucan (Starch) | Common carp, Cyprinus carpio; 25–30 g | 5 mg/kg fish (intraperitoneal injection) Thrice—1st, 4th, and 7th day before exposure to pathogen | A. hydrophila, 107 CFU | [69] |
Sodium alginates, polysaccharide derived from Undaria pinnatifida (Pectin) | Grass carp, Ctenopharyngodon Idella; 25–30 g | 30 mg/kg fish (intraperitoneal injection) Twice—3rd and 6th day before exposure to pathogen | E. tarda, 107 CFU | [78] |
Polysaccharide extracted from barley, krestin, scleroglucan, zymosan | Common carp, Cyprinus carpio; 24 g | 10 mg/kg fish (intraperitoneal injection) Twice—2 days interval | A. hydrophila, E. tarda, 107 CFU | [70] |
β-glucan (Starch) | Grass carp, Ctenopharyngodon Idella; 8.5 g | 10 mg/kg fish (intraperitoneal injection) 15 days | Grass carp hemorrhage virus (GCHV), 5 LD50/mL | [72] |
Lipopolysaccharide (LPS) (Lipopolysaccharide) from virulent A. hydrophila | Common carp, Cyprinus carpio; 25–30 g | 10–100 µg/fish (intraperitoneal injection); Day 1, 7, and 14 15–150 µg/mL (bathing); Day 1, 7 and 14 | A. hydrophila, 2.11 × 107 CFU | [79] |
β-glucan (Starch) (MacroGard) | Common carp, Cyprinus carpio; 78.4 g | 6 mg/kg fish; 14 days | A. salmonicida, 4 × 108 CFU | [80] |
CVP (Pectin) | Crucian carp, Carassius auratus; 58.3 g | 1 g/kg diet; 56 days | A. hydrophila, 106 CFU | [66] |
MOS (Hemicellulose) | Grass carp, Ctenopharyngodon Idella; 16.19 g | 240–480 mg/kg diet; 10 weeks | A. hydrophila, 108 CFU | [81] |
β-glucan (Starch) | Common carp, Cyprinus carpio; 78.4 g | 6 mg/kg fish; 14 days | A. salmonicida, 108 CFU | [82] |
FCP (Pectin) | Grass carp, Ctenopharyngodon Idella; 80 g | 0.5–1%; 3 weeks | Flavobacterium columnare, 3.6 × 107 CFU | [83] |
Ficus carica, Radix isatidis, Schisandra chinensis polysaccharide (Pectin) | Crucian carp, Carassius auratus; 50 g | 500 mg/kg diet; 21 days | A. hydrophila, 6 × 107 CFU | [84] |
Padina gymnospora polysaccharide (Pectin) | Common carp, Cyprinus carpio; 100 g | 0.01, 0.1, 1% of fish diet; 1–3 weeks | A. hydrophila, E. tarda, 5 × 107 CFU | [85] |
Hericium caput-medusae polysaccharide (Hemicellulose) | Grass carp, Ctenopharyngodon Idella; 15.3 g | 800 mg/kg diet; 3 weeks | A. hydrophila, 2 × 106 CFU | [68] |
Porphyra yezoensis Polysaccharide (Pectin) | Grass carp, Ctenopharyngodon Idella; 6.12 g | 3 g/kg diet; 60 days | A. hydrophila, 1.5 × 105 CFU | [30] |
Polysaccharides derived from honeysuckle flowers (Hemicellulose) | Common carp, Cyprinus carpio; 35.23 g | 250–1000 µg/mL (oral gavage); 5 days | A. hydrophila, 106 CFU | [71] |
Radix rehmanniae preparata | Luciobarbus capito; 46.2 g | 0.2% of diet; 60 days | A. hydrophila, 2 × 107 CFU | [45] |
Chitosan nanoparticle (Chitin) | Silver carp, Hypophthalmichthys molitrix; 65 g | 5 g/kg diet; 60 days | S. aureus, 107 CFU | [74] |
XOS (Hemicellulose) | Grass carp, Ctenopharyngodon Idella; 3.05 g | 0.1% of diet; 8 weeks | A. hydrophila, 5.5 × 107 CFU | [46] |
Enteromorpha prolifera polysaccharide (Pectin) | Crucian carp, Carassius auratus; 51.24 g | 20–80 g/kg diet; 60 days | A. hydrophila, 1.5 × 105 CFU | [32] |
