The Chemical Characteristics and In Vitro Degradability of Pineapple By-Products as Potential Feed for Ruminants
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling Area
2.2. By-Product Collection
2.3. Chemical Composition
2.4. Sugar Content
2.5. In Vitro Fermentation
2.6. End Product Analysis
2.7. Processing Data
3. Results
3.1. Pineapple By-Product Production
3.2. Chemical Characteristics and Estimated Metabolizable Energy
3.3. In Vitro Degradability, Gas Production, and VFA Profiles
4. Discussion
4.1. Chemical Characteristics and Estimated ME Energy: Comparing By-Products and Variety
4.2. In Vitro Fermentation Characteristics: Comparing By-Products and Varieties
4.3. Problems and Opportunities in Ruminant Diets
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Agbangba, C.E. Réponses Agronomiques de l’ananas (Ananas Comosus) à La Fertilisation Minérale Au Bénin: Croissance, Rendement et Qualité Du Fruit. Ph.D. Thesis, Université Cheikh Anta Diop de Dakar (UCAD), Dakar, Senegal, 2016. [Google Scholar]
- Vieira, I.M.M.; Santos, B.L.P.; Santos, C.V.M.; Ruzene, D.S.; Silva, D.P. Valorization of Pineapple Waste: A Review on How the Fruit’s Potential Can Reduce Residue Generation. Bioenergy Res. 2022, 15, 924–934. [Google Scholar] [CrossRef]
- Faostat. New Food Balances. 2021. Available online: http://www.fao.org/faostat/en/#data/FBS (accessed on 23 February 2021).
- Sodjinou, M.K.B.; Assouma-Imorou, A.; Olounlade, A.O. Technical Efficiency of Pineapple Production and Challenges in Southern Benin. Afr. J. Agric. Res. 2022, 18, 522–534. [Google Scholar] [CrossRef]
- Chaudhary, V.; Kumar, V.; Singh, K.; Kumar, R.; Kumar, V. Pineapple (Ananas Cosmosus) Product Processing: A Review. J. Pharmacogn. Phytochem. 2019, 8, 4642–4652. [Google Scholar]
- Firatoiu, A.R.; Chiurciu, I.A.; Marcuta, L.; Chereji, A.I.; Soare, E.; Voicu, V.; Marcuta, A. Study on the Production and Marketing of Pineapples Worldwide. In Proceedings of the 37th International Business Information Management Association (IBIMA), Cordoba, Spain, 1–2 April 2021; pp. 4973–4985, ISBN 978-0-9998551-6-4. Available online: http://www.incda-fundulea.ro/rar/nr37/rar37.27.pdf (accessed on 2 April 2021).
- Upadhyay, A.; Lama, J.P.; Tawata, S. Utilization of Pineapple Waste: A Review. J. Food Sci. Technol. Nepal. 2010, 6, 10–18. [Google Scholar] [CrossRef]
- Hemung, B.-O.; Sompholkrang, M.; Wongchai, A.; Chanshotikul, N.; Ueasin, N. A Study of the Potential of By-Products from Pineapple Processing in Thailand: Review Article. Int. J. Health Sci. 2022, 6, 12605–12615. [Google Scholar] [CrossRef]
- Gowda, N.K.S.; Vallesha, N.C.; Awachat, V.B.; Anandan, S.; Pal, D.T.; Prasad, C.S. Study on Evaluation of Silage from Pineapple (Ananas Comosus) Fruit Residue as Livestock Feed. Trop. Anim. Health Prod. 2015, 47, 557–561. [Google Scholar] [CrossRef]
- Roda, A.; Lambri, M. Food Uses of Pineapple Waste and By-Products: A Review. Int. J. Food Sci. Technol. 2019, 54, 1009–1017. [Google Scholar] [CrossRef]
- Kumar, A. Utilization of Bioactive Components Present in Pineapple Waste: A Review. J. Pharm. Innov. 2021, 10, 954–961. [Google Scholar]
- Pinotti, L.; Luciano, A.; Ottoboni, M.; Manoni, M.; Ferrari, L.; Marchis, D.; Tretola, M. Recycling Food Leftovers in Feed as Opportunity to Increase the Sustainability of Livestock Production. J. Clean. Prod. 2021, 294, 126290. [Google Scholar] [CrossRef]
- Melesse, A.; Steingass, H.; Schollenberger, M.; Rodehutscord, M. Component Composition, in Vitro Gas and Methane Production Profiles of Fruit by-Products and Leaves of Root Crops. J. Agric. Sci. 2018, 156, 949–958. [Google Scholar] [CrossRef]
- Idayanti, R.W.; Arifin, M.; Purbowati, E.; Purnomoadi, A. Utilization of Pineapple Waste as a Roughage Source Diets for Ruminant: A Review. Adv. Biol. Sci. Res. 2022, 20, 123–130. [Google Scholar] [CrossRef]
- Prado, I.N.; Lallo, F.H.; Zeoula, L.M.; Caldas Neto, S.F.; Nascimento, W.G.; Marques, J.A. Bulls Performance in Feedlot with Levels of Substituting Corn Silage by Pineapple By-Products Silage. Rev. Brasil. Zootec. 2003, 32, 737–744. [Google Scholar] [CrossRef]
- Sruamisri, S. Agricultural Wastes as Dairy Feed in Chiang Mai. Anim. Sci. J. 2007, 78, 335–341. [Google Scholar] [CrossRef]
- Siti Roha, A.M.; Zainal, S.; Noriham, A.; Nadzirah, K.Z. Determination of Sugar Content in Pineapple Waste Variety N36. Int. Food Res. J. 2013, 20, 1941–1943. [Google Scholar]
- Raseel, K.; Chacko, B.; Sunanda, C.; Dildeep, V.; Abraham, J. Nutrient Evaluation of Energy Rich Unconventional Feeds Available in Wayanad. IJSN 2018, 9, 117–118. [Google Scholar]
- Choi, Y.; Park, K.; Lee, S.; Na, Y. Determination of in Situ Degradation Parameters and Feeding Level of Pineapple (Ananas Comosus L.) Cannery by-Product to Hanwoo Steers. Anim. Biosci. 2021, 34, 85–92. [Google Scholar] [CrossRef]
- Hattakum, C.; Kanjanapruthipong, J.; Nakthong, S.; Wongchawalit, J.; Piamya, P.; Sawanon, S. Pineapple Stem By-Product as a Feed Source for Growth Performance, Ruminal Fermentation, Carcass and Meat Quality of Holstein Steers. S. Afr. J. Anim. Sci. 2019, 49, 147–155. [Google Scholar] [CrossRef]
- Mordenti, A.L.; Giaretta, E.; Campidonico, L.; Parazza, P.; Formigoni, A. A Review Regarding the Use of Molasses in Animal Nutrition. Animals 2021, 11, 115. [Google Scholar] [CrossRef]
- Palmonari, A.; Cavallini, D.; Sniffen, C.J.; Fernandes, L.; Holder, P.; Fusaro, I.; Giammarco, M.; Formigoni, A.; Mammi, L.M.E. In Vitro Evaluation of Sugar Digestibility in Molasses. Ital. J. Anim. Sci. 2021, 20, 571–577. [Google Scholar] [CrossRef]
- Bulkaini, B. Production Performance and Carcass Quality of Male Bali Cattle by Feeding Fermented Pineapple Peel. Asian J. Appl. Res. Community Dev. Empower. 2022, 6, 29–34. [Google Scholar] [CrossRef]
- Amole, T.; Augustine, A.; Balehegn, M.; Adesogoan, A.T. Livestock Feed Resources in the West African Sahel. Agron. J. 2019, 114, 26–45. [Google Scholar] [CrossRef]
- Usman, M.; Nichol, J.E. Changes in Agricultural and Grazing Land, and Insights for Mitigating Farmer-Herder Conflict in West Africa. Landsc. Urban Plan. 2022, 222, 104–383. [Google Scholar] [CrossRef]
- INSAE. Cahier Des Villages et Quartiers de Ville Département de l ’Atlantique: Ministère Chargé du Plan, de La Prospective et du Développement; INSAE: Cotonou, Bénin, 2004; pp. 1–34. [Google Scholar]
- AOAC. Official Methods of Analysis, 18th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 2005; Volume 12. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Non-Starch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef] [PubMed]
- AOAC. Official Method 925.35 Sucrose in Fruit and Fruit Product; Association of Official Analytical Chemists: Arlington, VA, USA, 2000. [Google Scholar]
- Koura, B.I.; Vastolo, A.; Kiatti, D.D.; Cutrignelli, M.I.; Houinato, M.; Calabrò, S. Nutritional Value of Climate-Resilient Forage Species Sustaining Peri-Urban Dairy Cow Production in the Coastal Grasslands of Benin (West Africa). Animals 2022, 12, 3550. [Google Scholar] [CrossRef]
- Calabrò, S.; Oteri, M.; Vastolo, A.; Cutrignelli, M.I.; Todaro, M.; Chiofalo, B.; Gresta, F. Amaranthus Grain as a New Ingredient in Diets for Dairy Cows: Productive, Qualitative, and in Vitro Fermentation Traits. J. Sci. Food Agric. 2022, 102, 4121–4130. [Google Scholar] [CrossRef] [PubMed]
- Menke, K.H.; Stengass, H. Estimation of the Energetic Feed Value Obtained from Chemical Analysis and in Vitro Gas Production Using Rumen Fluid. Anim. Res. Dev. 1988, 28, 7–55. [Google Scholar]
- Calabrò, S.; Tudisco, R.; Balestrieri, A.; Piccolo, G.; Infascelli, F.; Cutrignelli, M.I. Fermentation Characteristics of Different Grain Legumes Cultivars with the in Vitro Gas Production Technique. Ital. J. Anim. Sci. 2009, 8, 280–282. [Google Scholar] [CrossRef]
- Mirzaei, A.; Maheri-Sis, N. Nutritive Value of Some Agro-Industrial by-Products for Ruminants—A Review. World J. Zool 2008, 3, 40–46. [Google Scholar]
- García-Rodríguez, J.; Ranilla, M.J.; France, J.; Alaiz-Moretón, H.; Carro, M.D.; López, S. Fermentation Kinetics of Agro-Industrial by-Products. Animals 2019, 9, 861. [Google Scholar] [CrossRef]
- Suksathit, S.; Wachirapakorn, C.; Opatpatanakit, Y. Effects of Levels of Ensiled Pineapple Waste and Pangola Hay Fed as Roughage Sources on Feed Intake, Nutrient Digestibility and Ruminal Fermentation of Southern Thai Native Cattle. Songklanakarin J. Sci. Technol. 2011, 33, 281–289. [Google Scholar]
- Asaolu, V.O.; Binuomote, R.T.; Oyelami, O.S. Assessment of Feeding Value of Vegetable-Carried Pineapple Fruit Wastes to Red Sokoto Goats in Ogbomoso, Oyo State of Nigeria. Afr. J. Biotechnol. 2016, 15, 1648–1660. [Google Scholar] [CrossRef]
- Oduguwa, B.O.; Sanusi, G.O.; Fasae, O.A.; Oni, O.A.; Arigbede, O.M. Nutritive value, growth performance and haematological parameters of West African dwarf sheep fed preserved pineapple fruit waste and cassava by-products. Niger. J. Anim. Prod. 2020, 40, 123–132. [Google Scholar] [CrossRef]
- Págan, R.S.; Rodríguez, C.A.; Valencia, C.E.M.; Randel, P.F. Pineapple and Citrus Silage as Potential Feed for Small Ruminant Diets: Fermentation Characteristics, Intake, Nutrient Digestibility, and Aerobic Stability. Rev. Colomb. De Cienc. Pecu. 2014, 27, 37–46. [Google Scholar]
