Natural Multi-Enriched Eggs with n-3 Polyunsaturated Fatty Acids, Selenium, Vitamin E, and Lutein
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Housing and Feeding of Laying Hens
2.2. Analysis of Egg Quality
2.3. Chemical Analysis of Fatty Acid Profile
2.4. Chemical Analysis of Selenium
2.5. Chemical Analysis of Vitamin E
2.6. Chemical Analysis of Lutein
2.7. Determination of Lipid Oxidation in Egg Yolks
2.8. Statistical Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, J.; Yue, H.; Wu, S.; Zhang, H.; Qi, G. Nutritional Modulation of Health, Egg Quality and Environmental Pollution of the Layers. Anim. Nutr. 2017, 3, 91–96. [Google Scholar] [CrossRef] [PubMed]
- Poljoprivreda|Državni Zavod Za Statistiku. Available online: https://podaci.dzs.hr/hr/podaci/poljoprivreda/ (accessed on 30 December 2022).
- Kralik, G.; Kralik, Z.; Hanžek, D. The Effect of Vegetable Oils and the Fish Oil on the Fatty Acid Profile in Egg Yolks. Agriculture 2020, 26, 79–87. [Google Scholar] [CrossRef]
- Kralik, G.; Grčević, M.; Hanžek, D.; Margeta, P.; Galović, O.; Kralik, Z. Feeding to Produce N-3 Fatty Acid-Enriched Table Eggs. J. Poult. Sci. 2020, 57, 138–147. [Google Scholar] [CrossRef] [Green Version]
- Kralik, Z.; Kralik, G.; Grčević, M.; Hanžek, D.; Biazik, E. Designer Eggs with an Increased Content of Omega-3 Fatty Acids and Pigments—Production and Health Benefits of Their Consumption. Poljoprivreda 2021, 27, 67–74. [Google Scholar] [CrossRef]
- Kralik, G.; Kralik, Z.; Grčević, M.; Galović, O.; Hanžek, D.; Biazik, E. Fatty Acid Profile of Eggs Produced by Laying Hens Fed Diets Containing Different Shares of Fish Oil. Poult. Sci. 2021, 100, 101379. [Google Scholar] [CrossRef] [PubMed]
- EFSA Panel on Dietetic Products, Nutrition, and Allergies (NDA). Scientific Opinion on Dietary Reference Values for Fats, Including Saturated Fatty Acids, Polyunsaturated Fatty Acids, Monounsaturated Fatty Acids, Trans Fatty Acids, and Cholesterol. EFSA J. 2010, 8, 1461. [Google Scholar]
- FAO Fats and Fatty Acids in Human Nutrition. Report of an Expert Consultation; Food and Agriculture Organization of the United Nations: Geneve, Switzerland, 2008. [Google Scholar] [CrossRef]
- Commission Regulation (EU). No 116/2010 of 9 February 2010 Amending Regulation (EC) No 1924/2006 of the European Parliament and of the Council with regard to the list of nutrition claims. Commission Regulation (EU) No 116/2010. Off. J. Eur. Comm. 2010, 37, 16–18. [Google Scholar]
- Kralik, G.; Kralik, Z.; Grčević, M.; Kralik, I.; Gantner, V. Enrichment of Table Eggs with Functional Ingredients. J. Cent. Eur. Agric. 2018, 19, 72–82. [Google Scholar] [CrossRef]
- Feng, J.; Long, S.; Zhang, H.j.; Wu, S.g.; Qi, G.h.; Wang, J. Comparative Effects of Dietary Microalgae Oil and Fish Oil on Fatty Acid Composition and Sensory Quality of Table Eggs. Poult. Sci. 2020, 99, 1734–1743. [Google Scholar] [CrossRef]
- Gajčević, Z.; Kralik, G.; Has-Schön, E.; Pavić, V. Effects of Organic Selenium Supplemented to Layer Diet on Table Egg Freshness and Selenium Content. Ital. J. Anim. Sci. 2009, 8, 189–199. [Google Scholar] [CrossRef]
- Kim, E.-J. The Dietary Effects of Marigold Extracts on Egg Production, Egg Quality and the Production of Lutein Fortified Chicken Eggs. Korean J. Poult. Sci. 2014, 41, 135–142. [Google Scholar] [CrossRef]
- Ceylan, N.; Ciftçi, I.; Mızrak, C.; Kahraman, Z.; Efil, H. Influence of Different Dietary Oil Sources on Performance and Fatty Acid Profile of Egg Yolk in Laying Hens. J. Anim. Feed Sci. 2011, 20, 71–83. [Google Scholar] [CrossRef] [Green Version]
- Lawlor, J.B.; Gaudette, N.; Dickson, T.; House, J.D. Fatty Acid Profile and Sensory Characteristics of Table Eggs from Laying Hens Fed Diets Containing Microencapsulated Fish Oil. Anim. Feed Sci. Technol. 2010, 156, 97–103. [Google Scholar] [CrossRef]
- Aguillón-Páez, Y.J.; Romero, L.A.; Diaz, G.J. Effect of Full-Fat Sunflower or Flaxseed Seeds Dietary Inclusion on Performance, Egg Yolk Fatty Acid Profile and Egg Quality in Laying Hens. Anim. Nutr. 2020, 6, 179–184. [Google Scholar] [CrossRef] [PubMed]
- Dalle Zotte, A.; Andrighetto, I.; Giaccone, V.; Marchesini, G. Dietary Enrichment of N-3 PUFA for Laying Hens: Effect of Different Sources on Production, Composition and Quality of Eggs. Anim. Sci. Pap. Rep. 2015, 33, 411–424. [Google Scholar]
- Kralik, Z.; Kralik, G.; Grčević, M.; Hanžek, D.; Margeta, P. Microalgae Schizochytrium Limacinum as an Alternative to Fish Oil in Enriching Table Eggs with N-3 Polyunsaturated Fatty Acids. J. Sci. Food Agric. 2020, 100, 587–594. [Google Scholar] [CrossRef]
- Stupin, A.; Rasic, L.; Matic, A.; Stupin, M.; Kralik, Z.; Kralik, G.; Grcevic, M.; Drenjancevic, I. Omega-3 Polyunsaturated Fatty Acids-Enriched Hen Eggs Consumption Enhances Microvascular Reactivity in Young Healthy Individuals. Appl. Physiol. Nutr. Metab. 2018, 43, 988–995. [Google Scholar] [CrossRef] [Green Version]
- Fašiangova, M.; Borilova, G. Impact of Se Supplementation on the Oxidation Stability of Eggs. Worlds Poult. Sci. J. 2017, 73, 175–184. [Google Scholar] [CrossRef]
- Heindl, J.; Ledvinka, Z.; Tůmová, E.; Zita, L. The Importance, Utilization and Sources of Selenium for Poultry: A Review. Sci. Agric. Bohem. 2010, 41, 55–64. [Google Scholar]
- Surai, P.F.; Kochish, I.I.; Romanov, M.N.; Griffin, D.K. Nutritional Modulation of the Antioxidant Capacities in Poultry: The Case of Vitamin E. Poult. Sci. 2019, 98, 4030–4041. [Google Scholar] [CrossRef]
- Surai, P.F.; Kochish, I.I. Nutritional Modulation of the Antioxidant Capacities in Poultry: The Case of Selenium. Poult. Sci. 2019, 98, 4231–4239. [Google Scholar] [CrossRef] [PubMed]
- Davidowski, L. A Simple Continuous Flow Hydride Generator for ICP-OES; ICP Application Study no. 67; Perkin-Elmer: Norwalk, CT, USA, 1993. [Google Scholar]
- Leeson, S.; Caston, L. Enrichment of Eggs with Lutein. Poult. Sci. 2004, 83, 1709–1712. [Google Scholar] [CrossRef] [PubMed]
- TIBCO Software Inc. Data Science Workbench; Version 14; TIBCO Software Inc.: Palo Alto, CA, USA, 2020; Available online: http://tibco.com (accessed on 4 October 2022).
- Scheideler, S.E.; Weber, P.; Monsalve, D. Supplemental Vitamin E and Selenium Effects on Egg Production, Egg Quality, and Egg Deposition of α-Tocopherol and Selenium. J. Appl. Poult. Res. 2010, 19, 354–360. [Google Scholar] [CrossRef]
- Kralik, Z.; Kralik, G.; Grčević, M.; Galović, D. Effect of Storage Period on the Quality of Table Eggs. Acta Agrar. Kaposváriensis 2014, 18, 200–206. [Google Scholar]
- Lomakina, K.; Míková, K. A Study of the Factors Affecting the Foaming Properties of Egg White—A Review. Czech J. Food Sci. 2006, 24, 110–118. [Google Scholar] [CrossRef] [Green Version]
- Omana, D.A.; Wang, J.; Wu, J. Ovomucin—A Glycoprotein with Promising Potential. Trends Food Sci. Technol. 2010, 21, 455. [Google Scholar] [CrossRef]
- De Oliveira, M.C.; da Silva, W.D.; Oliveira, H.C.; Moreira, E.d.Q.B.; Ferreira, L.d.O.; Gomes, Y.d.S.; de Souza, M.A.P. Paprika and/or Marigold Extracts in Diets for Laying Hens. Rev. Bras. Saúde Prod. Anim. 2017, 18, 293–302. [Google Scholar] [CrossRef] [Green Version]
- Schaeffer, J.L.; Tyczkowski, J.K.; Parkhurst, C.R.; Hamilton, P.B. Carotenoid Composition of Serum and Egg Yolks of Hens Fed Diets Varying in Carotenoid Composition. Poult. Sci. 1988, 67, 608–614. [Google Scholar] [CrossRef]
- Grashorn, M. Feed Additives for influencing chicken meat and egg yolk color. In Handbook on Natural Pigments in Food and Beverages: Industrial Applications for Improving Food Color; Carle, R., Schweiggert, R., Eds.; Woodhead Publishing: Cambridge, UK, 2016; pp. 283–302. [Google Scholar] [CrossRef]
- Berkhoff, J.; Alvarado-Gilis, C.; Keim, J.P.; Alcalde, J.A.; Vargas-Bello-Pérez, E.; Gandarillas, M. Consumer Preferences and Sensory Characteristics of Eggs from Family Farms. Poult. Sci. 2020, 99, 6239–6246. [Google Scholar] [CrossRef]
- Kojima, S.; Koizumi, S.; Kawami, Y.; Shigeta, Y.; Osawa, A. Effect of Dietary Carotenoid on Egg Yolk Color and Singlet Oxygen Quenching Activity of Laying Hens. J. Poult. Sci. 2022, 59, 137–142. [Google Scholar] [CrossRef]
- Fletcher, D.L.; Halloran, H.R. Egg Yolk Pigmenting Properties of a Marigold Extract and Paprika Oleoresin in a Practical Type Diet. Poult. Sci. 1983, 62, 1205–1210. [Google Scholar] [CrossRef]
- Bartov, I.; Bornstein, S. Studies on Egg Yolk Pigmentation: 3. The Effect of Origin and Storage Conditions of Yellow Corn on the Utilization of Its Xanthophyll. Poult. Sci. 1967, 46, 796–805. [Google Scholar] [CrossRef] [PubMed]
- Steinberg, W.; Grashorn, M.A.; Klünter, A.M.; Schierle, J. Comparative Pigmentation Efficiency of Two Products Containing Either Apo-Ester or Tagetes Extracts in Egg Yolks and Liquid Eggs. Arch. Für Geflügelkunde 2000, 64, 180–187. [Google Scholar]
- Nolan, J.M.; Meagher, K.A.; Howard, A.N.; Moran, R.; Thurnham, D.I.; Beatty, S. Lutein, Zeaxanthin and Meso-Zeaxanthin Content of Eggs Laid by Hens Supplemented with Free and Esterified Xanthophylls. J. Nutr. Sci. 2016, 5, e1. [Google Scholar] [CrossRef] [PubMed]
- Lokaewmanee, K.; Yamauchi, K.; Komori, T.; Saito, K. Enhancement of Yolk Color in Raw and Boiled Egg Yolk with Lutein from Marigold Flower Meal and Marigold Flower Extract. J. Poult. Sci. 2011, 48, 25–32. [Google Scholar] [CrossRef] [Green Version]
- Golzar Adabi, S.H.; Kamali, M.A.; Davoudi, J.; Cooper, R.G.; Hajbabaei, A. Quantification of Lutein in Egg Following Feeding Hens with a Lutein Supplement and Quantification of Lutein in Human Plasma after Consumption of Lutein Enriched Eggs. Arch. Für Gefluegelkunde 2010, 74, 158–163. [Google Scholar]
- Nain, S. Improving the Effectiveness of Laying Hens for Use in Value-Added Egg Production. Master’s Thesis, University of Alberta, Edmonton, AB, Canada, 2011. [Google Scholar]
- Skřivan, M.; Marounek, M.; Englmaierová, M.; Skřivanová, E. Effect of Increasing Doses of Marigold (Tagetes Erecta) Flower Extract on Eggs Carotenoids Content, Colour and Oxidative Stability. J. Anim. Feed Sci. 2016, 25, 58–64. [Google Scholar] [CrossRef]
- Grčević, M.; Kralik, Z.; Kralik, G.; Galović, O. Effects of Dietary Marigold Extract on Lutein Content, Yolk Color and Fatty Acid Profile of Omega-3 Eggs. J. Sci. Food Agric. 2019, 99, 2292–2299. [Google Scholar] [CrossRef]
- Islam, K.M.S.; Khalil, M.; Männer, K.; Raila, J.; Rawel, H.; Zentek, J.; Schweigert, F.J. Lutein Specific Relationships among Some Spectrophotometric and Colorimetric Parameters of Chicken Egg Yolk. J. Poult. Sci. 2017, 54, 271–277. [Google Scholar] [CrossRef] [Green Version]
- Skřivan, M.; Englmaierová, M.; Skřivanová, E.; Bubancová, I. Increase in Lutein and Zeaxanthin Content in the Eggs of Hens Fed Marigold Flower Extract. Czech J. Anim. Sci. 2015, 60, 89–96. [Google Scholar] [CrossRef] [Green Version]
- Tufarelli, V.; Ceci, E.; Laudadio, V. 2-Hydroxy-4-Methylselenobutanoic Acid as New Organic Selenium Dietary Supplement to Produce Selenium-Enriched Eggs. Biol. Trace Elem. Res. 2016, 171, 453–458. [Google Scholar] [CrossRef]
- Jiang, W.; Zhang, L.; Shan, A. The Effect of Vitamin E on Laying Performance and Egg Quality in Laying Hens Fed Corn Dried Distillers Grains with Solubles. Poult. Sci. 2013, 92, 2956–2964. [Google Scholar] [CrossRef]
- Chen, J.Y.; Latshaw, J.D.; Lee, H.O.; Min, D.B. α-Tocopherol Content and Oxidative Stability of Egg Yolk as Related to Dietary α-Tocopherol. J. Food Sci. 1998, 63, 919–922. [Google Scholar] [CrossRef]
- Surai, P.F.; Sparks, N.H.C. Designer Eggs: From Improvement of Egg Composition to Functional Food. Trends Food Sci. Technol. 2001, 12, 7–16. [Google Scholar] [CrossRef]
- Ren, Y.; Perez, T.I.; Zuidhof, M.J.; Renema, R.A.; Wu, J. Oxidative Stability of Omega-3 Polyunsaturated Fatty Acids Enriched Eggs. J. Agric. Food Chem. 2013, 61, 11595–11602. [Google Scholar] [CrossRef]
- Wang, Z.G.; Pan, X.J.; Zhang, W.Q.; Peng, Z.Q.; Zhao, R.Q.; Zhou, G.H. Methionine and Selenium Yeast Supplementation of the Maternal Diets Affects Antioxidant Activity of Breeding Eggs. Poult. Sci. 2010, 89, 931–937. [Google Scholar] [CrossRef]
- Pan, C.; Zhao, Y.; Liao, S.F.; Chen, F.; Qin, S.; Wu, X.; Zhou, H.; Huang, K. Effect of Selenium-Enriched Probiotics on Laying Performance, Egg Quality, Egg Selenium Content, and Egg Glutathione Peroxidase Activity. J. Agric. Food Chem. 2011, 59, 11424–11431. [Google Scholar] [CrossRef]
- Rajashree, K.; Muthukumar, T.; Karthikeyan, N. Comparative Study of the Effects of Organic Selenium on Hen Performance and Productivity of Broiler Breeders. Br. Poult. Sci. 2014, 55, 367–374. [Google Scholar] [CrossRef] [PubMed]
- Gjorgovska, N.; Filev, K. Multi-Enriched Eggs with Omega 3 Fatty Acids, Vitamin E and Selenium. Arch. Zootech. 2011, 14, 28–35. [Google Scholar]
- Liang, K.; Zu, H.; Wang, X. Effect of Storage on N-3 PUFA-Enriched Eggs. CyTA J. Food 2020, 18, 102–107. [Google Scholar] [CrossRef] [Green Version]
- Mohiti-Asli, M.; Shariatmadari, F.; Lotfollahian, H.; Mazuji, M.T. Effects of Supplementing Layer Hen Diets with Selenium and Vitamin E on Egg Quality, Lipid Oxidation and Fatty Acid Composition during Storage. Can. J. Anim. Sci. 2008, 88, 475–483. [Google Scholar] [CrossRef] [Green Version]
- Promila, N.K.; Sihag, S.; Shunthwal, J.; Verma, R.; Baloda, S. Effect of Linseed Oil Supplementation on Hen Day Egg Production, Body Weight, Egg Shape Index, Economics and Egg Quality in Layers. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 2005–2016. [Google Scholar] [CrossRef]
- Jenkins, D.J.A.; Josse, A.R. CMAJ Fact Sheet: Fish Oil and Omega-3 Fatty Acids. CMAJ Can. Med. Assoc. J. 2008, 178, 150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zduńczyk, Z.; Drażbo, A.; Jankowski, J.; Juśkiewicz, J.; Antoszkiewicz, Z.; Troszyńska, A.; Drażbo, A.A. The Effect of Dietary Vitamin E and Selenium Supplements on the Fatty Acid Profile and Quality Traits of Eggs. Arch. Anim. Breed 2013, 56, 719–732. [Google Scholar] [CrossRef] [Green Version]
- Brenna, J.T. Efficiency of Conversion of Alpha-Linolenic Acid to Long Chain n-3 Fatty Acids in Man. Curr. Opin. Clin. Nutr. Metab. Care 2002, 5, 127–132. [Google Scholar] [CrossRef] [PubMed]
- Cartoni Mancinelli, A.; Mattioli, S.; Twining, C.; Bosco, A.D.; Donoghue, A.M.; Arsi, K.; Angelucci, E.; Chiattelli, D.; Castellini, C. Poultry Meat and Eggs as an Alternative Source of N-3 Long-Chain Polyunsaturated Fatty Acids for Human Nutrition. Nutrients 2022, 14, 1969. [Google Scholar] [CrossRef]
- Surai, P.F.; MacPherson, A.; Speake, B.K.; Sparks, N.H.C. Designer Egg Evaluation in a Controlled Trial. Eur. J. Clin. Nutr. 2000, 54, 298–305. [Google Scholar] [CrossRef] [Green Version]
- Abedi, E.; Sahari, M.A. Long-Chain Polyunsaturated Fatty Acid Sources and Evaluation of Their Nutritional and Functional Properties. Food Sci. Nutr. 2014, 2, 443–463. [Google Scholar] [CrossRef]
- Irawan, A.; Ningsih, N.; Hafizuddin; Rusli, R.K.; Suprayogi, W.P.S.; Akhirini, N.; Hadi, R.F.; Setyono, W.; Jayanegara, A. Supplementary N-3 Fatty Acids Sources on Performance and Formation of Omega-3 in Egg of Laying Hens: A Meta-Analysis. Poult. Sci. 2022, 101, 101566. [Google Scholar] [CrossRef]
- Omri, B.; Chalghoumi, R.; Izzo, L.; Ritieni, A.; Lucarini, M.; Durazzo, A.; Abdouli, H.; Santini, A. Effect of Dietary Incorporation of Linseed Alone or Together with Tomato-Red Pepper Mix on Laying Hens’ Egg Yolk Fatty Acids Profile and Health Lipid Indexes. Nutrients 2019, 11, 813. [Google Scholar] [CrossRef]
Ingredients | % | Chemical Analysis ** | % |
---|---|---|---|
Corn | 48.47 | Moisture | 9.30 |
Soybean cake | 22.33 | Crude protein | 16.63 |
Toasted soybean | 3.00 | Crude fat | 7.30 |
Sunflower cake | 5.00 | Crude fibre | 4.00 |
Alfalfa | 1.67 | Ash | 16.54 |
Calcium granules | 10.33 | ||
Monocalcium phosphate | 1.33 | ||
Yeast | 0.50 | ||
Salt | 0.33 | ||
Acidifier | 0.33 | ||
Minerals nanofeed | 0.33 | ||
Methionine | 0.15 | ||
Premix * | 1.20 | ||
Soybean oil | 5.00 | ||
Total | 100.00 | ME, MJ/kg | 11.60 |
Fatty Acid | Treatment C | Treatment E |
---|---|---|
Myristic (C14:0) | 0.17 ± 0.01 | 1.54 ± 0.01 |
Pentadecanoic (C15:0) | 0.05 ± 0.01 | 0.25 ± 0.01 |
Palmitic (C16:0) | 14.69 ± 0.02 | 12.12 ± 0.01 |
Heptadecanoic (C 17:0) | 0.13 ± 0.01 | 0.26 ± 0.01 |
Stearic (C 18:0) | 5.52 ± 0.02 | 3.60 ± 0.01 |
Arachidic (C 20:0) | 0.46 ± 0.01 | 0.38 ± 0.01 |
Behenic (C 22:0) | 0.21 ± 0.01 | 0.25 ± 0.01 |
∑ SFA | 21.23 ± 0.24 | 18.41 ± 0.01 |
Palmitoleic (C 16:1) | 0.23 ± 0.01 | 1.66 ± 0.01 |
Oleic (C18:1 cis + trans) | 28.27 ± 0.01 | 33.13 ± 0.02 |
Eicosenoic (C 20:1) | 0.17 ± 0.01 | 1.07 ± 0.01 |
Erucic (C 22:1) | 1.16 ± 0.01 | 0.73 ± 0.02 |
∑ MUFA | 29.85 ± 0.05 | 36.61 ± 0.01 |
Linoleic (C18:2 n-6) | 44.17 ± 0.01 | 23.13 ± 0.03 |
∑ PUFA n-6 | 44.17 ± 0.01 | 23.13 ± 0.03 |
Alfa linolenic (C18:3 n3) | 4.24 ± 0.01 | 17.39 ± 0.02 |
Eicosapentaenoic (C20:5 n-3) | 0.49 ± 0.00 | 1.62 ± 0.03 |
Docosahexaenoic (C 22:6 n-3) | 0.00 ± 0.00 | 2.81 ± 0.02 |
∑ PUFA n-3 | 4.73 ± 0.01 | 21.83 ± 0.07 |
∑ PUFA n-6/ PUFA n-3 | 9.32 ± 0.01 | 1.06 ± 0.01 |
Treatment/ Group | Time of Analysis | Albumen Portion (%) | Yolk Portion (%) | Shell Portion (%) |
---|---|---|---|---|
Conventional | Fresh | 60.47 b | 26.51 a | 13.02 |
Stored | 59.94 b | 27.34 a | 12.72 | |
Enriched | Fresh | 62.04 a | 25.21 b | 12.75 |
Stored | 60.25 b | 27.39 a | 12.36 | |
SEM | 0.485 | 0.463 | 0.262 | |
p value | Feeding treatment | 0.058 | 0.176 | 0.257 |
Storage period | 0.019 | 0.001 | 0.184 | |
Interaction | 0.197 | 0.147 | 0.860 |
Treatment/ Group | Time of Analysis | Egg Weight (g) | Shell Thickness (mm) | Shell Strength (kg/cm2) |
---|---|---|---|---|
Conventional | Fresh | 63.79 | 0.421 ab | 2.867 |
Stored | 65.98 | 0.423 a | 2.937 | |
Enriched | Fresh | 66.29 | 0.404 b | 2.841 |
Stored | 65.38 | 0.415 ab | 2.759 | |
SEM | 0.987 | 0.006 | 0.145 | |
p value | Feeding treatment | 0.340 | 0.049 | 0.485 |
Storage period | 0.520 | 0.287 | 0.966 | |
Interaction | 0.119 | 0.471 | 0.601 |
Treatment/ Group | Time of Analysis | Albumen Height (mm) | HU | Yolk Color | Albumen pH | Yolk pH |
---|---|---|---|---|---|---|
Conventional | Fresh | 6.01 b | 74.29 b | 11.58 b | 8.51 b | 5.81 b |
Stored | 4.56 c | 61.59 c | 11.05 c | 8.80 a | 6.18 a | |
Enriched | Fresh | 6.90 a | 80.74 a | 13.30 a | 8.43 b | 5.74 c |
Stored | 4.97 c | 65.47 c | 13.25 a | 8.78 a | 6.13 a | |
SEM | 0.227 | 1.968 | 0.124 | 0.033 | 0.023 | |
p value | Feeding treatment | ˂0.001 | 0.01 | ˂0.001 | 0.133 | 0.01 |
Storage period | ˂0.001 | ˂0.001 | ˂0.001 | ˂0.001 | ˂0.001 | |
Interaction | 0.289 | 0.515 | 0.003 | 0.306 | 0.822 |
Ingredient | Conventional | Enriched | p Value |
---|---|---|---|
Selenium in albumen (μg/g) | 0.063 b | 0.114 a | ˂0.001 |
Selenium in yolk (μg/g) | 0.615 b | 0.724 a | ˂0.001 |
Lutein in yolk (μg/g) | 7.21 b | 61.45 a | ˂0.001 |
Vitamin E in yolk (μg/g) | 8.77 b | 24.03 a | ˂0.001 |
Fatty Acid | Conventional | Enriched | p Value |
---|---|---|---|
Myristic (C14:0) | 20.19 ± 2.28 b | 27.11 ± 1.43 a | ˂0.001 |
