Antimicrobial and Mycotoxin Reducing Properties of Lactic Acid Bacteria and Their Influence on Blood and Feces Parameters of Newborn Calves
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials Used in Experiment
2.2. Principal Scheme of the Experiment
2.3. Evaluation of Antimicrobial Activities of Lactic Acid Bacteria Strains
2.4. Evaluation of Lactic Acid Bacteria Antibiotic Resistance
2.5. Analysis of Lactic Acid Bacteria Mycotoxin-Reducing Properties
2.6. Fermentation and Analysis of Acid Whey Parameters
2.7. Feeding Experiment Design
2.8. In Vivo Experiments’ Ethical Guidelines
2.9. Statistical Analysis
3. Results and Discussion
3.1. The Tested Lactic Acid Bacteria Strains’ Antimicrobial Characteristics and Resistance to Antibiotics
3.2. Lactic Acid Bacteria Mycotoxin Reduction Properties
3.3. Changes in Lactic Acid Bacteria Count and Acidity Parameters of Acid Whey during Fermentation
3.4. The Influence of AWL.pl135, AWL.pc244 and Their Combination on Newborn Calves’ Blood Parameters
3.5. The Influence of AWL.pl135 AWL.pc244 and Their Combination on Newborn Calves’ Feces Microbiological Parameters
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vadopalas, L.; Zokaityte, E.; Zavistanaviciute, P.; Gruzauskas, R.; Starkute, V.; Mockus, E.; Klementaviciute, J.; Ruzauskas, M.; Lele, V.; Cernauskas, D.; et al. Supplement Based on Fermented Milk Permeate for Feeding Newborn Calves: Influence on Blood, Growth Performance, and Faecal Parameters, Including Microbiota, Volatile Compounds, and Fatty and Organic Acid Profiles. Animals 2021, 11, 2544. [Google Scholar] [CrossRef] [PubMed]
- Lorenz, I.; Earley, B.; Gilmore, J.; Hogan, I.; Kennedy, E.; More, S.J. Calf Health from Birth to Weaning. III. Housing and Management of Calf Pneumonia. Ir. Vet. J. 2011, 64, 14. [Google Scholar] [CrossRef] [PubMed]
- Zavistanaviciute, P.; Poskiene, I.; Kantautaite, J.; Antanaitis, R.; Bartkiene, E.; Lele, V. The Influence of the Newly Isolated Lactobacillus plantarum LUHS135 and Lactobacillus paracasei LUHS244 Strains on Blood and Faeces Parametersin Endurance Horses. Pol. J. Vet. Sci. 2019, 22, 513–521. [Google Scholar] [PubMed]
- Zavistanaviciute, P.; Lele, V.; Antanaitis, R.; Televičius, M.; Ruzauskas, M.; Zebeli, Q.; Bartkiene, E. Separate and Synergic Effects of Lactobacillus uvarum LUHSS245 and Arabinogalactan on the In Vitro Antimicrobial Properties as Well as on the Fecal and Metabolic Profile of Newborn Calves. Animals 2020, 10, 593. [Google Scholar] [CrossRef] [PubMed]
- Vadopalas, L.; Ruzauskas, M.; Lele, V.; Starkute, V.; Zavistanaviciute, P.; Zokaityte, E.; Bartkevics, V.; Pugajeva, I.; Reinolds, I.; Badaras, S.; et al. Combination of Antimicrobial Starters for Feed Fermentation: Influence on Piglet Feces Microbiota and Health and Growth Performance, Including Mycotoxin Biotransformation in Vivo. Front. Vet. Sci. 2020, 7, 528990. [Google Scholar] [CrossRef] [PubMed]
- Vadopalas, L.; Ruzauskas, M.; Lele, V.; Starkute, V.; Zavistanaviciute, P.; Zokaityte, E.; Bartkevics, V.; Badaras, S.; Klupsaite, D.; Mozuriene, E.; et al. Pigs’ Feed Fermentation Model with Antimicrobial Lactic Acid Bacteria Strains Combination by Changing Extruded Soya to Biomodified Local Feed Stock. Animals 2020, 10, 783. [Google Scholar] [CrossRef]
- Manyi-Loh, C.; Mamphweli, S.; Meyer, E.; Okoh, A. Antibiotic Use in Agriculture and Its Consequential Resistance in Environmental Sources: Potential Public Health Implications. Molecules 2018, 23, 795. [Google Scholar] [CrossRef]
- Agyare, C.; Boamah, V.E.; Zumbi, C.N.; Osei, F.B. Antibiotic Use in Poultry Production and Its Effects on Bacterial Resistance; IntechOpen: London, UK, 2018; ISBN 978-1-78985-784-9. [Google Scholar]
- Grigas, J.; Ruzauskas, M.; Pautienius, A.; Bartkiene, E.; Lele, V.; Starkute, V.; Zavistanaviciute, P.; Zokaityte, E.; Bernatoniene, J.; Ivanauskas, L.; et al. Investigation of Immunomodulatory and Gut Microbiota-Altering Properties of Multicomponent Nutraceutical Prepared from Lactic Acid Bacteria, Bovine Colostrum, Apple Production By-Products and Essential Oils. Foods 2021, 10, 1313. [Google Scholar] [CrossRef]
- Markowiak, P.; Śliżewska, K. Effects of Probiotics, Prebiotics, and Synbiotics on Human Health. Nutrients 2017, 9, 1021. [Google Scholar] [CrossRef] [PubMed]
- Vieco-Saiz, N.; Belguesmia, Y.; Raspoet, R.; Auclair, E.; Gancel, F.; Kempf, I.; Drider, D. Benefits and Inputs From Lactic Acid Bacteria and Their Bacteriocins as Alternatives to Antibiotic Growth Promoters During Food-Animal Production. Front. Microbiol. 2019, 10, 57. [Google Scholar] [CrossRef]
- Bartkiene, E.; Bartkevics, V.; Mozuriene, E.; Lele, V.; Zadeike, D.; Juodeikiene, G. The Safety, Technological, Nutritional, and Sensory Challenges Associated with Lacto-Fermentation of Meat and Meat Products by Using Pure Lactic Acid Bacteria Strains and Plant-Lactic Acid Bacteria Bioproducts. Front. Microbiol. 2019, 10, 1036. [Google Scholar] [CrossRef] [PubMed]
- Guan, Y.; Lv, H.; Wu, G.; Chen, J.; Wang, M.; Zhang, M.; Pang, H.; Duan, Y.; Wang, L.; Tan, Z. Effects of Lactic Acid Bacteria Reducing the Content of Harmful Fungi and Mycotoxins on the Quality of Mixed Fermented Feed. Toxins 2023, 15, 226. [Google Scholar] [CrossRef] [PubMed]
- Luz, C.; Ferrer, J.; Mañes, J.; Meca, G. Toxicity Reduction of Ochratoxin A by Lactic Acid Bacteria. Food Chem. Toxicol. 2018, 112, 60–66. [Google Scholar] [CrossRef] [PubMed]
- Tian, M.; Feng, Y.; He, X.; Zhang, D.; Wang, W.; Liu, D. Mycotoxins in Livestock Feed in China—Current Status and Future Challenges. Toxicon 2022, 214, 112–120. [Google Scholar] [CrossRef] [PubMed]
- Streit, E.; Schatzmayr, G.; Tassis, P.; Tzika, E.; Marin, D.; Taranu, I.; Tabuc, C.; Nicolau, A.; Aprodu, I.; Puel, O.; et al. Current Situation of Mycotoxin Contamination and Co-Occurrence in Animal Feed—Focus on Europe. Toxins 2012, 4, 788–809. [Google Scholar] [CrossRef] [PubMed]
- Min, L.; Fink-Gremmels, J.; Li, D.; Tong, X.; Tang, J.; Nan, X.; Yu, Z.; Chen, W.; Wang, G. An Overview of Aflatoxin B1 Biotransformation and Aflatoxin M1 Secretion in Lactating Dairy Cows. Anim. Nutr. 2021, 7, 42–48. [Google Scholar] [CrossRef]
- Kowalska, K.; Habrowska-Górczyńska, D.E.; Piastowska-Ciesielska, A.W. Zearalenone as an Endocrine Disruptor in Humans. Environ. Toxicol. Pharmacol. 2016, 48, 141–149. [Google Scholar] [CrossRef]
- Zheng, W.; Wang, B.; Li, X.; Wang, T.; Zou, H.; Gu, J.; Yuan, Y.; Liu, X.; Bai, J.; Bian, J. Zearalenone Promotes Cell Proliferation or Causes Cell Death? Toxins 2018, 10, 184. [Google Scholar] [CrossRef]
- Zatecka, E.; Ded, L.; Elzeinova, F.; Kubatova, A.; Dorosh, A.; Margaryan, H.; Dostalova, P.; Korenkova, V.; Hoskova, K.; Peknicova, J. Effect of Zearalenone on Reproductive Parameters and Expression of Selected Testicular Genes in Mice. Reprod. Toxicol. 2014, 45, 20–30. [Google Scholar] [CrossRef]
- Awuchi, C.G.; Ondari, E.N.; Nwozo, S.; Odongo, G.A.; Eseoghene, I.J.; Twinomuhwezi, H.; Ogbonna, C.U.; Upadhyay, A.K.; Adeleye, A.O.; Okpala, C.O.R. Mycotoxins’ Toxicological Mechanisms Involving Humans, Livestock and Their Associated Health Concerns: A Review. Toxins 2022, 14, 167. [Google Scholar] [CrossRef]
- Piotrowska, M. Microbiological Decontamination of Mycotoxins: Opportunities and Limitations. Toxins 2021, 13, 819. [Google Scholar] [CrossRef]
- Raveschot, C.; Cudennec, B.; Coutte, F.; Flahaut, C.; Fremont, M.; Drider, D.; Dhulster, P. Production of Bioactive Peptides by Lactobacillus Species: From Gene to Application. Front. Microbiol. 2018, 9, 2354. [Google Scholar] [CrossRef] [PubMed]
- Nicosia, F.D.; Pino, A.; Maciel, G.L.R.; Sanfilippo, R.R.; Caggia, C.; de Carvalho, A.F.; Randazzo, C.L. Technological Characterization of Lactic Acid Bacteria Strains for Potential Use in Cheese Manufacture. Foods 2023, 12, 1154. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Xia, W.; Gao, P.; Xu, Y. Sarcoplasmic Protein Hydrolysis Activity of Lactobacillus plantarum 120 Isolated from Suanyu: A Traditional Chinese Low Salt Fermented Fish. J. Food Process. Preserv. 2017, 41, e12821. [Google Scholar] [CrossRef]
- Aguirre, L.; