Nutrient Composition of Ovary, Hepatopancreas and Muscle Tissues in Relation to Ovarian Development Stage of Female Swimming Crab, Portunus trituberculatus
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Sampling
2.3. Growth Traits, Gonadal Index, and Hepatopancreas Index
2.4. Gonadal Development
2.5. Proximate Composition and Fatty Acid Analysis
2.6. Amino Acids Analysis
2.7. Triglycerides and Total Cholesterol Analysis
2.8. Phospholipid and Carotenoid Analysis
2.9. Data Analysis
3. Results
3.1. Ovarian Maturation Stages
3.2. Growth Traits, GSI, and HSI
3.3. Proximate Composition
3.4. Amino Acid and the Relationship between Ovary Stages
3.5. Fatty Acid and the Relationship between Ovary Stages
3.6. Triglycerides, Cholesterol and Phospholipids
3.7. Carotenoid Content
4. Discussion
4.1. GSI, HSI, and Ovary Maturation
4.2. Total Protein and Amino Acid Contents
4.3. Total Lipid, Lipid Profiles and Fatty Acid Contents
4.4. Carotenoid Content
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jin, M.; Zhou, Q.C.; Zhang, W.; Xie, F.J.; ShenTu, J.K.; Huang, X.L. Dietary protein requirements of the juvenile swimming crab, Portunus trituberculatus. Aquaculture 2013, 414–415, 303–308. [Google Scholar] [CrossRef]
- Huo, Y.W.; Jin, M.; Zhou, P.P.; Li, M.; Mai, K.S.; Zhou, Q.C. Effects of dietary protein and lipid levels on growth, feed utilization and body composition of juvenile swimming crab, Portunus trituberculatus. Aquaculture 2014, 434, 151–158. [Google Scholar] [CrossRef]
- China Fishery Statistical Yearbook, 2022; China Agriculture Press: Beijing, China, 2022; 23p.
- Bo, Q.-K.; Lu, Y.-Z.; Ma, C.; Mi, H.-J.; Jia, L.; Meng, Y.-G.; Yu, Y.-G.; Geng, X.-Y. Reproductive biology and biochemical changes in female mantis shrimp Oratosquilla oratoria (Stomatopoda) with ovary development from the Tianjin coastal zone of Bohai Bay. Aquaculture 2020, 534, 736239. [Google Scholar] [CrossRef]
- Costa, J.W.P.; Brito, T.Y.d.S.; Neto, J.C.M.; Abrunhosa, F.A.; Maciel, C.M.T.; Maciel, C.R. Reproductive cycle and embryonic development of the ornamental shrimp Lysmata ankeri. Aquaculture 2021, 543, 736994. [Google Scholar] [CrossRef]
- Ye, H.; Zeng, C.; Tsutsui, N.; Dircksen, H. Editorial: Crustacean reproductive physiology and its applications. Front. Physiol. 2022, 13, 1018481. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Yun, B.; Xue, M.; Wang, J.; Wu, X.; Zheng, Y.; Han, F. Effects of fish meal quality and fish meal substitution by animal protein blend on growth performance, flesh quality and liver histology of Japanese seabass (Lateolabrax japonicus). Aquaculture 2013, 372–375, 52–61. [Google Scholar] [CrossRef]
- Wang, J.; Yu, S.; Wang, L.; Liu, T.; Yang, X.; Hu, X.; Wang, Y. Capsaicin decreases fecundity in the Asian malaria vector Anopheles stephensi by inhibiting the target of rapamycin signaling pathway. Parasites Vectors 2022, 15, 458. [Google Scholar] [CrossRef]
- Yu, H.; Xu, W.; Zhang, D.; Cheng, H.; Wu, K.; He, J. Development of embryos and larvae of Portunus trituberculatus (decapoda, brachyura) in off-season breeding mode. Crustaceana 2021, 6, 94. [Google Scholar]
- Harrison, K.E. The role of nutrition in maturation, reproduction and embryonic development of decapod crustacean: A review. J. Shellfish Res. 1990, 9, 1–28. [Google Scholar]
- Rezaei, N.; Chian, R. Effects of essential and non-essential amino acids on in-vitro maturation, fertilization and development of immature bovine oocytes. Iran. J. Reprod. Med. 2005, 3, 36–41. [Google Scholar]
- Wu, G. Functional Amino Acids in Growth, Reproduction, and Health. Adv. Nutr. Int. Rev. J. 2010, 1, 31–37. [Google Scholar] [CrossRef]
- Wu, G.; Bazer, F.W.; Dai, Z.; Li, D.; Wang, J.; Wu, Z. Amino Acid Nutrition in Animals: Protein Synthesis and Beyond. Annu. Rev. Anim. Biosci. 2014, 2, 387–417. [Google Scholar] [CrossRef]
- Bermúdez, R.; Franco, D.; Carballo, J.; Sentandreu, M.; Lorenzo, J.M. Influence of muscle type on the evolution of free amino acids and sarcoplasmic and myofibrillar proteins through the manufacturing process of Celta dry-cured ham. Food Res. Int. 2014, 56, 226–235. [Google Scholar] [CrossRef]
- Asil, S.M.; Kenari, A.A.; Mianji, G.R.; Van Der Kraak, G. Estimation of Arachidonic Acid Requirement for Improvement of Pre-maturation Growth and Egg and Larval Quality in the Female Blue Gourami (Trichopodus trichopterus; Pallas, 1770): A Model for the Anabantidae Family. J. World Aquac. Soc. 2017, 50, 359–373. [Google Scholar] [CrossRef]
- Wu, X.; Zhu, S.; Zhang, H.; Liu, M.; Wu, N.; Pan, J.; Luo, M.; Wang, X.; Cheng, Y. Fattening culture improves the gonadal development and nutritional quality of male Chinese mitten crab Eriocheir sinensis. Aquaculture 2019, 518, 734865. [Google Scholar] [CrossRef]
- Yedier, S.; Gümüs, E.; Livengood, E.J.; Chapman, F.A. The relationship between carotenoid type and skin color in the ornamental red zebra cichlid Maylandia estherae. AACL Bioflux 2014, 7, 207–2016. [Google Scholar]
- Lerfall, J.; Bendiksen, E.; Olsen, J.V.; Østerlie, M. A comparative study of organic- versus conventional Atlantic salmon. II. Fillet color, carotenoid- and fatty acid composition as affected by dry salting, cold smoking and storage. Aquaculture 2016, 451, 369–376. [Google Scholar] [CrossRef]
- Nimalaratne, C.; Wu, J.; Schieber, A. Egg Yolk Carotenoids: Composition, Analysis, and Effects of Processing on Their Stability. In Carotenoid Cleavage Products; American Chemical Society: Washington, DC, USA, 2013; pp. 219–225. [Google Scholar] [CrossRef]
- Milani, A.; Basirnejad, M.; Shahbazi, S.; Bolhassani, A. Carotenoids: Biochemistry, pharmacology and treatment. Br. J. Pharmacol. 2016, 174, 1290–1324. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Waiho, K.; Huang, Z.; Li, S.; Zheng, H.; Zhang, Y.; Ikhwanuddin, M.; Lin, F.; Ma, H. Growth performance and biochemical composition dynamics of ovary, hepatopancreas and muscle tissues at different ovarian maturation stages of female mud crab, Scylla paramamosain. Aquaculture 2019, 515, 734560. [Google Scholar] [CrossRef]
- Fernández-Palacios, H.; Norberg, B.; Izquierdo, M.; Hamre, K. Effects of Broodstock Diet on Eggs and Larvae. In Larval Fish Nutrition; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2011; pp. 151–181. [Google Scholar] [CrossRef]
- Waiho, K.; Fazhan, H.; Glenner, H.; Ikhwanuddin, M. Infestation of parasitic rhizocephalan barnacles Sacculina beauforti (Cirripedia, Rhizocephala) in edible mud crab, Scylla olivacea. PeerJ 2017, 5, e3419. [Google Scholar] [CrossRef]
- AOAC. Official methods of analysis of AOAC international. In Official Analytical Chemists, 16th ed.; Cunniff, P., Ed.; AOAC: Rockville, MD, USA, 1995. [Google Scholar]
- Folch, J.; Lees, M.; Stanley, G.H.S. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Xu, H.; Han, T.; Wang, J.; Yin, F.; Wang, C. Effect of dietary egg yolk lecithin levels on survival, growth, lipid metabolism, and antioxidant capacity of early juvenile green mud crab Scylla paramamosain. Aquaculture 2021, 540, 736706. [Google Scholar] [CrossRef]
- Shi, P.; Ma, L.; Deng, Z.; Wang, H.; Jia, H.; Gao, Q.; Chi, Q. Three kinds of woodland shade net planting pleurotus mushroom nutrition analysis and comparison. J. Food. Res. Dev. 2016, 37, 24–29. [Google Scholar]
- Khas, E.; Ao, C.J.; Sa, R.L.; Cao, Q.N.; Bai, C. Evaluation of amino acid composition and nutritional value of longissimus doris from different farmed herbivores in inner Mongolia region, meet research. Meat Research 2022, 36, 1–6, (In Chinese with English abstract). [Google Scholar]
- Hang, L.U.; Hui, L.I.; Zhao, J.; He, Q.F.; Li, J.J.; Ding, Y.N.; Yan, Z.; Hu, J.E. Determination of phospholipids in Channel Catfish brain by high performance liquid chromatography-evaporative light scattering detector (HPLC-ELSD). J. Food Sci. 2015, 36, 24, (In Chinese with English abstract). [Google Scholar]
- Bing, L.I.; Zhao, H.Y.; Liu, W.; Fan, S.; Li, L.P.; Wu, G.H.; Xue, Y.; Zhao, R. Rapid determination of carotenoids in spirulina dietary supplement products by ultra performance convergence chromatography with photodiode array detector. J. Instrum. Anal. 2015, 34, 7, (In Chinese with English abstract). [Google Scholar]
- Templeton, G.F. A Two-Step Approach for Transforming Continuous Variables to Normal: Implications and Recommendations for IS Research. Commun. Assoc. Inf. Syst. 2011, 28, 41–58. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment Forstatistical Computing; R Foundation for Statistical Computing: Wien, Austria, 2016. [Google Scholar]
- Quinitio, E.T.; de Pedro, J.; Parado-Estepa, F.D. Ovarian maturation stages of the mud crab Scylla serrata. Aquac. Res. 2007, 38, 1434–1441. [Google Scholar] [CrossRef]
- Tantikitti, C.; Kaonoona, R.; Pongmaneerat, J. Fatty acid profiles and carotenoids accumulation in hepatopancreas and ovary of wild female mud crab (Scylla paramamosain, Estampador, 1949). SJST 2015, 37, 609–616. [Google Scholar]
- Ghazali, A.; Azra, M.N.; Noordin, N.M.; Abol-Munafi, A.B.; Ikhwanuddin, M. Ovarian morphological development and fatty acids profile of mud crab (Scylla olivacea) fed with various diets. Aquaculture 2017, 468, 45–52. [Google Scholar] [CrossRef]
- Flores, A.; Wiff, R.; Díaz, E. Using the gonadosomatic index to estimate the maturity ogive: Application to Chilean hake (Merluccius gayi gayi). ICES J. Mar. Sci. 2014, 72, 508–514. [Google Scholar] [CrossRef]
- Beerstecher, E. The Nutrition of the Crustacea. Vitam. Horm. 1952, 10, 69–77. [Google Scholar] [CrossRef]
- Chellappa, S.; Huntingford, F.A.; Strang, R.H.C.; Thomson, R.Y. Condition factor and hepatosomatic index as estimates of energy status in male three-spined stickleback. J. Fish Biol. 1995, 47, 775–787. [Google Scholar] [CrossRef]
- Díaz, A.; Petriella, A.; Fenucci, J. Molting cycle and reproduction in the population of the shrimp Pleoticus muelleri (Crustacea, Penaeoidea) from Mar del Plata. Cienc. Mar. 2003, 29, 343–355. [Google Scholar] [CrossRef]
- Wu, H.; Ge, M.; Chen, H.; Jiang, S.; Lin, L.; Lu, J. Comparison between the nutritional qualities of wild-caughtand rice-field male Chinese mitten crabs (Eriocheir sinensis). LWT Food Sci. Technol. 2020, 117, 108663. [Google Scholar] [CrossRef]
- Huang, J.; Wang, C.L.; Chang-Kao, M.U.; Song, W.W.; Rong, H.L. Research on the changes of the protein and lipid contents in different tissues of the crab, Charybdis japonica during the overwintering period. J. Mar. Sci. B. 2014, 33, 90–94. [Google Scholar]
- Belgrad, B.A.; Griffen, B.D. The Influence of Diet Composition on Fitness of the Blue Crab, Callinectes sapidus. PLoS ONE 2016, 11, e0145481. [Google Scholar] [CrossRef]
- Li, X.; Han, T.; Zheng, S.; Wu, G. Nutrition and functions of amino acids in aquatic crustaceans. In Amino Acids in Nutrition and Health; Springer: Berlin, Germany, 2021. [Google Scholar] [CrossRef]
- Izquierdo, M.; Fernández-Palacios, H.; Tacon, A. Effect of broodstock nutrition on reproductive performance of fish. Aquaculture 2001, 197, 25–42. [Google Scholar] [CrossRef]
- Fatima, H.; Ayub, Z.; Ali, S.A.; Siddiqui, G. Biochemical composition of the hemolymph, hepatopancreas, ovary, and muscle during ovarian maturation in the penaeid shrimps Fenneropenaeus merguiensis and F. penicillatus (Crustacea: Decapoda). Turk. J. Zool. 2013, 37, 334–347. [Google Scholar] [CrossRef]
- Ravi, R.; Manisseri, M.K. Biochemical changes during gonadal maturation Portunus pelagicus (Linnaeus, 1758). J. Fish. Tech. 2010, 47, 27–34. [Google Scholar]
- Wu, G. Amino Acids: Biochemistry and Nutrition; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
- Neinast, M.; Murashige, D.; Arany, Z. Branched Chain Amino Acids. Annu. Rev. Physiol. 2019, 81, 139–164. [Google Scholar] [CrossRef]
- Rønnestad, I.; Fyhn, H.J.; Gravningen, K. The importance of free amino acids to the energy metabolism of eggs and larvae of turbot (Scophthalmus maximus). Mar. Biol. 1992, 114, 517–525. [Google Scholar] [CrossRef]
- Tian, H.; Wang, Q.; Zhao, Y.L.; Luo, W.; Fan, Y.J. Digestive enzyme activity and amino acid composition during embryonic development of Chinese mitten crab. J. Chinese Fish. Sci. 2003, 10, 5. [Google Scholar]
- Li, F.; Yin, Y.; Tan, B.; Kong, X.; Wu, G. Leucine nutrition in animals and humans: mTOR signaling and beyond. Amino Acids 2011, 41, 1185–1193. [Google Scholar] [CrossRef]
- Wu, G. Principles of Animal Nutrition; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar] [CrossRef]
- Shyamal, S.; Das, S.; Guruacharya, A.; Mykles, D.L.; Durica, D.S. Transcriptomic analysis of crustacean molting gland (Y-organ) regulation via the mTOR signaling pathway. Sci. Rep. 2018, 8, 7307. [Google Scholar] [CrossRef]
- Wu, P.; Yang, W.; Dong, Y.; Wang, Y.; Zhang, Y.; Zou, X.; Ge, H.; Hu, D.; Cui, Y.; Chen, Z. Feasibility of cultivation of Spinibarbus sinensis with coconut oil and its effect on disease resistance (nonspecific immunity, antioxidation and mTOR and NF-kB signaling pathways). Fish Shellfish. Immunol. 2019, 93, 726–731. [Google Scholar] [CrossRef]
- Badawy, A.A.-B.; Guillemin, G.J. Species Differences in Tryptophan Metabolism and Disposition. Int. J. Tryptophan Res. 2022, 15, 11786469221122511. [Google Scholar] [CrossRef]
- Comai, S.; Bertazzo, A.; Brughera, M.; Crotti, S. Tryptophan in health and disease. Adv. Clin. Chem. 2019, 95, 165–218. [Google Scholar] [CrossRef] [PubMed]
- Orhan, F.; Bhat, M.; Sandberg, K.; Ståhl, S.; Piehl, F.; Svensson, C.; Erhardt, S.; Schwieler, L.; Karolinska Schizophrenia Project (KaSP) Consortium. Tryptophan Metabolism Along the Kynurenine Pathway Downstream of Toll-like Receptor Stimulation in Peripheral Monocytes. Scand. J. Immunol. 2016, 84, 262–271. [Google Scholar] [CrossRef] [PubMed]
- Wu, G. Important roles of dietary taurine, creatine, carnosine, anserine and 4-hydroxyproline in human nutrition and health. Amino Acids 2020, 52, 329–360. [Google Scholar] [CrossRef] [PubMed]
- Jiang, K.-J.; Zhang, F.-Y.; Pi, Y.; Jiang, L.-L.; Yu, Z.-L.; Zhang, D.; Sun, M.-M.; Gao, L.-J.; Qiao, Z.-G.; Ma, L.-B. Amino Acid, Fatty Acid, and Metal Compositions in Edible Parts of Three Cultured Economic Crabs: Scylla paramamosain, Portunus trituberculatus, and Eriocheir sinensis. J. Aquat. Food Prod. Technol. 2013, 23, 73–86. [Google Scholar] [CrossRef]
- Xu, X.-H.; Yan, B.-L.; Xu, J.-T.; Xu, G.-C. Biochemical composition dynamics of the ovaries and hepatopancreas at different physiological stages of the female marine crab, Charybdis japonica. J. Crustac. Biol. 2014, 34, 61–69. [Google Scholar] [CrossRef]
- Xu, X.; Ji, W.; Castell, J.; O’Dor, R. Essential fatty acid requirement of the Chinese prawn, Penaeus chinensis. Aquaculture 1994, 127, 29–40. [Google Scholar] [CrossRef]
- Millamena, O.M. Effect of fatty acid composition of broodstock diet on tissue fatty acid patterns and egg fertilization and hatching in pond reared Penaeus monodon Fabricius broodstock. Asian. Fish. Sci. 1989, 22, 127–134. [Google Scholar] [CrossRef]
- Alava, V.R.; Quinitio, E.T.; de Pedro, J.B.; Priolo, F.M.P.; A Orozco, Z.G.; Wille, M. Lipids and fatty acids in wild and pond-reared mud crab Scylla serrata (Forsskål) during ovarian maturation and spawning. Aquac. Res. 2007, 38, 1468–1477. [Google Scholar] [CrossRef]
- Ferguson, E.M.; Leese, H.J. A potential role for triglyceride as an energy source during bovine oocyte maturation and early embryo development. Mol. Reprod. Dev. 2006, 73, 1195–1201. [Google Scholar] [CrossRef]
- Vonk, H. Digestion and Metabolism. In The Physiology of Crustacea; Academic Press: New York, NY, USA, 1960; pp. 291–316. [Google Scholar] [CrossRef]
- Cook, R.P. Cholesterol; Academic Press: New York, NY, USA, 1958. [Google Scholar]
- Coutteau, P.; Geurden, I.; Camara, M.; Bergot, P.; Sorgeloos, P. Review on the dietary effects of phospholipids in fish and crustacean larviculture. Aquaculture 1997, 155, 149–164. [Google Scholar] [CrossRef]
- Gong, H.; Lawrence, A.L.; Jiang, D.-H.; Castille, F.L.; Gatlin, D.M. Lipid nutrition of juvenile Litopenaeus vannamei: I. Dietary cholesterol and de-oiled soy lecithin requirements and their interaction. Aquaculture 2000, 190, 305–324. [Google Scholar] [CrossRef]
- Yepiz-Plascencia, G.; Galván, T.G.; Vargas-Albores, F.; García-Bañuelos, M. Synthesis of Hemolymph High-Density Lipoprotein β-Glucan Binding Protein by Penaeus vannamei Shrimp Hepatopancreas. Mar. Biotechnol. 2000, 2, 485–492. [Google Scholar] [CrossRef] [PubMed]
- Jeong, B.-Y.; Jeong, W.-G.; Moon, S.-K.; Ohshima, T. Preferential accumulation of fatty acids in the testis and ovary of cultured and wild sweet smelt Plecoglossus altivelis. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2002, 131, 251–259. [Google Scholar] [CrossRef] [PubMed]
- Jaya-Ram, A.; Kuah, M.-K.; Lim, P.-S.; Kolkovski, S.; Shu-Chien, A.C. Influence of dietary HUFA levels on reproductive performance, tissue fatty acid profile and desaturase and elongase mRNAs expression in female zebrafish Danio rerio. Aquaculture 2008, 277, 275–281. [Google Scholar] [CrossRef]
- Teshima, S.I.; Kanazawa, A.; Kakuta, Y. Effects of dietary phospholipids on lipid transport in the juvenile prawn. Nippon. Suisan. Gakk. 1986, 52, 159–163. [Google Scholar] [CrossRef]
- Wiegand, M.D. Utilization of yolk fatty acids by goldfish embryos and larvae. Fish Physiol. Biochem. 1996, 15, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Kamler, E. Resource allocation in yolk-feeding fish. Rev. Fish Biol. Fish. 2007, 18, 143–200. [Google Scholar] [CrossRef]
- Ying, X.-P.; Yang, W.-X.; Zhang, Y.-P. Comparative studies on fatty acid composition of the ovaries and hepatopancreas at different physiological stages of the Chinese mitten crab. Aquaculture 2006, 256, 617–623. [Google Scholar] [CrossRef]
- Alava, V.R.; Kanazawa, A.; Teshima, S.-I.; Koshio, S. Effect of Dietary Phospholipids and n-3 Highly Unsaturated Fatty Acids on Ovarian Development of Kuruma Prawn. Nippon. Suisan Gakkaishi 1993, 59, 345–351. [Google Scholar] [CrossRef]
- Stuart, K.; Johnson, R.; Armbruster, L.; Drawbridge, M. Arachidonic Acid in the Diet of Captive Yellowtail and Its Effects on Egg Quality. North Am. J. Aquac. 2018, 80, 97–106. [Google Scholar] [CrossRef]
- Tallima, H.; Ridi, R.E. Mechanisms of arachidonic acid in vitro tumoricidal impact. Molecules 2023, 28, 1727. [Google Scholar] [CrossRef]
- Hosseini-Vashan, S.J.; Afzali, N.; Mallekaneh, M.; Nasseri, M.A.; Nasseri, M.A. Fatty acid content of egg yolk lipids from hens fed with safflower seed. J. Anim. Vet. Adv. 2008, 7, 1605. [Google Scholar]
- Scabini, V.; Fernandez-Palacios, H.; Izquierdo, M.S. Inclusion of carotenoids in brood-stock diets for gilthead sea bream (Sparusaurata L., 1758): Effects on egg and spawning quality. In Proceedings of the XII International Symposium Fish Nutrition and Feeding, Biarritz, France, 28 May–1 June 2006. [Google Scholar] [CrossRef]
- Vassallo-Agius, R.; Imaizumi, H.; Watanabe, T.; Yamazaki, T.; Satoh, S.; Kiron, V. Effect of squid meal in dry pellets on the spawning performance of striped jack Pseudocaranx dentex. Fish. Sci. 2001, 67, 271–280. [Google Scholar] [CrossRef]
- Liñán-Cabello, M.A.; Paniagua-Michel, J.; Zenteno-Savín, T. Carotenoids and retinal levels in captive and wild shrimp, Litopenaeus Vannamei. Aquac. Nutr. 2003, 9, 383–389. [Google Scholar] [CrossRef]
- Vershinin, A. Carotenoids in mollusca: Approaching the functions. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 1996, 113, 63–71. [Google Scholar] [CrossRef]
- Viswanathan, C.; Raffi, S. The natural diet of the mud crab Scylla olivacea (Herbst, 1896) in Pichavaram mangroves, India. Saudi J. Biol. Sci. 2015, 22, 698–705. [Google Scholar] [CrossRef] [PubMed]
Stage | Stage I | Stage II | Stage III | Stage IV | Stage V |
---|---|---|---|---|---|
CL (mm) | 78.53 ± 10.91 a | 85.12 ± 8.44 ab | 85.29 ± 4.17 ab | 87.82 ± 7.13 b | 87.32 ± 3.86 b |
CW (mm) | 165.43 ± 8.73 a | 185.25 ± 15.15 b | 184 ± 11.34 b | 180.2 ± 11.41 b | 184.8 ± 8.61 b |
BH (mm) | 38.91 ± 8.86 | 45.69 ± 4.44 | 43.72 ± 1.77 | 45.11 ± 2.46 | 44.28 ± 0.6 |
BW (g) | 260.26 ± 37.65 a | 321.29 ± 38.99 b | 378.84 ± 34.39 b | 361.37 ± 52.71 b | 361.38 ± 32.98 b |
HSI (%) | 5.39 ± 0.58 a | 6.17 ± 1.64 ab | 7.16 ± 1.31 b | 7.52 ± 1 b | 7.46 ± 1.73 b |
GSI (%) | 0.48 ± 0.17 a | 0.7 ± 0.08 ab | 1.77 ± 0.53 ab | 2.29 ± 0.16 b | 4.22 ± 1.08 b |
Stage I | Stage II | Stage III | Stage IV | Stage V | ||
---|---|---|---|---|---|---|
Muscle | Moisture (%) | 80.66 ± 1.1 bc | 81.32 ± 0.64 b | 79.19 ± 0.25 ab | 79.24 ± 1.16 ab | 79.78 ± 2.44 a |
Protein (%) | 84.38 ± 2.28 | 83.01 ± 0.56 | 82.67 ± 1.91 | 82.95 ± 0.88 | 82.77 ± 1.98 | |
Lipid (g/100 g) | 1.39 ± 0.03 a | 1.5 ± 0.07 b | 1.54 ± 0.03 b | 1.53 ± 0.06 b | 1.5 ± 0.07 b | |
Hepatopancreas | Moisture (%) | 70.98 ± 2.86 b | 70.15 ± 3.39 b | 66.58 ± 0.6 b | 61.03 ± 1.85 a | 60.58 ± 4.8 a |
Protein (%) | 39.17 ± 5.94 c | 30 ± 4.19 ab | 32.51 ± 0.88 b | 26.01 ± 2.02 a | 27.57 ± 2.53 ab | |
Lipid (g/100 g) | 2.84 ± 0.06 | 2.62 ± 0.13 | 2.82 ± 0.17 | 2.64 ± 0.08 | 2.67 ± 0.11 | |
Gonad | Moisture (%) | 78.28 ± 0.43 c | 74.45 ± 5.27 c | 61.95 ± 2.42 b | 62.43 ± 1.36 b | 57.88 ± 1.76 a |
Protein (%) | 57.34 ± 6.79 a | 56.48 ± 2.41 a | 65.88 ± 1.87 b | 66.54 ± 1.1 b | 66.92 ± 1.86 b | |
Lipid (g/100 g) | 3.7 ± 0.09 a | 3.9 ± 0.09 b | 4.13 ± 0.11 c | 4.33 ± 0.12 d | 4.31 ± 0.04 d |
Tissues | Amino Acids | Stage I | Stage II | Stage III | Stage IV | Stage V |
---|---|---|---|---|---|---|
Gonad | Asp | 8.16 ± 0.71 y | 8.51 ± 0.35 y | 8.62 ± 0.03 y | 8.67 ± 0.01 y | 8.41 ± 0.09 x |
Hepatopancreas | 8.97 ± 0.01 by | 8.69 ± 0.07 ay | 8.64 ± 0.02 ay | 8.8 ± 0.03 aby | 8.92 ± 0.19 bx | |
Muscle | 7.22 ± 0.04 ax | 7.22 ± 0.05 ax | 7.24 ± 0.02 ax | 7.63 ± 0.26 bx | 8.19 ± 0.24 cy | |
Gonad | Thr * | 4.53 ± 0.06 aby | 4.48 ± 0.05 aby | 4.6 ± 0.06 by | 4.41 ± 0.14 ay | 4.57 ± 0.05 aby |
Hepatopancreas | 4.87 ± 0.01 cz | 4.88 ± 0.03 cz | 4.89 ± 0.05 cz | 4.73 ± 0.06 bz | 4.57 ± 0.03 ax | |
Muscle | 3.15 ± 0.02 abcx | 3.07 ± 0.01 ax | 3.20 ± 0.10 bcx | 3.23 ± 0.01 cx | 3.10 ± 0.07 aby | |
Gonad | Ser | 4.98 ± 0.05 ay | 5.01 ± 0.08 aby | 5.18 ± 0.01 by | 5.74 ± 0.21 cy | 6.02 ± 0.06 dy |
Hepatopancreas | 4.66 ± 0.02 bx | 4.66 ± 0.03 bx | 4.65 ± 0.03 bx | 4.61 ± 0.02 bx | 4.47 ± 0.06 ay | |
Muscle | 6.02 ± 0.15 abz | 5.98 ± 0.01 az | 5.97 ± 0.05 az | 6.16 ± 0.13 bz | 6.06 ± 0.01 abx | |
Gonad | Glu | 10.15 ± 0.39 cx | 10.07 ± 0.1 bcx | 9.67 ± 0.18 abx | 9.6 ± 0.21 ax | 9.46 ± 0.06 ax |
Hepatopancreas | 10.36 ± 0.11 dx | 10.08 ± 0.14 bcx | 10.21 ± 0.03 cdy | 9.98 ± 0.07 by | 9.61 ± 0.10 ay | |
Muscle | 13.56 ± 0.01 by | 13.36 ± 0.2 aby | 13.23 ± 0.24 az | 13.11 ± 0.12 az | 13.09 ± 0.07 ax | |
Gonad | Pro | 4.07 ± 0.02 ay | 4.14 ± 0.02 az | 4.10 ± 0.06 ay | 4.41 ± 0.15 bz | 4.51 ± 0.12 bz |
Hepatopancreas | 4.08 ± 0.04 abcy | 4.06 ± 0.01 aby | 4.12 ± 0.03 bcy | 4.18 ± 0.11 cy | 3.99 ± 0.01 ax | |
Muscle | 3.14 ± 0.04 bx | 3.03 ± 0.05 abx | 3.15 ± 0.16 bx | 2.95 ± 0.03 ax | 2.92 ± 0.08 ay | |
Gonad | Gly | 9.57 ± 0.02 cx | 9.66 ± 0.02 dx | 9.51 ± 0.05 cx | 9.18 ± 0.04 ax | 9.35 ± 0.06 bx |
Hepatopancreas | 10.82 ± 0.03 by | 10.73 ± 0.12 by | 10.71 ± 0.08 by | 11.02 ± 0.07 cy | 10.17 ± 0.14 az | |
Muscle | 11.74 ± 0.08 z | 11.80 ± 0.03 z | 11.63 ± 0.36 z | 11.97 ± 0.02 z | 11.91 ± 0.18 y | |
Gonad | Ala | 5.01 ± 0.01 ay | 4.94 ± 0.03 ay | 5.15 ± 0.02 by | 5.13 ± 0.07 by | 4.97 ± 0.04 ay |
Hepatopancreas | 5.28 ± 0.04 az | 5.30 ± 0.01 az | 5.29 ± 0.03 az | 5.32 ± 0.02 az | 5.48 ± 0.02 bx | |
Muscle | 4.78 ± 0.08 cx | 4.85 ± 0.01 dx | 4.76 ± 0.04 cx | 4.67 ± 0.01 bx | 4.53 ± 0.02 az | |
Gonad | Cys | 3.36 ± 0.01 az | 3.44 ± 0.02 bz | 3.70 ± 0.05 bz | 3.68 ± 0.07 by | 3.74 ± 0.01 bz |
Hepatopancreas | 2.91 ± 0.06 bcx | 2.82 ± 0.05 ax | 2.84 ± 0.02 abx | 2.93 ± 0.03 cx | 2.95 ± 0.05 cy | |
Muscle | 3.17 ± 0.01 by | 3.17 ± 0.01 by | 3.15 ± 0.06 by | 3.09 ± 0.03 az | 3.05 ± 0.02 ax | |
Gonad | Val * | 5.62 ± 0.05 a | 5.91 ± 0.01 bx | 6.52 ± 0.11 cz | 6.55 ± 0.06 cz | 6.8 ± 0.04 dz |
Hepatopancreas | 5.60 ± 0.06 c | 5.46 ± 0.07 cy | 5.09 ± 0.28 bx | 4.62 ± 0.05 ax | 4.61 ± 0.01 ay | |
Muscle | 5.57 ± 0.04 a | 5.54 ± 0.01 ay | 5.53 ± 0.14 ay | 5.58 ± 0.17 ay | 5.82 ± 0.26 bx | |
Gonad | Met * | 1.68 ± 0.03 ax | 1.98 ± 0.02 cy | 1.85 ± 0.03 bcy | 1.61 ± 0.05 abx | 1.74 ± 0.01 bcx |
Hepatopancreas | 1.63 ± 0.04 ax | 1.63 ± 0.02 ax | 1.69 ± 0.01 bx | 1.75 ± 0.01 cx | 2.04 ± 0.04 dz | |
Muscle | 2.04 ± 0.05 ay | 2.28 ± 0.01 bz | 2.19 ± 0.04 abz | 2.20 ± 0.04 by | 2.18 ± 0.01 aby | |
Gonad | Ile * | 4.40 ± 0.01 az | 4.57 ± 0.01 by | 4.58 ± 0.03 bz | 4.60 ± 0.14 bz | 4.57 ± 0.01 bz |
Hepatopancreas | 4.23 ± 0.02 ax | 4.24 ± 0.05 ax | 4.30 ± 0.01 bx | 4.37 ± 0.07 bx | 4.39 ± 0.02 by | |
Muscle | 4.37 ± 0.01 ay | 4.36 ± 0.01 ay | 4.47 ± 0.01 by | 4.46 ± 0.02 by | 4.54 ± 0.01 cx | |
Gonad | Leu * | 7.08 ± 0.14 ax | 7.13 ± 0.07 ax | 7.15 ± 0.07 abx | 7.21 ± 0.02 by | 7.27 ± 0.11 cx |
Hepatopancreas | 7.11 ± 0.23 ax | 7.16 ± 0.01 axy | 7.15 ± 0.09 ax | 6.97 ± 0.04 ax | 7.9 ± 0.01 by | |
Muscle | 7.85 ± 0.02 ay | 7.85 ± 0.01 ay | 8.15 ± 0.06 by | 8.17 ± 0.02 bz | 8.11 ± 0.25 bz | |
Gonad | Tyr | 4.42 ± 0.02 cz | 4.14 ± 0.01 bcz | 4.07 ± 0.04 bz | 3.98 ± 0.01 az | 4.10 ± 0.02 bcz |
Hepatopancreas | 3.52 ± 0.01 y | 3.48 ± 0.02 y | 3.49 ± 0.01 y | 3.43 ± 0.05 y | 3.45 ± 0.06 x | |
Muscle | 2.84 ± 0.02 bx | 2.82 ± 0.05 bx | 2.81 ± 0.01 bx | 2.49 ± 0.02 ax | 2.44 ± 0.07 ay | |
Gonad | Phe * | 4.98 ± 0.03 cy | 4.23 ± 0.73 b | 3.56 ± 0.04 ax | 3.49 ± 0.01 ax | 3.37 ± 0.02 ax |
Hepatopancreas | 4.63 ± 0.01 cx | 4.5 ± 0.01 bc | 4.51 ± 0.01 cy | 4.30 ± 0.05 ay | 4.33 ± 0.07 aby | |
Muscle | 4.99 ± 0.08 cz | 4.90 ± 0.02 c | 4.84 ± 0.02 bcz | 4.61 ± 0.01 bz | 4.55 ± 0.13 ay | |
Gonad | Lys * | 8.69 ± 0.20 by | 8.71 ± 0.03 by | 8.53 ± 0.05 ab | 8.52 ± 0.09 ab | 8.23 ± 0.01 ax |
Hepatopancreas | 8.03 ± 0.12 ax | 8.44 ± 0.1 bx | 8.56 ± 0.14 b | 8.44 ± 0.20 b | 8.53 ± 0.04 bx | |
Muscle | 8.71 ± 0.03 by | 8.79 ± 0.01 by | 8.64 ± 0.05 b | 8.38 ± 0.02 a | 8.43 ± 0.07 ay | |
Gonad | His * | 2.38 ± 0.06 bz | 2.37 ± 0.02 bz | 2.40 ± 0.05 bz | 2.25 ± 0.02 az | 2.27 ± 0.06 az |
Hepatopancreas | 1.88 ± 0.07 ay | 1.97 ± 0.01 by | 1.99 ± 0.02 by | 2.00 ± 0.01 by | 2.00 ± 0.01 bx | |
Muscle | 1.35 ± 0.01 cx | 1.34 ± 0.01 cx | 1.36 ± 0.01 cx | 1.31 ± 0.02 bx | 1.27 ± 0.01 ay | |
Gonad | Arg | 8.44 ± 0.13 aby | 8.31 ± 0.07 ax | 8.49 ± 0.16 abx | 8.62 ± 0.05 bx | 8.38 ± 0.04 ax |
Hepatopancreas | 8.73 ± 0.01 az | 9.05 ± 0.09 by | 9.13 ± 0.07 by | 9.74 ± 0.11 cy | 9.68 ± 0.05 cy | |
Muscle | 8.15 ± 0.03 ax | 8.31 ± 0.17 abx | 8.36 ± 0.08 bx | 8.64 ± 0.12 cx | 8.54 ± 0.03 cz | |
Gonad | Trp * | 2.46 ± 0.02 by | 2.42 ± 0.02 by | 2.33 ± 0.02 aby | 2.35 ± 0.17 aby | 2.22 ± 0.02 ay |
Hepatopancreas | 2.69 ± 0.05 az | 2.86 ± 0.09 bcz | 2.75 ± 0.08 abz | 2.83 ± 0.07 bcz | 2.91 ± 0.04 cx | |
Muscle | 2.46 ± 0.02 bx | 2.42 ± 0.02 bx | 2.33 ± 0.02 abx | 2.35 ± 0.17 abx | 2.22 ± 0.02 az |
Tissues | Fatty Acid | Stage I | Stage II | Stage III | Stage IV | Stage V |