Pentadecanoic (C15:0) | 4.18 ± 1.23 b | 7.46 ± 0.37 a | ˂0.001 |
Palmitic (C16:0) | 1585.93 ± 343.8 | 1511.75 ± 198.5 | 0.687 |
Heptadecanoic (C17:0) | 15.47 ± 4.30 | 16.27 ± 1.83 | 0.714 |
Stearic (C18:0) | 564.05 ± 146.70 | 469.02 ± 63.40 | 0.220 |
Heneicosanoic (C21:0) | 16.84 ± 2.10 a | 5.63 ± 0.41 b | ˂0.001 |
∑SFA | 2206.66 ± 489.7 | 2037.24 ± 258.2 | 0.513 |
Palmitoleic (C16:1) | 141.53 ± 27.0 b | 241.74 ± 18.42 a | ˂0.001 |
Heptadecenoic (C17:1) | 11.50 ± 4.49 b | 18.96 ± 0.93 a | 0.006 |
Oleic (C18:1) | 2616.81 ± 250.1 b | 3124.11 ± 177.2 a | 0.006 |
Eicosenoic (20:1) | 12.37 ± 0.80 | 13.87 ± 1.22 | 0.051 |
∑MUFA | 2782.21 ± 267.9 b | 3398.69 ± 194.2 a | 0.003 |
Linoleic (C18:2 n-6) | 1637.96 ± 194.3 a | 985.98 ± 61.0 b | ˂0.001 |
Eicosadienoic (C20:2 n-6) | 10.02 ± 1.2 b | 6.92 ± 1.2 b | 0.004 |
Arachidonic (C20:4 n-6) | 130.51 ± 16.5 a | 62.45 ± 4.9 b | ˂0.001 |
∑n-6 PUFA | 1778.49 ± 208.8 a | 1055.35 ± 66.5 b | ˂0.001 |
α-linolenic (C18:3 n-3) | 99.15 ± 14.8 b | 265.29 ± 21.9 a | ˂0.001 |
EPA (C20:5 n-3) | 0.00 ± 0.00 b | 26.04 ± 2.3 a | ˂0.001 |
DHA (C22:6 n-3) | 105.43 ± 15.5 b | 189.32 ± 16.3 a | ˂0.001 |
∑n3 PUFA | 204.58 ± 28.2 b | 480.65 ± 35.9 a | ˂0.001 |
n-6/n-3 PUFA | 8.69 ± 0.4 a | 2.19 ± 0.1 b | ˂0.001 |
Experimental Groups | Time of Analysis | µg MDA/g of Yolk |
---|---|---|
Conventional | Fresh | 0.939 b |
Stored | 1.085 a | |
Enriched | Fresh | 0.892 c |
Stored | 1.016 ab | |
SEM | 0.040 | |
p value | ||
Feeding treatments | 0.168 | |
Storage period | 0.792 | |
Interaction | 0.004 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kralik, Z.; Kralik, G.; Košević, M.; Galović, O.; Samardžić, M. Natural Multi-Enriched Eggs with n-3 Polyunsaturated Fatty Acids, Selenium, Vitamin E, and Lutein. Animals 2023, 13, 321. https://doi.org/10.3390/ani13020321
Kralik Z, Kralik G, Košević M, Galović O, Samardžić M. Natural Multi-Enriched Eggs with n-3 Polyunsaturated Fatty Acids, Selenium, Vitamin E, and Lutein. Animals. 2023; 13(2):321. https://doi.org/10.3390/ani13020321
Chicago/Turabian StyleKralik, Zlata, Gordana Kralik, Manuela Košević, Olivera Galović, and Mirela Samardžić. 2023. "Natural Multi-Enriched Eggs with n-3 Polyunsaturated Fatty Acids, Selenium, Vitamin E, and Lutein" Animals 13, no. 2: 321. https://doi.org/10.3390/ani13020321
APA StyleKralik, Z., Kralik, G., Košević, M., Galović, O., & Samardžić, M. (2023). Natural Multi-Enriched Eggs with n-3 Polyunsaturated Fatty Acids, Selenium, Vitamin E, and Lutein. Animals, 13(2), 321. https://doi.org/10.3390/ani13020321