Effects of Dietary Acacia nilotica Fruit, Zinc Oxide Nanoparticles and Their Combination on Productive Performance, Zinc Retention, and Blood Biochemistry of Rabbits
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Acacia nilotica Fruit Preparation and Analysis
2.2. Acacia Fruits Antioxidant, Total Phenols, and Total Flavonoids
2.3. Acacia Fruits Antioxidant, Total Phenols, and Total Flavonoids Contents
2.4. Preparation of Nano-ZnO
2.5. Experimental Animals, Design, and Management
2.6. Growth Performance
2.7. Serum, Diet, and Tissue Zn Concentrations
2.8. Blood Biochemical Assay
2.9. Carcass Measurements
2.10. Statistical Analysis
3. Results
3.1. Growth Performance
3.2. Serum Biochemical Assays
3.3. Carcass Criteria
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abdel-Wareth, A.; Hammad, S.; Ahmed, H. Effects of Khaya senegalensis leaves on performance, carcass traits, hemtological and biochemical parameters in rabbits. Excli J. 2014, 13, 502. [Google Scholar]
- Marai, I.; Habeeb, A.; Gad, A. Rabbits’ productive, reproductive and physiological performance traits as affected by heat stress: A review. Livest. Prod. Sci. 2002, 78, 71–90. [Google Scholar] [CrossRef]
- Abdel-Wareth, A.A.; Taha, E.M.; Südekum, K.-H.; Lohakare, J. Thyme oil inclusion levels in a rabbit ration: Evaluation of productive performance, carcass criteria and meat quality under hot environmental conditions. Anim. Nutr. 2018, 4, 410–416. [Google Scholar] [CrossRef] [PubMed]
- Asemota, O.; Aduba, P.; Bello-Onaghise, G.; Orheruata, A. Effect of temperature-humidity index (THI) on the performance of rabbits (Oryctolaguscuniculus) in the humid tropics. Arch. De Zootec. 2017, 66, 257–261. [Google Scholar]
- Jaén-Téllez, J.A.; Sánchez-Guerrero, M.J.; Valera, M.; González-Redondo, P. Influence of stress assessed through infrared thermography and environmental parameters on the performance of fattening rabbits. Animals 2021, 11, 1747. [Google Scholar] [CrossRef]
- Marai, I.; Habeeb, A.; Gad, A. Reproductive traits of male rabbits as affected by climatic conditions, in the subtropical environment of Egypt. Anim. Sci. 2003, 77, 451–458. [Google Scholar] [CrossRef]
- Suttle, N.F. The Mineral Nutrition of Livestock, 4th ed.; CABI Publishing: Wallingford, UK, 2010. [Google Scholar]
- Abdel-Wareth, A.A.; Amer, S.A.; Mobashar, M.; El-Sayed, H.G. Use of zinc oxide nanoparticles in the growing rabbit diets to mitigate hot environmental conditions for sustainable production and improved meat quality. BMC Vet. Res. 2022, 18, 1–10. [Google Scholar] [CrossRef] [PubMed]
- King, J.C. Zinc: An essential but elusive nutrient. Am. J. Clin. Nutr. 2011, 94, 679S–684S. [Google Scholar] [CrossRef] [PubMed]
- Pandav, P.; Puranik, P. Trials on metal enriched Spirulina platensis supplementation on poultry growth. Glob. J. Bio. Sci. Technol. 2015, 4, 128–134. [Google Scholar]
- Kechrid, Z.; Bouzerna, N. Effect of zinc deficiency on zinc and carbohydrate metabolism in genetically diabetic (C57BL/Ksj Db+/Db+) and non-diabetic original strain (C57BL/Ksj) mice. Turk. J. Med. Sci. 2004, 34, 367–373. [Google Scholar]
- Surai, P.F.; Kochish, I.I.; Velichko, O.A. Nano-Se assimilation and action in poultry and other monogastric animals: Is gut microbiota an answer? Nanoscale Res. Lett. 2017, 12, 612. [Google Scholar] [CrossRef]
- Fallah, A.; Mohammad-Hasani, A.; Colagar, A.H. Zinc is an essential element for male fertility: A review of Zn roles in men’s health, germination, sperm quality, and fertilization. J. Reprod. Infertil. 2018, 19, 69. [Google Scholar]
- Gibson, R.S.; Bailey, K.B.; Gibbs, M.; Ferguson, E.L. A review of phytate, iron, zinc, and calcium concentrations in plant-based complementary foods used in low-income countries and implications for bioavailability. Food Nutr. Bull. 2010, 31, S134–S146. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Zhang, G.; Zhang, C.; Tang, L.; Kuang, S. Effect of dietary organic zinc sources on growth performance, incidence of diarrhoea, serum and tissue zinc concentrations, and intestinal morphology in growing rabbits. World Rabbit. Sci. 2017, 25, 43–49. [Google Scholar] [CrossRef]
- Hassan, F.; Mobarez, S.; Mohamed, M.; Attia, Y.; Mekawy, A.; Mahrose, K. Zinc and/or selenium enriched spirulina as antioxidants in growing rabbit diets to alleviate the deleterious impacts of heat stress during summer season. Animals 2021, 11, 756. [Google Scholar] [CrossRef]
- Alijani, K.; Rezaei, J.; Rouzbehan, Y. Effect of nano-ZnO, compared to ZnO and Zn-methionine, on performance, nutrient status, rumen fermentation, blood enzymes, ferric reducing antioxidant power and immunoglobulin G in sheep. Anim. Feed. Sci. Technol. 2020, 267, 114532. [Google Scholar] [CrossRef]
- Hassan, F.A.; Mahmoud, R.; El-Araby, I.E. Growth performance, serum biochemical, economic evaluation and IL6 gene expression in growing rabbits fed diets supplemented with zinc nanoparticles. Zagazig Vet. J. 2017, 45, 238–249. [Google Scholar] [CrossRef]
- Abdalla, A.A.; Mustafa, M.I.; Makhawi, A.M. Phytochemical screening and antimicrobial activities studies of Acacia nilotica fruit cover. bioRxiv 2020. [Google Scholar] [CrossRef]
- Garra, A.H.; Eltomy, S.A.; Aarrag, A.-r.H.; Ahmed, N.M. Antidiabetic, Antihyperlipidemic and Antioxidant Activities of Acacia albida in Streptozotocin-induced Diabetes in Rats and its Metabolites. Egypt. J. Chem. 2020, 63, 337–348. [Google Scholar] [CrossRef]
- El-Chaghaby, G.A.; Rashad, S.; Abdel-Kader, S.F.; Rawash, E.-S.A.; Moneem, M.A.; History, A. Assessment of phytochemical components, proximate composition and antioxidant properties of Scenedesmus obliquus, Chlorella vulgaris and Spirulina platensis algae extracts. J. Aquat. Biol. Fish. 2019, 23, 521–526. [Google Scholar] [CrossRef]
- Bangou, M.; Koama, K.; Coulidiati, T.; Meda, R.; Traoré-Coulibaly, M.; Nacoulma, O. Phytochemical screening, antioxidant and in vivo antiplasmodial activities of Acacia gourmaensis A. RICH. (Mimosaceae). Biol. Sci. Pharm. Res. 2019, 7, 46–57. [Google Scholar] [CrossRef]
- Institute, S. SAS/GRAPH 9.2: Graph Template Language User’s Guide; SAS Institute: Hong Kong, China, 2009. [Google Scholar]
- Halo, M., Jr.; Bułka, K.; Antos, P.A.; Greń, A.; Slanina, T.; Ondruška, Ľ.; Tokárová, K.; Massányi, M.; Formicki, G.; Halo, M. The effect of ZnO nanoparticles on rabbit spermatozoa motility and viability parameters in vitro. Saudi J. Biol. Sci. 2021, 28, 7450–7454. [Google Scholar] [CrossRef]
- Rasha, E.; Monerah, A.; Manal, A.; Rehab, A.; Mohammed, D.; Doaa, E. Biosynthesis of zinc oxide nanoparticles from Acacia nilotica (L.) extract to overcome carbapenem-resistant Klebsiella pneumoniae. Molecules 2021, 26, 1919. [Google Scholar] [CrossRef]
- Elsisi, G.F.; Ayyat, M.; Gabr, H.; El-Rahman, A. Effect of dietary protein levels and zinc supplementation on growth performance, digestibility, blood constituents and carcass traits of growing rabbits. Zagazig J. Agric. Res. 2017, 44, 1369–1378. [Google Scholar]
- King, J.; CL, K. Chapter 11. Modern Nutrition in Health and Disease, 9th ed.; Williams & Wilkins: Baltimore, MD, USA, 1999; pp. 223–239. [Google Scholar]
- Amen, M.H.M.; Muhammad, S.S. Effect of zinc supplementation on some physiological and growth traits in local male rabbit. Vet. J. 2016, 6, 151–155. [Google Scholar]
- Abdel-Wareth, A.A.; Al-Kahtani, M.A.; Alsyaad, K.M.; Shalaby, F.M.; Saadeldin, I.M.; Alshammari, F.A.; Mobashar, M.; Suleiman, M.H.; Ali, A.H.; Taqi, M.O. Combined supplementation of nano-zinc oxide and thyme oil improves the nutrient digestibility and reproductive fertility in the male Californian rabbits. Animals 2020, 10, 2234. [Google Scholar] [CrossRef] [PubMed]
- Maldini, M.; Montoro, P.; Hamed, A.I.; Mahalel, U.A.; Oleszek, W.; Stochmal, A.; Piacente, S. Strong antioxidant phenolics from Acacia nilotica: Profiling by ESI-MS and qualitative–quantitative determination by LC–ESI-MS. J. Pharm. Biomed. Anal. 2011, 56, 228–239. [Google Scholar] [CrossRef]
- Kannan, N.; Sakthivel, K.M.; Guruvayoorappan, C. Protective effect of Acacia nilotica (L.) against acetaminophen-induced hepatocellular damage in wistar rats. Adv. Pharmacol. Pharm. Sci. 2013, 2013, 1–9. [Google Scholar]
- Al-Sagheer, A.A.; Daader, A.H.; Gabr, H.A.; Abd El-Moniem, E.A. Palliative effects of extra virgin olive oil, gallic acid, and lemongrass oil dietary supplementation on growth performance, digestibility, carcass traits, and antioxidant status of heat-stressed growing New Zealand White rabbits. Environ. Sci. Pollut. Res. 2017, 24, 6807–6818. [Google Scholar] [CrossRef] [PubMed]
- Amer, F.; Amin, H.; Ali, W.; El-Aasar, T.; Azoz, A.B. Effect of dietary addition of zinc enriched spirulina on growth and physiological performance in growing rabbits. Egypt. J. Rabbit. Sci. 2016, 26, 155–173. [Google Scholar] [CrossRef]
- Chrastinová, Ľ.; Čobanová, K.; Chrenková, M.; Poláčiková, M.; Formelová, Z.; Lauková, A.; Ondruška, Ľ.; SIMONOVÁ, M.P.; Strompfová, V.; Bučko, O. High dietary levels of zinc for young rabbits. Slovak J. Anim. Sci. 2015, 48, 57–63. [Google Scholar]
- Dalle Zotte, A.; Celia, C.; Cullere, M.; Szendrő, Z.; Kovács, M.; Gerencsér, Z.; Dal Bosco, A.; Giaccone, V.; Matics, Z. Effect of an in-vivo and/or in-meat application of a liquorice (Glycyrrhiza glabra L.) extract on fattening rabbits live performance, carcass traits and meat quality. Anim. Feed. Sci. Technol. 2020, 260, 114333. [Google Scholar] [CrossRef]
No | RT (min) | Name | Area Sum% |
---|---|---|---|
1. | 5.63 | Isovaleric acid | 6.68 |
2. | 5.48 | Benzaldehyde | 9.64 |
3. | 6.21 | 6,7-dihydroxycoumarin | 0.72 |
4. | 7.61 | 4′-hydroxychalcone | 2.94 |
5. | 8.91 | Coniferyl alcohol | 10.55 |
6. | 9.27 | Resorcinol monoacetate | 4.9 |
7. | 9.77 | 3′,4′,5′,5,6,7-hexamethoxyflavone | 0.84 |
8. | 10.00 | Chalcone | 0.51 |
9. | 10.35 | Phytol | 0.87 |
10. | 11.44 | Pyrogallic acid | 50.39 |
11. | 16.65 | Palmitic acid | 3.78 |
12. | 18.11 | 1,2-dioleoyl-sn-glycerol | 2.97 |
13. | 18.31 | Arachidic acid | 0.75 |
14. | 19.14 | ω-3 arachidonic acid | 1.95 |
15. | 19.89 | Glycerol 1-myristate | 0.93 |
16. | 20.96 | Garcinone D | 0.85 |
17. | 21.90 | Oleic acid, 3-(octadecyloxy)propyl ester | 0.73 |
Properties | Ethanol Extract |
---|---|
Total antioxidant capacity (mg AAE/100 g) | 9650 ± 100 |
Total phenols (mg GAE/100 g) | 14,127 ± 64 |
Total flavonoids (mg QE/Kg) | 507 ± 23 |
Ingredients | g/kg |
---|---|
Corn | 310 |
Bran of wheat | 200 |
Soybean meal (440 g/kg CP) | 190 |
Straw of wheat | 120 |
Hay of lucerne | 50 |
Bran of rice | 50 |
Straw of linseed | 28 |
Meal of sunflower | 25 |
Limestone | 20 |
Sodium chloride | 3 |
Vitamin–mineral premix 1 | 3 |
Dl-methionine | 1 |
Chemical composition analyzed (g/kg, as fed) | |