---|---|---|---|---|---|---|
Gonad | C14:0 | 3.25 ± 0.48 dy | 2.77 ± 0.13 cy | 1.57 ± 0.12 ax | 2.21 ± 0.16 by | 2.05 ± 0.08 bx |
Hepatopancreas | 6.26 ± 1.58 z | 6.11 ± 1 z | 6.28 ± 0.33 y | 6.63 ± 0.45 z | 6.45 ± 0.83 y | |
Muscle | 1.56 ± 0.24 x | 1.63 ± 0.22 x | 2.39 ± 0.7 x | 1.37 ± 0.16 x | 1.52 ± 0.14 x | |
Gonad | C16:0 | 32.38 ± 1.77 cy | 32.49 ± 1.11 cy | 21.56 ± 1.21 ax | 21.98 ± 1.02 by | 20.09 ± 0.51 ay |
Hepatopancreas | 4.16 ± 1.05 cx | 2.63 ± 0.91 abx | 3.63 ± 0.17 bcy | 2.94 ± 0.47 abx | 2.22 ± 0.11 ax | |
Muscle | 34.05 ± 6.37 y | 33.66 ± 5.59 y | 30.93 ± 1.34 z | 34.61 ± 2.42 z | 30.43 ± 3.06 z | |
Gonad | C18:0 | 14.62 ± 2.14 bx | 16.57 ± 0.86 cxy | 10.75 ± 0.65 ax | 9.59 ± 0.29 ax | 9.1 ± 0.2 ax |
Hepatopancreas | 16.19 ± 0.6 cx | 15.03 ± 0.91 bx | 14.52 ± 0.32 aby | 14.7 ± 0.83 aby | 13.72 ± 0.53 cy | |
Muscle | 18.66 ± 0.63 ay | 17.36 ± 1.67 ay | 18.16 ± 1.28 az | 22.41 ± 0.9 bz | 19.23 ± 2.65 az | |
Gonad | C20:0 | 2.95 ± 0.78 b | 3.39 ± 0.19 by | 0.99 ± 0.12 abx | 0.75 ± 0.03 abx | 0.61 ± 0.02 ax |
Hepatopancreas | 1.89 ± 0.19 c | 1.68 ± 0.22 bcx | 1.51 ± 0.04 abx | 1.49 ± 0.11 aby | 1.31 ± 0.18 ay | |
Muscle | 1.77 ± 0.77 | 1.7 ± 0.04 x | 2.7 ± 0.58 y | 3.08 ± 0.59 z | 2.73 ± 0.27 z | |
Gonad | C22:0 | 4.6 ± 2.99 ax | 6.71 ± 0.33 ax | 9.19 ± 0.39 abxy | 9.17 ± 0.28 ab | 9.8 ± 0.22 b |
Hepatopancreas | 8.02 ± 0.29 axy | 9.27 ± 0.75 ay | 8.53 ± 0.3 ax | 9.14 ± 0.2 a | 9.71 ± 0.75 b | |
Muscle | 9.93 ± 1.19 aby | 11.44 ± 1.38 by | 10.27 ± 1.41 aby | 8.31 ± 0.85 a | 9.71 ± 1.08 ab | |
Gonad | C24:0 | 1.57 ± 0.29 ay | 1.33 ± 0.18 ay | 3.64 ± 0.18 dz | 3.22 ± 0.23 cy | 2 ± 0.09 by |
Hepatopancreas | 2.66 ± 0.24 az | 2.9 ± 0.37 abz | 3.23 ± 0.15 by | 2.97 ± 0.19 aby | 2.85 ± 0.11 abz | |
Muscle | 0.53 ± 0.24 ax | 0.53 ± 0.28 ax | 0.78 ± 0.18 abx | 0.7 ± 0.15 abx | 0.95 ± 0.24 bx | |
Gonad | SFA | 59.38 ± 4.57 by | 63.27 ± 1.43 by | 47.71 ± 1.24 aby | 46.92 ± 0.93 aby | 43.65 ± 0.41 ay |
Hepatopancreas | 39.18 ± 0.9 bx | 37.62 ± 1.38 abx | 37.7 ± 0.52 abx | 37.88 ± 1.01 abx | 36.28 ± 0.78 ax | |
Muscle | 66.49 ± 6.29 y | 65.14 ± 4.47 y | 64.61 ± 4.4 z | 70.2 ± 3.56 z | 64.57 ± 4.51 z | |
Gonad | C14:1 | 0.14 ± 0.06 ax | 0.37 ± 0.25 b | 0.19 ± 0.02 abx | 0.15 ± 0 abx | 0.14 ± 0.02 ax |
Hepatopancreas | 0.59 ± 0.11 by | 0.49 ± 0.06 ab | 0.5 ± 0.03 aby | 0.51 ± 0.03 aby | 0.47 ± 0.09 ay | |
Muscle | 0.49 ± 0.21 y | 0.57 ± 0.17 | 0.7 ± 0.1 z | 0.78 ± 0.25 z | 0.78 ± 0.23 z | |
Gonad | C16:1 | 6.2 ± 1.46 aby | 5.15 ± 0.39 a | 7.18 ± 0.5 by | 9.33 ± 0.54 cy | 8.98 ± 0.22 cy |
Hepatopancreas | 11.38 ± 1.44 az | 13.08 ± 1.33 ab | 12.33 ± 0.61 abz | 13.33 ± 0.88 bz | 13.94 ± 0.72 bz | |
Muscle | 3.83 ± 0.31 bx | 4.35 ± 0.31 b | 3.87 ± 0.81 bx | 2.96 ± 0.43 ax | 3.94 ± 0.59 bx | |
Gonad | C18:1 | 13.53 ± 1.41 ax | 12.03 ± 0.77 ax | 16.98 ± 0.32 by | 16.21 ± 0.47 aby | 15.96 ± 0.13 aby |
Hepatopancreas | 22.7 ± 0.26 by | 21.49 ± 1.3 aby | 21.38 ± 0.75 abz | 20.52 ± 1.03 bz | 21.35 ± 0.2 abz | |
Muscle | 12.33 ± 0.84 bx | 11.65 ± 1.33 bx | 10.06 ± 1.8 abx | 7.83 ± 2.06 ax | 9.95 ± 1.68 abx | |
Gonad | C22:1 | 0.3 ± 0.05 b | 0.25 ± 0.1 ab | 0.18 ± 0.05 ax | 0.22 ± 0.03 abx | 0.18 ± 0.02 ax |
Hepatopancreas | 0.43 ± 0.01 b | 0.32 ± 0.06 a | 0.33 ± 0.09 abx | 0.43 ± 0.03 by | 0.4 ± 0.02 aby | |
Muscle | 0.41 ± 0.23 ab | 0.31 ± 0.15 a | 0.6 ± 0.2 by | 0.53 ± 0.07 abz | 0.47 ± 0.05 abz | |
Gonad | C24:1 | 10.53 ± 1.2 ax | 10.74 ± 0.59 ax | 17.39 ± 0.82 aby | 19.68 ± 1.73 aby | 24.57 ± 0.64 bz |
Hepatopancreas | 15.27 ± 1.06 ay | 17.35 ± 1.38 by | 17.85 ± 0.37 by | 17.81 ± 0.7 by | 18.51 ± 1.18 by | |
Muscle | 9.11 ± 2.49 x | 9.65 ± 2.94 x | 9.47 ± 1.78 x | 8.69 ± 1.64 x | 10.61 ± 1.86 x | |
Gonad | MUFA | 30.7 ± 3.36 ax | 28.54 ± 1.28 ax | 41.92 ± 0.95 aby | 45.6 ± 0.91 by | 49.83 ± 0.3 by |
Hepatopancreas | 50.37 ± 1.35 ay | 52.73 ± 1.44 by | 52.39 ± 0.39 bz | 52.6 ± 1.47 bz | 54.66 ± 0.31 cz | |
Muscle | 26.18 ± 3.44 x | 26.54 ± 3.75 x | 24.71 ± 4.09 x | 22.79 ± 3.39 x | 25.75 ± 3.72 x | |
Gonad | C18:2n-6 | 0.3 ± 0.08 by | 0.26 ± 0.03 by | 0.06 ± 0.01 ax | 0.05 ± 0 ax | 0.06 ± 0 ax |
Hepatopancreas | 0.05 ± 0.02 ax | 0.09 ± 0.05 abx | 0.04 ± 0.02 ax | 0.08 ± 0.07 ax | 0.16 ± 0.05 bx | |
Muscle | 0.28 ± 0.15 aby | 0.21 ± 0.07 ay | 0.53 ± 0.33 aby | 0.64 ± 0.24 by | 0.64 ± 0.28 by | |
Gonad | C18:3n-6 | 0.09 ± 0.04 a | 0.14 ± 0.05 b | 0.05 ± 0.01 ax | 0.07 ± 0 ax | 0.07 ± 0.01 ax |
Hepatopancreas | 0.2 ± 0.1 | 0.16 ± 0.06 | 0.2 ± 0.1 x | 0.13 ± 0.02 x | 0.11 ± 0.04 x | |
Muscle | 0.34 ± 0.3 a | 0.32 ± 0.2 a | 1.13 ± 0.69 cy | 0.46 ± 0.31 aby | 1.03 ± 0.17 bcy | |
Gonad | C20:2n-6 | 0.8 ± 0.1 bxy | 1 ± 0.11 cy | 0.55 ± 0.08 ax | 0.48 ± 0.05 ax | 0.5 ± 0.04 ax |
Hepatopancreas | 0.96 ± 0.06 ay | 1.01 ± 0.02 aby | 1.01 ± 0.03 aby | 0.97 ± 0.03 ay | 1.04 ± 0 by | |
Muscle | 0.61 ± 0.23 ax | 0.65 ± 0.28 ax | 1.03 ± 0.15 aby | 1.6 ± 0.5 cz | 1.32 ± 0.33 bcy | |
Gonad | C20:3n-6 | 0.4 ± 0.12 bz | 0.47 ± 0.12 by | 0.05 ± 0.01 ax | 0.03 ± 0.01 ax | 0.01 ± 0 ax |
Hepatopancreas | 0.05 ± 0.02 bx | 0.05 ± 0.02 bx | 0.03 ± 0.01 abx | 0.02 ± 0 ax | 0.02 ± 0.01 ax | |
Muscle | 0.26 ± 0.05 y | 0.39 ± 0.11 y | 0.36 ± 0.18 y | 0.25 ± 0.04 y | 0.27 ± 0.07 y | |
Gonad | C20:4n-6 | 6.29 ± 0.68 bcx | 5.71 ± 0.34 abx | 9.38 ± 0.33 dz | 6.56 ± 0.18 cy | 5.11 ± 0.25 ax |
Hepatopancreas | 8.53 ± 1.79 by | 7.66 ± 0.59 ay | 8.05 ± 0.1 aby | 7.75 ± 0.63 abz | 7.02 ± 0.53 ay | |
Muscle | 5.09 ± 1.21 abx | 5.37 ± 0.41 abx | 5.96 ± 0.64 bx | 4.29 ± 0.62 ax | 4.56 ± 0.84 ax | |
Gonad | C22:2n-6 | 0.1 ± 0.04 bx | 0.22 ± 0.02 c | 0.04 ± 0.01 ax | 0.05 ± 0.01 ax | 0.06 ± 0.01 ax |
Hepatopancreas | 0.26 ± 0.07 by | 0.17 ± 0.02 a | 0.19 ± 0.05 abxy | 0.25 ± 0.04 by | 0.2 ± 0.03 aby | |
Muscle | 0.35 ± 0.12 aby | 0.27 ± 0.12 a | 0.36 ± 0.22 aby | 0.4 ± 0.06 abz | 0.56 ± 0.12 bz | |
Gonad | C18:3n-3 | 0.16 ± 0.07 ax | 0.13 ± 0.03 ax | 0.19 ± 0.08 ax | 0.2 ± 0.05 ax | 0.63 ± 0.02 by |
Hepatopancreas | 0.23 ± 0.14 x | 0.3 ± 0.04 y | 0.25 ± 0.1 x | 0.18 ± 0.04 x | 0.30 ± 0.07 x | |
Muscle | 0.54 ± 0.21 y | 0.42 ± 0.17 y | 0.64 ± 0.32 y | 0.74 ± 0.35 y | 0.56 ± 0.18 y | |
Gonad | C20:5n-3 | 0.07 ± 0.01 x | 0.14 ± 0.04 | 0.02 ± 0 x | 0.02 ± 0 x | 0.05 ± 0 x |
Hepatopancreas | 0.14 ± 0.04 abxy | 0.18 ± 0.04 b | 0.12 ± 0.03 axy | 0.11 ± 0.03 ay | 0.14 ± 0.03 aby | |
Muscle | 0.23 ± 0.1 y | 0.24 ± 0.09 | 0.26 ± 0.17 y | 0.30 ± 0.06 z | 0.27 ± 0.04 z | |
Gonad | C22:6n-3 | 0.09 ± 0.03 x | 0.11 ± 0.02 x | 0.03 ± 0 x | 0.02 ± 0 x | 0.02 ± 0.01 x |
Hepatopancreas | 0.04 ± 0.02 abx | 0.04 ± 0.01 abx | 0.02 ± 0.01 ax | 0.03 ± 0.01 abx | 0.07 ± 0.04 bx | |
Muscle | 0.54 ± 0.35 y | 0.28 ± 0.15 y | 0.4 ± 0.39 y | 0.34 ± 0.1 y | 0.48 ± 0.15 y | |
Gonad | LC-PUFA | 7.85 ± 0.57 ax | 8.18 ± 0.32 abx | 10.37 ± 0.48 b | 7.47 ± 0.25 abx | 6.52 ± 0.29 ax |
Hepatopancreas | 10.45 ± 1.78 y | 9.65 ± 0.62 y | 9.91 ± 0.23 | 9.52 ± 0.47 y | 9.06 ± 0.56 y | |
Muscle | 8.24 ± 1.18 axy | 8.14 ± 0.75 ax | 10.68 ± 0.71 c | 9.01 ± 0.58 aby | 9.68 ± 0.91 bcy | |
Gonad | n-6PUFA | 7.98 ± 0.94 bxy | 7.8 ± 0.28 bx | 10.14 ± 0.4 c | 7.24 ± 0.22 bx | 5.82 ± 0.3 ax |
Hepatopancreas | 10.05 ± 1.75 by | 9.14 ± 0.6 ay | 9.53 ± 0.12 ab | 9.2 ± 0.54 aby | 8.55 ± 0.49 ay | |
Muscle | 6.93 ± 1.37 ax | 7.2 ± 0.73 ax | 9.37 ± 0.83 b | 7.63 ± 0.8 ax | 8.37 ± 0.81 aby | |
Gonad | n-3PUFA | 0.28 ± 0.06 ax | 0.38 ± 0.08 ax | 0.24 ± 0.08 ax | 0.24 ± 0.05 ax | 0.7 ± 0.02 bx |
Hepatopancreas | 0.4 ± 0.16 abx | 0.51 ± 0.06 bx | 0.38 ± 0.11 abx | 0.32 ± 0.08 ax | 0.51 ± 0.09 bx | |
Muscle | 1.31 ± 0.53 y | 0.94 ± 0.31 y | 1.31 ± 0.8 y | 1.38 ± 0.35 y | 1.31 ± 0.24 y | |
Gonad | n-3/n-6 | 0.22 ± 0.36 b | 0.05 ± 0.01 ax | 0.02 ± 0.01 ax | 0.03 ± 0.01 ax | 0.12 ± 0.01 aby |
Hepatopancreas | 0.04 ± 0.02 a | 0.06 ± 0.01 bx | 0.04 ± 0.01 ax | 0.04 ± 0.01 ax | 0.06 ± 0.01 bx | |
Muscle | 0.2 ± 0.12 | 0.13 ± 0.05 y | 0.14 ± 0.1 y | 0.19 ± 0.07 y | 0.16 ± 0.03 z |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, W.; Zhao, Z.; Wang, J.; Han, T. Nutrient Composition of Ovary, Hepatopancreas and Muscle Tissues in Relation to Ovarian Development Stage of Female Swimming Crab, Portunus trituberculatus. Animals 2023, 13, 3220. https://doi.org/10.3390/ani13203220
Feng W, Zhao Z, Wang J, Han T. Nutrient Composition of Ovary, Hepatopancreas and Muscle Tissues in Relation to Ovarian Development Stage of Female Swimming Crab, Portunus trituberculatus. Animals. 2023; 13(20):3220. https://doi.org/10.3390/ani13203220
Chicago/Turabian StyleFeng, Wenping, Zeping Zhao, Jiteng Wang, and Tao Han. 2023. "Nutrient Composition of Ovary, Hepatopancreas and Muscle Tissues in Relation to Ovarian Development Stage of Female Swimming Crab, Portunus trituberculatus" Animals 13, no. 20: 3220. https://doi.org/10.3390/ani13203220
APA StyleFeng, W., Zhao, Z., Wang, J., & Han, T. (2023). Nutrient Composition of Ovary, Hepatopancreas and Muscle Tissues in Relation to Ovarian Development Stage of Female Swimming Crab, Portunus trituberculatus. Animals, 13(20), 3220. https://doi.org/10.3390/ani13203220