Astragalus membranaceus polysaccharide (Hemicellulose) | Crucian carp, Carassius auratus; 1.04 g | 100 mg/kg diet; 60 days | A. hydrophila, 107 CFU | [22] |
MOS (Hemicellulose) | Grass carp, Ctenopharyngodon Idella; 215.85 g | 538.5–585.8 mg/kg diet; 60 days | A. hydrophila, 107 CFU | [86] |
Exopolysaccharide from Lactococcus lactis Z-2 (Lipopolysaccharide) | Common carp, Cyprinus carpio; 47.66 g | 250–1000 µg/mL (oral gavage); 7 days | A. hydrophila, 5 × 106 CFU | [87] |
Alginate oligosaccharide (Hemicellulose) | Crucian carp, Carassius auratus; 6.12 g | 100–400 mg/kg diet; 60 days | A. hydrophila, 1.5 × 105 CFU | [33] |
APS (Hemicellulose) | Grass carp, Ctenopharyngodon Idella; N.A | 1 g/kg diet; 56 days | A. hydrophila, 106 CFU | [54] |
Agaricus bisporus polysaccharides (Hemicellulose) | Grass carp, Ctenopharyngodon Idella; 148.5 g | 1 mg/kg diet; 60 days | A. hydrophila, 1.7 × 106 CFU | [88] |
APS (Hemicellulose) | Crucian carp, Carassius auratus; 30.5 g | 2 g/kg diet; 56 days | Spring viremia of carp virus (SVCV), 107 TCID50/100 µL | [73] |
FCP (Pectin) | Crucian carp, Carassius auratus; 40.16 g | 0.4% of diet; 21 days | A. hydrophila, 6 × 107 CFU | [23] |
APS (Hemicellulose) | Catla, Catla catla; 23.7–41.7 g | 200–300 mg/kg diet; 8 weeks | E. tarda, 106 CFU | [24] |
Polysaccharides (Category) (Dose) | Species and Weight/Stage | Prophylactic Agent (Dose) | Duration | Effects | Reference |
---|---|---|---|---|---|
GOS (Hemicellulose) (10 g/kg diet) | Common carp, Cyprinus carpio, juvenile | Pediococcus acidilactici (0.9 × 107 CFU/kg diet) | 8 weeks | Enhanced serum and mucosal immune response | [97] |
β-glucan (Starch) and MOS (Hemicellulose) (1% of diet) | Common carp, Cyprinus carpio, 65 g | Lactobacillus casei (5 × 107 CFU/kg diet) | 60 days | Enhanced immune system and disease resistance to A. hydrophila | [98] |
XOS (Hemicellulose) (0.1% of diet) | Crucian carp, Carassius auratus, 9.77 g | Bacillus subtilis (1 × 108 CFU/g diet) | 8 weeks | Improved growth performance, survival rate, immunity, and disease resistance to A. hydrophila | [99] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goh, K.W.; Abdul Kari, Z.; Wee, W.; Van Doan, H.; Reduan, M.F.H.; Kabir, M.A.; Khoo, M.I.; Al-Amsyar, S.M.; Seong Wei, L. The Roles of Polysaccharides in Carp Farming: A Review. Animals 2023, 13, 244. https://doi.org/10.3390/ani13020244
Goh KW, Abdul Kari Z, Wee W, Van Doan H, Reduan MFH, Kabir MA, Khoo MI, Al-Amsyar SM, Seong Wei L. The Roles of Polysaccharides in Carp Farming: A Review. Animals. 2023; 13(2):244. https://doi.org/10.3390/ani13020244
Chicago/Turabian StyleGoh, Khang Wen, Zulhisyam Abdul Kari, Wendy Wee, Hien Van Doan, Mohd Farhan Hanif Reduan, Muhammad Anamul Kabir, Martina Irwan Khoo, Syed M. Al-Amsyar, and Lee Seong Wei. 2023. "The Roles of Polysaccharides in Carp Farming: A Review" Animals 13, no. 2: 244. https://doi.org/10.3390/ani13020244
APA StyleGoh, K. W., Abdul Kari, Z., Wee, W., Van Doan, H., Reduan, M. F. H., Kabir, M. A., Khoo, M. I., Al-Amsyar, S. M., & Seong Wei, L. (2023). The Roles of Polysaccharides in Carp Farming: A Review. Animals, 13(2), 244. https://doi.org/10.3390/ani13020244