Dry matter | 934 |
Digestible energy (DE, MJ/kg DM) | 9.5 |
Crude protein | 179 |
Ether extract | 39.4 |
aNDFom | 392 |
ADFom | 232 |
ADL | 69.5 |
Ash | 93.2 |
Calcium | 15.5 |
Phosphorus | 7.63 |
Zinc | 0.09 |
Items | Treatments | SEM | p-Value | |||
---|---|---|---|---|---|---|
Control | Nano-ZnO | ANFP | Combination | |||
Body weight, g | ||||||
40 days | 735 | 737 | 740 | 742 | 11.23 | 0.264 |
70 days | 1626 c | 1784 b | 1775 b | 1881 a | 23.18 | <0.001 |
100 days | 2508 c | 2782 b | 2750 b | 2876 a | 23.82 | <0.001 |
Body weight gain, g | ||||||
40 to 100 days | 891 c | 1047 b | 1035 b | 1139 a | 15.36 | 0.003 |
70 to 100 days | 882 b | 998 a | 975 a | 995 a | 16.12 | 0.025 |
40 to 100 days | 1773 c | 2045 b | 2010 b | 2134 a | 22.42 | 0.001 |
Feed intake, g | ||||||
40 to 100 days | 2787 | 2786 | 2754 | 2790 | 7.19 | 0.250 |
70 to 100 days | 3058 c | 3172 b | 3133 b | 3256 a | 25.17 | 0.001 |
40 to 100 days | 5845 c | 6058 b | 5987 b | 6146 a | 26.15 | 0.001 |
Feed conversion ratio | ||||||
40 to 100 days | 3.128 a | 2.661 b | 2.661 b | 2.450 c | 0.070 | 0.001 |
70 to 100 days | 3.467 a | 3.178 b | 3.213 b | 3.272 b | 0.042 | 0.023 |
40 to 100 days | 3.297 a | 2.962 b | 2.979 b | 2.880 b | 0.036 | 0.004 |
Items | Treatments | SEM | p-Value | |||
---|---|---|---|---|---|---|
Control | Nano-ZnO | ANFP | Combination | |||
Carcass characteristics percentage | ||||||
Live body weight, g | 2577 | 2656 | 2677 | 2705 | 52.08 | 0.080 |
Dressing % | 55.97 c | 60.34 b | 61.29 b | 66.68 a | 0.955 | 0.005 |
Liver % | 3.210 | 3.139 | 3.361 | 3.177 | 0.085 | 0.831 |
Heart % | 0.284 | 0.324 | 0.313 | 0.323 | 0.009 | 0.402 |
Head % | 4.772 | 5.127 | 5.002 | 4.800 | 0.068 | 0.199 |
Spleen % | 0.054 | 0.057 | 0.054 | 0.058 | 0.005 | 0.376 |
Testis % | 0.174 b | 0.227 a | 0.224 a | 0.229 a | 0.011 | 0.021 |
Kidneys % | 0.775 | 0.854 | 0.722 | 0.722 | 0.029 | 0.333 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdel-Wareth, A.A.A.; El-Sayed, H.G.M.; Abdel-Warith, A.-W.A.; Younis, E.M.; Hassan, H.A.; Afifi, A.S.; El-Chaghaby, G.A.; Rashad, S.; Amer, S.A.; Lohakare, J. Effects of Dietary Acacia nilotica Fruit, Zinc Oxide Nanoparticles and Their Combination on Productive Performance, Zinc Retention, and Blood Biochemistry of Rabbits. Animals 2023, 13, 3296. https://doi.org/10.3390/ani13203296
Abdel-Wareth AAA, El-Sayed HGM, Abdel-Warith A-WA, Younis EM, Hassan HA, Afifi AS, El-Chaghaby GA, Rashad S, Amer SA, Lohakare J. Effects of Dietary Acacia nilotica Fruit, Zinc Oxide Nanoparticles and Their Combination on Productive Performance, Zinc Retention, and Blood Biochemistry of Rabbits. Animals. 2023; 13(20):3296. https://doi.org/10.3390/ani13203296
Chicago/Turabian StyleAbdel-Wareth, Ahmed A. A., Hazem G. M. El-Sayed, Abdel-Wahab A. Abdel-Warith, Elsayed M. Younis, Hamdi A. Hassan, Afifi S. Afifi, Ghadir A. El-Chaghaby, Sayed Rashad, Shimaa A. Amer, and Jayant Lohakare. 2023. "Effects of Dietary Acacia nilotica Fruit, Zinc Oxide Nanoparticles and Their Combination on Productive Performance, Zinc Retention, and Blood Biochemistry of Rabbits" Animals 13, no. 20: 3296. https://doi.org/10.3390/ani13203296
APA StyleAbdel-Wareth, A. A. A., El-Sayed, H. G. M., Abdel-Warith, A. -W. A., Younis, E. M., Hassan, H. A., Afifi, A. S., El-Chaghaby, G. A., Rashad, S., Amer, S. A., & Lohakare, J. (2023). Effects of Dietary Acacia nilotica Fruit, Zinc Oxide Nanoparticles and Their Combination on Productive Performance, Zinc Retention, and Blood Biochemistry of Rabbits. Animals, 13(20), 3296. https://doi.org/10.3390/ani13203296