- Correia, M.X.C.; Costa, R.G.; Da Silva, J.H.V.; De Carvalho, F.F.R.; De Medeiros, A.N. Use of Dehydrated Pineapple By-Product in Diets for Growing Goats: Digestibility and Performance. Rev. Brasil. Zootec. 2006, 35, 1822–1828. [Google Scholar] [CrossRef]
- Vastolo, A.; Calabrò, S.; Cutrignelli, M.I. A Review on the Use of Agro-Industrial CO-Products in Animals’ Diets. Ital. J. Anim. Sci. 2022, 21, 577–594. [Google Scholar] [CrossRef]
- Rogério, M.C.P.; Borges, I.; Neiva, J.N.M.; Rodriguez, N.M.; Pimentel, J.C.M.; Martins, G.A.; Ribeiro, T.P.; Costa, J.B.; Santos, S.F.; Carvalho, F.C. Nutritive Value of Pineapple By-Product (Ananas Comosus L.) in Diets for Sheep: Intake, Apparent Digestibility, Energetic and Nitrogenous Balance. Arq. Brasil. Med. Vet. Zootec. 2007, 59, 773–781. [Google Scholar] [CrossRef]
- Azevêdo, J.A.G.; Filho, S.D.C.V.; Pina, D.D.S.; Detmann, E.; Valadares, R.F.D.; Pereira, L.G.R.; Souza, N.K.D.P.; Silva, L.F.C. Intake, Total Digestibility, Microbial Protein Production and the Nitrogen Balance in Diets with Fruit by-Products for Ruminants. Rev. Brasil. Zootec. 2011, 40, 1052–1060. [Google Scholar] [CrossRef]
- Vastolo, A.; Matera, R.; Serrapica, F.; Cutrignelli, M.I.; Neglia, G.; Kiatti, D.D.; Calabrò, S. Improvement of Rumen Fermentation Efficiency Using Different Energy Sources: In Vitro Comparison between Buffalo and Cow. Fermentation 2022, 8, 351. [Google Scholar] [CrossRef]
- Müller, Z.O. Feeding Potential of Pineapple Waste for Cattle. Rev. Mond. Zootec. 1978, 25, 25–29. [Google Scholar]
- Vastolo, A.; Calabrò, S.; Carotenuto, D.; Cutrignelli, M.I.; Kiatti, D.d.; Tafuri, S.; Ciani, F. Maca (Lepidium Meyenii): In Vitro Evaluation of Rumen Fermentation and Oxidative Stress. Fermentation 2023, 9, 568. [Google Scholar] [CrossRef]
- INRA. Feeding System for Ruminants; Wagningen Academic Publishers: Wagningen, The Netherlands, 2018. [Google Scholar]
- Marcos, C.N.; de Evan, T.; Molina-Alcaide, E.; Carro, M.D. Nutritive Value of Tomato Pomace for Ruminants and Its Influence on in Vitro Methane Production. Animals 2019, 9, 343. [Google Scholar] [CrossRef] [PubMed]
- Plascencia, A.; Barreras, A.; Valdés-García, Y.S.; Zinn, R.A. Granulated Cane Sugar as a Partial Replacement for Steam-Flaked Corn in Diets for Feedlot Cattle: Ruminal Fermentation and Microbial Protein Synthesis. Fermentation 2022, 8, 555. [Google Scholar] [CrossRef]
- Haddad, S.G.; Younis, H.M. The effect of adding ruminally protected fat in fattening diets on nutrient intake, digestibility and growth performance of Awassi lambs. Anim. Feed Sci. Technol. 2004, 113, 61–69. [Google Scholar] [CrossRef]
- Raseel, K.; Chacko, B.; Shyama, K.; Sunanda, C.; Gangadevi, P.; Abraham, J. Evaluation of Pineapple Waste Based TMR on Performance of Crossbred Dairy Cows in Early Lactation. Anim. Nutr. Feed Technol. 2020, 20, 155–163. [Google Scholar] [CrossRef]
- Liu, C.; Asano, S.; Ogata, H.; Ito, S.; Nakase, T.; Takeda, S.; Miyoshi, K.; Numata, Y.; Takahashi, K.; Kajikawa, H. Digestive, Fermentative, and Physical Properties of Pineapple Residue as a Feed for Cattle. Anim. Sci. J. 2021, 92, e13535. [Google Scholar] [CrossRef]
- Elias, A.K.S.; Alves, K.S.; Oliveira, L.R.S.; Cutrim, D.O.; Pontes, V.P.; Melo, W.O.; Gomes, D.I. Carcass Yield, Cuts and Body Components in Lambs Fed a Pineapple by-Product Silage Diet. Afr. J. Agric. Res. 2017, 12, 2351–2357. [Google Scholar]
- Piquer, O.; Ródenas, L.C.; Casado Blas, E.; Pascual, J.J. Whole Citrus Fruits as an Alternative to Wheat Grain or Citrus Pulp in Sheep Diet: Effect on the Evolution of Ruminal Parameters. Small Rumin. Res. 2009, 83, 14–21. [Google Scholar] [CrossRef]
Items | DM | CP | Ash | EE | NDF | ADF | ADL | TS | FS | ME |
---|---|---|---|---|---|---|---|---|---|---|
% | %DM | % | %TS | MJ/kg DM | ||||||
Smooth Cayenne variety | ||||||||||
Crown | 17.63B | 7.55A | 6.08A | 1.06A | 47.62A | 26.03A | 3.09A | 41.20D | 26.28D | 5.16C |
Bud end | 15.79C | 5.41B | 6.22A | 0.48B | 45.60B | 21.28B | 2.34B | 57.23B | 28.92D | 5.11C |
Peel | 15.63C | 7.51A | 5.62B | 0.45B | 33.85C | 16.61C | 1.77C | 52.15C | 35.40C | 6.30B |
Core | 14.24C | 6.43B | 2.48D | 0.20C | 13.46E | 7.05E | 1.83BC | 70.43A | 43.70B | 7.82A |
Pomace | 20.38A | 8.10A | 3.00C | 0.24C | 19.58D | 9.40D | 1.55C | 68.10A | 62.04A | 7.99A |
Sugarloaf variety | ||||||||||
Crown | 20.62A | 8.48A | 4.81B | 0.68A | 39.01A | 20.31A | 2.08AB | 54.94C | 24.63B | 5.62B |
Bud end | 17.07B | 6.54B | 4.59B | 0.37B | 33.27B | 15.19B | 2.19A | 58.87B | 36.91A | 5.94B |
Peel | 15.08C | 8.01A | 4.93A | 0.35B | 26.48C | 11.97C | 1.60B | 58.44B | 27.79B | 7.34A |
Core | 15.29C | 5.18B | 1.58D | 0.19C | 10.80E | 6.85E | 1.59BC | 84.96A | 40.40A | 7.95A |
Pomace | 20.98A | 8.81A | 2.78C | 0.30BC | 21.53D | 9.75D | 1.27C | 40.81D | 36.58A | 7.36A |
p-value | ||||||||||
Variety | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | 0.0004 |
By-product | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
Variety × By-product | 0.0004 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
MSE | 0.9033 | 0.2758 | 0.0053 | 0.0004 | 0.1440 | 0.0423 | 0.0171 | 0.8630 | 0.9850 | 0.0777 |
Items | pH | OMD | OMCV | Yield |
---|---|---|---|---|
% | ml/g | ml/g | ||
Smooth Cayenne variety | ||||
Crown | 6.46A | 56.14D | 146.51C | 259.45C |
Bud end | 6.34B | 62.83C | 154.98C | 242.07D |
Peel | 6.31B | 75.95B | 205.91B | 271.72B |
Core | 5.98D | 84.82A | 244.72A | 314.25A |
Pomace | 6.19C | 85.35A | 238.75A | 285.26B |
Sugarloaf variety | ||||
Crown | 6.44A | 62.61D | 158.52C | 253.21D |
Bud end | 6.40A | 65.17D | 182.60B | 281.96C |
Peel | 6.34B | 75.91C | 236.71A | 304.62A |
Core | 5.92D | 86.55A | 255.02A | 284.87BC |
Pomace | 6.18C | 81.41B | 240.03A | 296.35AB |
p-value | ||||
Variety | 0.8941 | 0.0135 | <0.0001 | <0.0001 |
By-product | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
Variety × By-product | <0.0054 | <0.0001 | 0.0141 | <0.0001 |
MSE | 0.0010 | 2.5070 | 45.2111 | 15.1512 |
Items | Ace | Pro | Iso-But | But | Iso-Val | Val | tVFA | BCFA | Ace/Pro |
---|---|---|---|---|---|---|---|---|---|
mmol/g | % | ||||||||
Smooth Cayenne variety | |||||||||
Crown | 33.51A | 25.44C | 0.46A | 19.36C | 0.66A | 0.67A | 80.10C | 1.61A | 1.51A |
Bud end | 29.29B | 24.22C | 0.31B | 21.26C | 0.39B | 0.43B | 75.90C | 1.06B | 1.38B |
Peel | 25.20C | 23.05C | 0.38B | 24.88B | 0.46B | 0.45B | 74.43C | 1.30B | 1.24C |
Core | 27.04BC | 50.05A | 0.17C | 25.26B | 0.22C | 0.70A | 103.44A | 0.43C | 0.62E |
Pomace | 19.96D | 31.77B | 0.38B | 37.02A | 0.62A | 0.53B | 90.28B | 1.37A | 0.78D |
Sugarloaf variety | |||||||||
Crown | 25.59BC | 21.05D | 0.38A | 17.15C | 0.59A | 0.48C | 65.25C | 1.67A | 1.36A |
Bud end | 24.50C | 22.57CD | 0.33AB | 23.63B | 0.48AB | 0.39C | 71.92B | 1.26B | 1.22B |
Peel | 27.08B | 24.23C | 0.26BC | 24.24B | 0.46B | 0.66B | 77.93B | 1.05BC | 1.23B |
Core | 30.24A | 50.79A | 0.17D | 27.17A | 0.22C | 0.92A | 109.53A | 0.39D | 0.66C |
Pomace | 21.89D | 36.09B | 0.21C | 12.24D | 0.25C | 1.02A | 71.70B | 0.77C | 0.72C |
p-value | |||||||||
Variety | 0.0010 | <0.0001 | <0.0001 | <0.0001 | 0.0002 | <0.0001 | <0.0001 | 0.0034 | <0.0001 |
By-product | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
Variety × by-product | <0.0001 | 0.0004 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | 0.0001 |
MSE | 0.9510 | 1.4491 | 0.0008 | 0.7540 | 0.0021 | 0.0020 | 6.0990 | 1.3470 | 0.0020 |
pH | OMD | OMCV | Yield | tVFA | |
---|---|---|---|---|---|
CP | 0.40 | −0.03 | 0.01 | 0.14 | −0.56 |
NS | NS | NS | NS | NS | |
EE | 0.75 | −0.85 | −0.83 | −0.65 | −0.48 |
* | ** | ** | * | NS | |
Ash | 0.87 | −0.84 | −0.83 | −0.67 | −0.70 |
** | ** | ** | * | * | |
NDF | 0.90 | −0.95 | −0.95 | −0.81 | −0.72 |
*** | *** | *** | ** | * | |
ADF | 0.86 | −0.95 | −0.96 | −0.83 | −0.63 |
** | *** | *** | ** | NS | |
ADL | 0.61 | −0.85 | −0.85 | −0.63 | −0.22 |
NS | ** | ** | NS | NS | |
FS | −0.56 | 0.70 | 0.59 | 0.41 | 0.53 |
NS | * | NS | NS | NS | |
TS | −0.72 | 0.59 | 0.54 | 0.31 | 0.80 |
* | NS | NS | NS | ** | |
ME | −0.83 | 0.96 | 0.98 | 0.83 | 0.67 |
** | *** | *** | ** | * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kiatti, D.d.; Vastolo, A.; Koura, B.I.; Vitaglione, P.; Cutrignelli, M.I.; Calabrò, S. The Chemical Characteristics and In Vitro Degradability of Pineapple By-Products as Potential Feed for Ruminants. Animals 2023, 13, 3238. https://doi.org/10.3390/ani13203238
Kiatti Dd, Vastolo A, Koura BI, Vitaglione P, Cutrignelli MI, Calabrò S. The Chemical Characteristics and In Vitro Degradability of Pineapple By-Products as Potential Feed for Ruminants. Animals. 2023; 13(20):3238. https://doi.org/10.3390/ani13203238
Chicago/Turabian StyleKiatti, Dieu donné, Alessandro Vastolo, Bossima Ivan Koura, Paola Vitaglione, Monica Isabella Cutrignelli, and Serena Calabrò. 2023. "The Chemical Characteristics and In Vitro Degradability of Pineapple By-Products as Potential Feed for Ruminants" Animals 13, no. 20: 3238. https://doi.org/10.3390/ani13203238
APA StyleKiatti, D. d., Vastolo, A., Koura, B. I., Vitaglione, P., Cutrignelli, M. I., & Calabrò, S. (2023). The Chemical Characteristics and In Vitro Degradability of Pineapple By-Products as Potential Feed for Ruminants. Animals, 13(20), 3238. https://doi.org/10.3390/ani13203238