Fatty Acid Profile and Lipid Quality Indexes of the Meat and Backfat from Porkers Supplemented with EM Bokashi Probiotic
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals, Feed, Slaughter, and Meat Sampling
2.2. Crude Fat Content of Meat
2.3. Fatty Acid Analysis
2.4. Reagents
2.5. Lipid Quality Indexes
2.6. Statistical Analysis
3. Results and Discussion
3.1. Fat Content and Fatty Acids Profile in Longissimus Lumborum Muscle of Pigs
3.2. Lipid Quality Indexes of Longissimus Lumborum Muscle of Pigs
3.3. Fatty Acids Profile in Backfat of Pigs
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lin-Schilstra, L.; Backus, G.; Snoek, H.; Mörlein, D. Consumers’ View on Pork: Consumption Motives and Production Preferences in Ten European Union and Four Non-European Union Countries. Meat Sci. 2022, 187, 108736. [Google Scholar] [CrossRef]
- Lebret, B.; Čandek-Potokar, M. Review: Pork Quality Attributes from Farm to Fork. Part II. Processed Pork Products. Animal 2022, 16, 100383. [Google Scholar] [CrossRef] [PubMed]
- Lebret, B.; Čandek-Potokar, M. Review: Pork Quality Attributes from Farm to Fork. Part I. Carcass and Fresh Meat. Animal 2022, 16, 100402. [Google Scholar] [CrossRef] [PubMed]
- Renub Research Global Pork Market, Size, Global Forecast 2023–2028, Industry Trends, Growth, Share, Outlook, Impact of Inflation, Opportunity Company Analysis. Available online: https://www.renub.com/global-pork-market-p.php (accessed on 21 August 2023).
- Magnusson, U.; Sternberg, S.; Eklund, G.; Rozstalnyy, A. Prudent and Efficient Use of Antimicrobials in Pigs and Poultry; FAO Animal Production and Health Manual; Food and Agriculture Organization of the United Nations: Rome, Italy, 2020; ISBN 9789251318911. [Google Scholar]
- Centner, T.J. Recent Government Regulations in the United States Seek to Ensure the Effectiveness of Antibiotics by Limiting Their Agricultural Use. Environ. Int. 2016, 94, 1–7. [Google Scholar] [CrossRef]
- Hu, Y.J.; Cowling, B.J. Reducing Antibiotic Use in Livestock, China. Bull. World Health Organ. 2020, 98, 360–361. [Google Scholar] [CrossRef]
- Marshall, B.M.; Levy, S.B. Food Animals and Antimicrobials: Impacts on Human Health. Clin. Microbiol. Rev. 2011, 24, 718–733. [Google Scholar] [CrossRef]
- Charatcharoenwitthaya, K.; Charoenpichitnun, N.; Tantichinda, N.; Tiyavatcharapong, P.; Apiraktanakon, K.; Tedumrongvanich, P.; Kaewreongrit, T.; Wongtrakul, W.; Niltwat, S.; Tribuddharat, C. Antibiotic Residues in Fresh Pork from Fresh Market in Bangkok, Thailand. J. Med. Assoc. Thai. 2022, 105, 1095–1101. [Google Scholar]
- Bor, N.; Seguino, A.; Sentamu, D.N.; Chepyatich, D.; Akoko, J.M.; Muinde, P.; Thomas, L.F. Prevalence of Antibiotic Residues in Pork in Kenya and the Potential of Using Gross Pathological Lesions as a Risk-Based Approach to Predict Residues in Meat. Antibiotics 2023, 12, 492. [Google Scholar] [CrossRef]
- Van der Fels-Klerx, H.J.; Puister-Jansen, L.F.; van Asselt, E.D.; Burgers, S.L.G.E. Farm Factors Associated with the Use of Antibiotics in Pig Production. J. Anim. Sci. 2011, 89, 1922–1929. [Google Scholar] [CrossRef]
- Roca, I.; Akova, M.; Baquero, F.; Carlet, J.; Cavaleri, M.; Coenen, S.; Cohen, J.; Findlay, D.; Gyssens, I.; Heure, O.E.; et al. The Global Threat of Antimicrobial Resistance: Science for Intervention. New Microbes New Infect. 2015, 6, 22–29. [Google Scholar] [CrossRef]
- Muurinen, J.; Richert, J.; Wickware, C.L.; Richert, B.; Johnson, T.A. Swine Growth Promotion with Antibiotics or Alternatives Can Increase Antibiotic Resistance Gene Mobility Potential. Sci. Rep. 2021, 11, 5485. [Google Scholar] [CrossRef] [PubMed]
- Dewulf, J.; Joosten, P.; Chantziaras, I.; Bernaerdt, E.; Vanderhaeghen, W.; Postma, M.; Maes, D. Antibiotic Use in European Pig Production: Less Is More. Antibiotics 2022, 11, 1493. [Google Scholar] [CrossRef] [PubMed]
- EFSA. Third Joint Inter-Agency Report on Integrated Analysis of Consumption of Antimicrobial Agents and Occurrence of Antimicrobial Resistance in Bacteria from Humans and Food-producing Animals in the EU/EEA. EFSA J. 2021, 19, 6712. [Google Scholar] [CrossRef]
- Monger, X.C.; Gilbert, A.A.; Saucier, L.; Vincent, A.T. Antibiotic Resistance: From Pig to Meat. Antibiotics 2021, 10, 1209. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Global Antimicrobial Resistance and Use Surveillance System (GLASS) Report 2021; WHO: Geneva, Switzerland, 2021; ISBN 9789240005587. [Google Scholar]
- World Organisation for Animal Health. Terrestrial Animal Health Code. Available online: https://www.woah.org/en/what-we-do/standards/codes-and-manuals/ (accessed on 28 August 2023).
- Augère-Granier, M.-L. The EU Pig Meat Sector; European Parliamentary Research Service: Brussels, Belgium, 2020; pp. 1–12. [Google Scholar]
- Cardinal, K.M.; Pires, P.D.S.; Ribeiro, A.M.L.R. Growth Promoter in Broiler and Pig Production. Pubvet 2020, 14, 1–6. [Google Scholar] [CrossRef]
- Herrero, M.; Thornton, P.K.; Mason-D’Croz, D.; Palmer, J.; Bodirsky, B.L.; Pradhan, P.; Barrett, C.B.; Benton, T.G.; Hall, A.; Pikaar, I.; et al. Articulating the Effect of Food Systems Innovation on the Sustainable Development Goals. Lancet Planet. Health 2021, 5, e50–e62. [Google Scholar] [CrossRef]
- Springmann, M.; Clark, M.; Mason-D’croz, D.; Wiebe, K.; Leon Bodirsky, B.; Lassaletta, L.; De Vries, W.; Vermeulen, S.J.; Herrero, M.; Carlson, K.M.; et al. Options for Keeping the Food System within Environmental Limits. Nature 2018, 562, 519–525. [Google Scholar] [CrossRef]
- Thacker, P.A. Alternatives to Antibiotics as Growth Promoters for Use in Swine Production: A Review. J. Anim. Sci. Biotechnol. 2013, 4, 35. [Google Scholar] [CrossRef]
- Liu, Y.; Espinosa, C.D.; Abelilla, J.J.; Casas, G.A.; Lagos, L.V.; Lee, S.A.; Kwon, W.B.; Mathai, J.K.; Navarro, D.M.D.L.; Jaworski, N.W.; et al. Non-Antibiotic Feed Additives in Diets for Pigs: A Review. Anim. Nutr. 2018, 4, 113–125. [Google Scholar] [CrossRef]
- Chang, S.Y.; Belal, S.A.; Kang, D.R.; Choi, Y.I.; Kim, Y.H.; Choe, H.S.; Heo, J.Y.; Shim, K.S. Influence of Probiotics-Friendly Pig Production on Meat Quality and Physicochemical Characteristics. Korean J. Food Sci. Anim. Resour. 2018, 38, 403–416. [Google Scholar] [CrossRef]
- Wołoszyn, J.; Haraf, G.; Okruszek, A.; Wereńska, M.; Goluch, Z.; Teleszko, M. Fatty Acid Profiles and Health Lipid Indices in the Breast Muscles of Local Polish Goose Varieties. Poult. Sci. 2020, 99, 1216–1224. [Google Scholar] [CrossRef]
- Vondruskova, H.; Slamova, R.; Trckova, M.; Zraly, Z.; Pavlik, I. Alternatives to Antibiotic Growth Promoters in Prevention of Diarrhoea in Weaned Piglets: A Review. Vet. Med. 2010, 55, 199–224. [Google Scholar] [CrossRef]
- Rybarczyk, A.; Bogusławska-Wąs, E.; Pilarczyk, B. Carcass and Pork Quality and Gut Environment of Pigs Fed a Diet Supplemented with the Bokashi Probiotic. Animals 2021, 11, 3590. [Google Scholar] [CrossRef] [PubMed]
- Elghandour, M.M.Y.; Tan, Z.L.; Abu Hafsa, S.H.; Adegbeye, M.J.; Greiner, R.; Ugbogu, E.A.; Cedillo Monroy, J.; Salem, A.Z.M. Saccharomyces cerevisiae as a Probiotic Feed Additive to Non and Pseudo-Ruminant Feeding: A Review. J. Appl. Microbiol. 2020, 128, 658–674. [Google Scholar] [CrossRef]
- Pereira, W.A.; Franco, S.M.; Reis, I.L.; Mendonça, C.M.N.; Piazentin, A.C.M.; Azevedo, P.O.S.; Tse, M.L.P.; De Martinis, E.C.P.; Gierus, M.; Oliveira, R.P.S. Beneficial Effects of Probiotics on the Pig Production Cycle: An Overview of Clinical Impacts and Performance. Vet. Microbiol. 2022, 269, 109431. [Google Scholar] [CrossRef]
- Sharma, H.; Giriprasad, R.; Goswami, M. Animal Fat-Processing and Its Quality Control. J. Food. Process. Technol. 2013, 4, 1000252. [Google Scholar] [CrossRef]
- Hatice, S.O. The Methods Reducing of Fat Content in Meat and Meat Products. Int. J. Food Eng. Res. 2020, 6, 1–16. [Google Scholar] [CrossRef]
- Palmieri, N.; Perito, M.A.; Lupi, C. Consumer Acceptance of Cultured Meat: Some Hints from Italy. Br. Food J. 2021, 123, 109–123. [Google Scholar] [CrossRef]
- Visioli, F.; Poli, A. Fatty Acids and Cardiovascular Risk. Evidence, Lack of Evidence, and Diligence. Nutrients 2020, 12, 3782. [Google Scholar] [CrossRef]
- Association of Official Analysis Chemists International. Official Methods of Analysis of AOAC International, 20th ed.; Latimer, G.W., Jr., Ed.; Association of Official Analysis Chemists International: Rockville, MD, USA, 2016; ISBN 9780935584875. [Google Scholar]
- Folch, J.; Lees, M.; Sloane Stanley, G.H. A Simple Method for the Isolation and Purification of Total Lipides from Animal Tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists. Official Methods of Analysis of the Association of Official Analytical Chemists, 19th ed.; Latimer, G.W., Ed.; Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2012. [Google Scholar]
- Chen, J.; Liu, H. Nutritional Indices for Assessing Fatty Acids: A Mini-Review. Int. J. Mol. Sci. 2020, 21, 5695. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Diet, Nutrition and the Prevention of Chronic Diseases; WHO Technical Report Series 916; WHO: Brussels, Belgium, 2003; pp. 1–160. [Google Scholar]
- Ulbricht, T.L.V.; Southgate, D.A.T. Coronary Heart Disease: Seven Dietary Factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef] [PubMed]
- Goluch, Z.; Wereńska, M.; Wołoszyn, J.; Rybarczyk, A.; Okruszek, A.; Teleszko, M. Effect of BIOPLUS YC Probiotic on the Fatty Acid Profile and Lipid Indices in Pork. J. Elem. 2020, 25, 973–991. [Google Scholar] [CrossRef]
- Moreira, A.B.; Visentainer, J.V.; De Souza, N.E.; Matsushita, M. Fatty Acids Profile and Cholesterol Contents of Three Brazilian Brycon Freshwater Fishes. J. Food Compos. Anal. 2001, 14, 565–574. [Google Scholar] [CrossRef]
- Cava, L.; Estévez, R.; Ruiz, J.; Morcuende, D. Physico-Chemical Characteristics of M. Longissimus Dorsi from Three Lines of Free-Range Reared Iberian Pigs Slaughtered at 90 Kg Live-Weight and Commercial Pigs: A Comparative Study. Meat Sci. 2003, 64, 499–506. [Google Scholar] [CrossRef]
- Wójciak, K.M.; Stasiak, D.M.; Ferysiuk, K.; Solska, E. The Influence of Sonication on the Oxidative Stability and Nutritional Value of Organic Dry-Fermented Beef. Meat Sci. 2019, 148, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Erickson, M.C. Variation of Lipid and Tocopherol Composition in Three Strains of Channel Catfish (Ictalurus punctatus). J. Sci. Food Agric. 1992, 59, 529–536. [Google Scholar] [CrossRef]
- Malau-Aduli, A.E.O.; Siebert, B.D.; Bottema, C.D.K.; Pitchford, W.S. Breed Comparison of the Fatty Acid Composition of Muscle Phospholipids in Jersey and Limousin Cattle 1. J. Anim. Sci. 1998, 76, 766–773. [Google Scholar] [CrossRef]
- Green, C.D.; Ozguden-Akkoc, C.G.; Wang, Y.; Jump, D.B.; Olson, L.K. Role of Fatty Acid Elongases in Determination of de Novo Synthesized Monounsaturated Fatty Acid Species. J. Lipid Res. 2010, 51, 1871–1877. [Google Scholar] [CrossRef]
- Sari, M.; Onk, K.; Sisman, T.; Tilki, M.; Yakan, A. Effects of Different Fattening Systems on Technological Properties and Fatty Acid Composition of Goose Meat. Eur. Poult. Sci. 2015, 79, 1–12. [Google Scholar] [CrossRef]
- Bonanno, A.; Di Grigoli, A.; Vitale, F.; Alabiso, M.; Giosuè, C.; Mazza, F.; Todaro, M. Legume Grain-Based Supplements in Dairy Sheep Diet: Effects on Milk Yield, Composition and Fatty Acid Profile. Anim. Prod. Sci. 2015, 56, 130–140. [Google Scholar] [CrossRef]
- Estévez, M.; Morcuende, D.; Cava, R. Extensively Reared Iberian Pigs versus Intensively Reared White Pigs for the Manufacture of Frankfurters. Meat Sci. 2006, 72, 356–364. [Google Scholar] [CrossRef] [PubMed]
- StatSoft Inc. Statistica (Data Analysis Software System); StatSoft Inc.: Tulsa, OK, USA, 2022. [Google Scholar]
- Al-Shawi, S.G.; Dang, D.S.; Yousif, A.Y.; Al-Younis, Z.K.; Najm, T.A.; Matarneh, S.K. The Potential Use of Probiotics to Improve Animal Health, Efficiency, and Meat Quality: A Review. Agriculture 2020, 10, 452. [Google Scholar] [CrossRef]
- Rybarczyk, A.; Bogusławska-Wąs, E.; Łupkowska, A. Effect of EM® Probiotic on Gut Microbiota, Growth Performance, Carcass and Meat Quality of Pigs. Livest Sci. 2020, 241, 104206. [Google Scholar] [CrossRef]
- Nevrkla, P.; Kapelański, W.; Václavková, E.; Hadaš, Z.; Cebulska, A.; Horký, P. Meat Quality and Fatty Acid Profile of Pork and Backfat from an Indigenous Breed and A Commercial Hybrid of Pigs. Ann. Anim. Sci. 2017, 17, 1215–1227. [Google Scholar] [CrossRef]
- Yi, W.; Huang, Q.; Wang, Y.; Shan, T. Lipo-Nutritional Quality of Pork: The Lipid Composition, Regulation, and Molecular Mechanisms of Fatty Acid Deposition. Anim. Nutr. 2023, 13, 373–385. [Google Scholar] [CrossRef]
- Nguyen, L.Q.; Nuijens, M.C.G.A.; Everts, H.; Salden, N.; Beynen, A.C. Mathematical Relationships between the Intake of N-6 and n-3 Polyunsaturated Fatty Acids and Their Contents in Adipose Tissue of Growing Pigs. Meat Sci. 2003, 65, 1399–1406. [Google Scholar] [CrossRef] [PubMed]
- Chernukha, I.; Kotenkova, E.; Pchelkina, V.; Ilyin, N.; Utyanov, D.; Kasimova, T.; Surzhik, A.; Fedulova, L. Pork Fat and Meat: A Balance between Consumer Expectations and Nutrient Composition of Four Pig Breeds. Foods 2023, 12, 690. [Google Scholar] [CrossRef]
- Patterson, E.; Cryan, J.F.; Fitzgerald, G.F.; Ross, R.P.; Dinan, T.G.; Stanton, C. Gut Microbiota, the Pharmabiotics They Produce and Host Health. Proc. Nutr. Soc. 2014, 760, 477–489. [Google Scholar] [CrossRef]
- Pessione, E. Lactic Acid Bacteria Contribution to Gut Microbiota Complexity: Lights and Shadows. Front. Cell. Infect. Microbiol. 2012, 2, 86. [Google Scholar] [CrossRef]
- Leblanc, J.G.; Chain, F.; Martín, R.; Bermúdez-Humarán, L.G.; Courau, S.; Langella, P. Beneficial Effects on Host Energy Metabolism of Short-Chain Fatty Acids and Vitamins Produced by Commensal and Probiotic Bacteria. Microb. Cell Fact. 2017, 16, 79. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Airola, M.V.; Reue, K. How Lipid Droplets “TAG” along: Glycerolipid Synthetic Enzymes and Lipid Storage. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2017, 1862, 1131–1145. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.; Wu, W.; Chen, L.; Yang, W.; Huang, X.; Ma, C.; Chen, F.; Xiao, Y.; Zhao, Y.; Ma, C.; et al. Microbiota-Derived Short-Chain Fatty Acids Promote Th1 Cell IL-10 Production to Maintain Intestinal Homeostasis. Nat. Commun. 2018, 9, 3555. [Google Scholar] [CrossRef]
- Rekiel, A.; Więcek, J.; Dziuba, M. Effect of Feed Additives on the Results of Fattening and Selected Slaughter and Quality Traits of Pork Meat of Pigs with Different Genotypes. Czech J. Anim. Sci. 2005, 50, 561–567. [Google Scholar] [CrossRef]
- Parra, V.; Petrón, M.J.; Martín, L.; Broncano, J.M.; Timón, M.L. Modification of the Fat Composition of the Iberian Pig Using Bacillus Licheniformis and Bacillus Subtilis. Eur. J. Lipid Sci. Technol. 2010, 112, 720–726. [Google Scholar] [CrossRef]
- Dávila-Ramírez, J.L.; Carvajal-Nolazco, M.R.; López-Millanes, M.J.; González-Ríos, H.; Celaya-Michel, H.; Sosa-Castañeda, J.; Barrales-Heredia, S.M.; Moreno-Salazar, S.F.; Barrera-Silva, M.A. Effect of Yeast Culture (Saccharomyces cerevisiae) Supplementation on Growth Performance, Blood Metabolites, Carcass Traits, Quality, and Sensorial Traits of Meat from Pigs under Heat Stress. Anim. Sci. Technol. 2020, 267, 114573. [Google Scholar] [CrossRef]
- Perna, M.; Hewlings, S. Saturated Fatty Acid Chain Length and Risk of Cardiovascular Disease: A Systematic Review. Nutrients 2023, 15, 30. [Google Scholar] [CrossRef]
- Bojková, B.; Winklewski, P.J.; Wszedybyl-Winklewska, M. Dietary Fat and Cancer—Which Is Good, Which Is Bad, and the Body of Evidence. Int. J. Mol. Sci. 2020, 21, 4114. [Google Scholar] [CrossRef]
- Zhuang, P.; Zhang, Y.; He, W.; Chen, X.; Chen, J.; He, L.; Mao, L.; Wu, F.; Jiao, J. Dietary Fats in Relation to Total and Cause-Specific Mortality in a Prospective Cohort of 521 120 Individuals with 16 Years of Follow-Up. Circ. Res. 2019, 124, 757–768. [Google Scholar] [CrossRef]
- Fatima, S.; Hu, X.; Gong, R.H.; Huang, C.; Chen, M.; Wong, H.L.X.; Bian, Z.; Kwan, H.Y. Palmitic Acid Is an Intracellular Signaling Molecule Involved in Disease Development. Cell. Mol. Life Sci. 2019, 76, 2547–2557. [Google Scholar] [CrossRef]
- Sheela, D.L.; Narayanankutty, A.; Nazeem, P.A.; Raghavamenon, A.C.; Muthangaparambil, S.R. Lauric Acid Induce Cell Death in Colon Cancer Cells Mediated by the Epidermal Growth Factor Receptor Downregulation: An in Silico and in Vitro Study. Hum. Exp. Toxicol. 2019, 38, 753–761. [Google Scholar] [CrossRef] [PubMed]
- Lappano, R.; Sebastiani, A.; Cirillo, F.; Rigiracciolo, D.C.; Galli, G.R.; Curcio, R.; Malaguarnera, R.; Belfiore, A.; Cappello, A.R.; Maggiolini, M. The Lauric Acid-Activated Signaling Prompts Apoptosis in Cancer Cells. Cell Death Discov. 2017, 3, 17063. [Google Scholar] [CrossRef] [PubMed]
- Praagman, J.; Beulens, J.W.J.; Alssema, M.; Zock, P.L.; Wanders, A.J.; Sluijs, I.; Van Der Schouw, Y.T. The Association between Dietary Saturated Fatty Acids and Ischemic Heart Disease Depends on the Type and Source of Fatty Acid in the European Prospective Investigation into Cancer and Nutrition-Netherlands Cohort. Am. J. Clin. Nutr. 2016, 103, 356–365. [Google Scholar] [CrossRef]
- Praagman, J.; Vissers, L.E.T.; Mulligan, A.A.; Laursen, A.S.D.; Beulens, J.W.J.; van der Schouw, Y.T.; Wareham, N.J.; Hansen, C.P.; Khaw, K.T.; Jakobsen, M.U.; et al. Consumption of Individual Saturated Fatty Acids and the Risk of Myocardial Infarction in a UK and a Danish Cohort. Int. J. Cardiol. 2019, 279, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Tufarelli, V.; Crovace, A.M.; Rossi, G.; Laudadio, V. Effect of a Dietary Probiotic Blend on Performance, Blood Characteristics, Meat Quality and Faecal Microbial Shedding in Growing-Finishing Pigs. S. Afr. J. Anim. Sci. 2017, 47, 875–882. [Google Scholar] [CrossRef]
- Ross, G.R.; Van Nieuwenhove, C.P.; González, S.N. Fatty Acid Profile of Pig Meat after Probiotic Administration. J. Agric. Food Chem. 2012, 60, 5974–5978. [Google Scholar] [CrossRef]
- Costa, A.S.H.; Silva, M.P.; Alfaia, C.P.M.; Pires, V.M.R.; Fontes, C.M.G.A.; Bessa, R.J.B.; Prates, J.A.M. Genetic Background and Diet Impact Beef Fatty Acid Composition and Stearoyl-CoA Desaturase MRNA Expression. Lipids 2013, 48, 369–381. [Google Scholar] [CrossRef]
- Ahamed, S. Omega-3 and Its Anti-Inflammatory Properties—The Key to Fight Inflammation Effectively. Gastroenterol. Hepatol. 2023, 14, 67–69. [Google Scholar] [CrossRef]
- Zárate, R.; Jaber-Vazdekis, N.; Tejera, N.; Pérez, J.A.; Rodríguez, C. Significance of Long Chain Polyunsaturated Fatty Acids in Human Health. Clin. Transl. Med. 2017, 6, e25. [Google Scholar] [CrossRef]
- Attia, Y.A.; Al-Harthi, M.A.; Korish, M.A.; Shiboob, M.M. Fatty Acid and Cholesterol Profiles, Hypocholesterolemic, Atherogenic, and Thrombogenic Indices of Broiler Meat in the Retail Market. Lipids Health Dis. 2017, 16, 40. [Google Scholar] [CrossRef]
- Fernandes, C.E.; Vasconcelos, M.A.D.S.; De Almeida Ribeiro, M.; Sarubbo, L.A.; Andrade, S.A.C.; Filho, A.B.D.M. Nutritional and Lipid Profiles in Marine Fish Species from Brazil. Food Chem. 2014, 160, 67–71. [Google Scholar] [CrossRef] [PubMed]
- Lestari, L.A.; Rohman, A.; Prihandiwati, E.; Aini, A.R.; Irnawati; Khasanah, F. Analysis of Lard, Chicken Fat and Beef Fat in Ternary Mixture Using FTIR Spectroscopy and Multivariate Calibration for Halal Authentication. Food Res. 2022, 6, 113–119. [Google Scholar] [CrossRef]
- Carvalho, A.P.; Moreira, M.M.; Delerue-Matos, C.; Gomes, A.M.; Freitas, A.C.; Grosso, C. Chapter 4—Valorization of Lipid by-Products. In Lipids and Edible Oils; Galanakis, C.M., Ed.; Academic Press: Cambridge, MA, USA, 2020; pp. 133–174. ISBN 978-0-12-817105-9. [Google Scholar]
- Raj, S.; Skiba, G.; Weremko, D.; Fandrejewski, H.; Migdał, W.; Borowiec, F.; Poławska, E. The Relationship between the Chemical Composition of the Carcass and the Fatty Acid Composition of Intramuscular Fat and Backfat of Several Pig Breeds Slaughtered at Different Weights. Meat Sci. 2010, 86, 324–330. [Google Scholar] [CrossRef]
- Sassa, T.; Kihara, A. Metabolism of Very Long-Chain Fatty Acids: Genes and Pathophysiology. Biomol. Ther. 2014, 22, 83–92. [Google Scholar] [CrossRef] [PubMed]
- Maw, S.J.; Fowler, V.R.; Hamilton, M.; Petchey, A.M. Physical Characteristics of Pig Fat and Their Relation to Fatty Acid Composition. Meat Sci. 2003, 63, 185–190. [Google Scholar] [CrossRef] [PubMed]
Fatty Acids Group/Indexes | Name | Calculation Formula | References |
---|---|---|---|
ΣSFA | Saturated fatty acids | Sum from C4:0 to C24:0 | [41] |
ΣMUFA | Monounsaturated fatty acids | Sum from C14:1 to C24:1 | [41] |
ΣPUFA n-3 | Polyunsaturated fatty acids n-3 | C18:3 n-3 + C18:4 n-3 + C20:3 n-3 + C20:5 n-3 + C22:5 n-3 + C22:6 n-3 | [41] |
ΣPUFA n-6 | Polyunsaturated fatty acids n-6 | C18:2 n-6 + C18:3 n-6 + C20:3 n-6 + C20:4 n-6 + C22:2 n-6 + C22:4 n-6 | [41] |
ΣPUFA | Polyunsaturated fatty acids | Σ n-3 PUFA + Σ n-6 PUFA | [41] |
ΣUFA | Unsaturated fatty acids | ΣMUFA + ΣPUFA | [41] |
ΣMUFA/ΣSFA | Monounsaturated/Saturated fatty acids | ||
ΣPUFA/ΣSFA | Polyunsaturated/Saturated fatty acids | Σ n-3 PUFA + Σ n-6 PUFA/ΣSFA | [40] |
ΣUFA/ΣSFA | Unsaturated/Saturated fatty acids | ΣMUFA + ΣPUFA//ΣSFA | [41] |
ΣPUFA n-3/ΣPUFA n-6 | Polyunsaturated fatty acids n-3/Polyunsaturated fatty acids n-6 | C18:3 n-3 + C18:4 n-3 + C20:3 n-3 + C20:5 n-3 + C22:5 n-3 + C22:6 n-3/C18:2 n-6 + C18:3 n-6 + C20:3 n-6 + C20:4 n-6 + C22:2 n-6 + C22:4 n-6 | [42] |
AI | Atherogenicity index | [C12:0 + (4 × C14:0) + C16:0 + C18:0]/[Σ MUFA + Σ PUFA n-6 + Σ PUFA n-3 | [40] |
TI | Thrombogenicity index | (C14:0 + C16:0 + C18:0)/[(0.5 × Σ MUFA) + (0.5 × Σ PUFA n-6) + (3 × Σ PUFA n-3) + (Σ PUFA n-3/Σ PUFA n-6)] | [40] |
SI | Saturation Index | (C14:0 + C16:0 + C18:0)/(Σ MUFA cis + Σ PUFA). | [41] |
UI | Unsaturation Index | 1 × (% monoenoics) + 2 × (% dienoics) + 3 × (% trienoics) + 4 × (% tetraenoics) + 5 × (% pentaenoics) + 6 × (% hexaenoics) | [43] |
h/H | hypocholesterolemic fatty acids/Hypercholesterolemic fatty acids ratio | [C18:1 cis n-9 + C18:2 n-6 + C18:3 n-6 + C18:3 n-3 + C20:3 n-6 + C20:4 n-6 + C20:5 n-3 + C22:4 n-6 + C22:5 n-3 + C22:6 n-3)]/(C14:0 + C16:0) | [44] |
PI | Peroxidisability Index | (% monoenoic acid × 0.025) + (% dienoic acid × 1) + (% trienoic acid × 2) + (% tetraenoic acid × 4) + (% pentaenoic acid × 6) + (% hexaenoic acid × 8) | [45] |
DI (16) | Δ9-desaturase Index activity for 16:0 | 100 [C16:1 n-9/(C16:1 n-9 + C16:0)] | [46] |
DI (18) | Δ9-desaturase Index activity for 18:0 | 100 [C18:1 n-9/(C18:1 n-9 + C18:0)] | [46] |
TDI | Total Desaturation Index | (C16:1 n-7 + C18:1 n-7 + C18:1 n-9)/(C14:0 + C16:0 + C18:0) | [47] |
EI | Elongation Index | 100 [(C18:0 + C18:1 n-9)/(C16:0 + C16:1 + C18:0 + C18:1 n-9)] | [47] |
NVI | Nutritive Value Index | (C18:0 + C18:1 n-9)/C16:0 | [48] |
HPI | Health Promoting Index | ΣSFA/[C12:0 + (4 × C14:0) + C16:0] | [49] |
NR | Nutritional ratio | (C12:0 + C14:0 + C16:0)/(C18:1 n-9 + C18:2 n-6) | [50] |
Fat and Fatty Acids | Control | Bokashi | p-Value |
---|---|---|---|
(%) | (n = 24) | (n = 26) | |
Crude fat | 1.42 ± 0.09 | 1.46 ± 0.08 | 0.722 |
C12:0 | 0.53 b ± 0.98 | 1.19 a ± 1.47 | 0.024 |
C14:0 | 1.41 ± 0.57 | 1.39 ± 1.0 | 0.494 |
C15:0 | 0.78 ± 0.89 | 0.56 ± 0.84 | 0.362 |
C16:0 | 28.2 ± 2.97 | 29.5 ± 3.46 | 0.207 |
C18:0 | 0.46 ± 2.36 | 0.16 ± 0.66 | 0.855 |
C 20:0 | 0.02 ± 0.08 | nd | 0.375 |
C22:0 | 0.04 ± 0.22 | nd | 0.374 |
C16:1 n-7 | 3.94 ± 1.11 | 3.79 ± 1.16 | 0.731 |
C17:1 n-7 | 0.05 ± 0.22 | 0.09 ± 0.23 | 0.548 |
C18:1 n-7 | 1.41 A ± 2.09 | 0.05 B ± 0.25 | 0.005 |
C18:1 cis n-9 | 38.8 ± 5.62 | 39.6 ± 5.10 | 0.579 |
C18:1 trans n-9 | 11.1 ± 3.13 | 10.3 ± 4.56 | 0.333 |
C18:3 n-3 | 0.03 ± 0.10 | 0.04 ± 0.16 | 0.955 |
C22:6 n-3 | nd | 0.03 ± 0.11 | 0.270 |
C18:2 n-6 | 10.9 b ± 3.0 | 12.5 a ± 2.15 | 0.022 |
C18:3 n-6 | 0.02 ± 0.08 | nd | 0.375 |
C20:4 n-6 | 2.13 A ± 1.53 | 0.18 B ± 0.56 | 0.001 |
ΣSFA | 31.5 ± 3.58 | 32.8 ± 4.50 | 0.297 |
ΣMUFA | 56.3 ± 5.04 | 53.9 ± 4.79 | 0.338 |
ΣPUFA n-3 | 0.03 ± 0.10 | 0.06 ± 0.28 | 0.781 |
ΣPUFA n-6 | 13.0 ± 4.06 | 12.7 ± 2.15 | 0.977 |
ΣPUFA | 13.0 ± 4.16 | 12.8 ± 2.07 | 0.939 |
ΣUFA | 68.4 ± 3.68 | 66.6 ± 4.38 | 0.144 |
Indexes * | Control | Bokashi | p-Value |
---|---|---|---|
(n = 24) | (n = 26) | ||
ΣMUFA/ΣSFA | 1.79 ± 0.31 | 1.69 ± 0.42 | 0.307 |
ΣPUFA/ΣSFA | 0.36 ± 0.10 | 0.40 ± 0.06 | 0.191 |
ΣUFA/ΣSFA | 2.21 ± 0.34 | 2.09 ± 0.46 | 0.251 |
PUFA Σ n-3/Σ n-6 | 0.003 ± 0.01 | 0.006 ± 0.02 | 0.539 |
AI | 1.04 b ± 0.99 | 1.73 a ± 1.52 | 0.032 |
TI | 0.89 ± 0.15 | 0.94 ± 0.17 | 0.268 |
SI | 2.52 ± 0.89 | 2.48 ± 0.48 | 0.906 |
UI | 137.4 ± 7.46 | 133.4 ± 8.86 | 0.105 |
h/H | 1.77 ± 0.24 | 1.73 ± 0.40 | 0.584 |
PI | 67.0 ± 3.85 | 66.8 ± 4.96 | 0.270 |
DI (16) | 12.2 ± 3.28 | 11.4 ± 3.16 | 0.649 |
DI (18) | 99.1 ± 4.52 | 99.7 ± 1.51 | 0.591 |
TDI | 1.82 ± 0.29 | 1.77 ± 0.42 | 0.604 |
EI | 54.8 ± 4.72 | 54.3 ± 5.11 | 0.727 |
NVI | 2.25 ± 2.33 | 1.89 ± 0.73 | 0.809 |
HPI | 0.92 ± 0.09 | 0.91 ± 0.08 | 0.809 |
NR | 0.50 ± 0.07 | 0.52 ± 0.10 | 0.448 |
Fatty Acids | Control | Bokashi | p-Value |
---|---|---|---|
(%) | (n = 24) | (n = 26) | |
C12:0 | 1.62 ± 3.79 | 0.34 ± 0.53 | 0.202 |
C14:0 | 1.39 ± 0.62 | 1.54 ± 0.39 | 0.256 |
C15:0 | 0.19 ± 0.81 | 0.07 ± 0.05 | 0.775 |
C16:0 | 26.4 ± 3.65 | 25.2 ± 1.85 | 0.282 |
C17:0 | 0.44 ± 0.82 | 0.44 ± 0.20 | 0.360 |
C18:0 | 12.7 ± 3.81 | 12.8 ± 2.01 | 0.464 |
C 20:0 | 0.07 ± 0.11 | 0.05 ± 0.07 | 0.429 |
C16:1 n-7 | 2.73 ± 0.97 | 2.34 ± 0.80 | 0.376 |
C17:1 n-7 cis | 0.33 ± 0.15 | 0.37 ± 0.15 | 0.421 |
C18:1 n-7 | 2.78 ± 1.26 | 2.95 ± 0.30 | 0.811 |
C18:1 cis n-9 | 42.2 A ± 3.91 | 39.7 B ± 2.14 | 0.004 |
C18:1 trans n-9 | 0.14 ± 0.14 | 0.20 ± 0.07 | 0.697 |
C18:3 n-3 | 0.60 B ± 0.35 | 1.32 A ± 0.20 | 0.001 |
C20:5 n-3 | 0.08 ± 0.14 | 0.05 ± 0.10 | 0.308 |
C22:6 n-3 | 0.07 ± 0.19 | 0.14 ± 0.22 | 0.192 |
C18:2 n-6 cis | 7.10 B ± 2.33 | 10.6 A ± 2.19 | 0.001 |
C18:3 n-6 | 0.05 ± 0.07 | 0.06 ± 0.09 | 0.444 |
C20:3 n-6 | 0.48 B ± 0.34 | 0.98 A ± 0.39 | 0.001 |
C20:4 n-6 | 0.16 B ± 0.15 | 0.37 A ± 0.19 | 0.001 |
ΣSFA | 42.8 ± 6.18 | 40.4 ± 3.55 | 0.177 |
ΣMUFA | 48.1 A ± 4.01 | 45.2 B ± 2.76 | 0.004 |
ΣPUFA n-3 | 0.76 B ± 0.50 | 1.51 A ± 0.66 | 0.001 |
ΣPUFA n-6 | 7.78 B ± 2.58 | 12.0 A ± 3.15 | 0.001 |
ΣPUFA | 8.54 B ± 2.94 | 13.4 A ± 2.54 | 0.001 |
ΣUFA | 56.7 ± 5.80 | 58.7 ± 3.17 | 0.237 |
Indexes * | Control | Bokashi | p-Value |
---|---|---|---|
(n = 24) | (n = 26) | ||
Σ MUFA/ΣSFA | 1.14 ± 0.42 | 1.13 ± 0.15 | 0.771 |
Σ PUFA/ΣSFA | 0.28 B ± 0.14 | 0.44 A ± 0.11 | 0.001 |
Σ UFA/Σ SFA | 1.36 ± 0.53 | 1.47 ± 0.21 | 0.162 |
PUFA Σ n-6/Σ n-3 | 8.16 ± 4.28 | 6.96 ± 2.36 | 0.938 |
PUFA Σ n-3/Σ n-6 | 0.09 b ± 0.05 | 0.13 a ± 0.04 | 0.011 |
AI | 1.83 ± 2.92 | 1.10 ± 0.560 | 0.408 |
TI | 1.27 ± 0.39 | 1.20 ± 0.21 | 0.753 |
SI | 4.49 A ± 1.81 | 2.97 B ± 0.74 | 0.009 |
UI | 105.4 ± 24.6 | 111.0 ± 5.8 | 0.275 |
h/H | 1.83 ± 0.68 | 2.0 ± 0.22 | 0.114 |
PI | 53.8 ± 12.7 | 59.3 ± 3.89 | 0.369 |
DI (16) | 9.53 ± 3.60 | 8.55 ± 2.95 | 0.705 |
DI (18) | 73.9 ± 17.3 | 75.7 ± 3.32 | 0.340 |
TDI | 1.13 ± 0.44 | 1.08 ± 0.14 | 0.925 |
EI | 62.6 ± 14.0 | 65.6 ± 1.18 | 0.284 |
NVI | 13.6 ± 4.54 | 14.3 ± 1.90 | 0.213 |
HPI | 1.21 ± 0.28 | 1.27 ± 0.08 | 0.286 |
NR | 0.56 ± 0.15 | 0.54 ± 0.05 | 0.757 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goluch, Z.; Rybarczyk, A.; Poławska, E.; Haraf, G. Fatty Acid Profile and Lipid Quality Indexes of the Meat and Backfat from Porkers Supplemented with EM Bokashi Probiotic. Animals 2023, 13, 3298. https://doi.org/10.3390/ani13203298
Goluch Z, Rybarczyk A, Poławska E, Haraf G. Fatty Acid Profile and Lipid Quality Indexes of the Meat and Backfat from Porkers Supplemented with EM Bokashi Probiotic. Animals. 2023; 13(20):3298. https://doi.org/10.3390/ani13203298
Chicago/Turabian StyleGoluch, Zuzanna, Artur Rybarczyk, Ewa Poławska, and Gabriela Haraf. 2023. "Fatty Acid Profile and Lipid Quality Indexes of the Meat and Backfat from Porkers Supplemented with EM Bokashi Probiotic" Animals 13, no. 20: 3298. https://doi.org/10.3390/ani13203298
APA StyleGoluch, Z., Rybarczyk, A., Poławska, E., & Haraf, G. (2023). Fatty Acid Profile and Lipid Quality Indexes of the Meat and Backfat from Porkers Supplemented with EM Bokashi Probiotic. Animals, 13(20), 3298. https://doi.org/10.3390/ani13203298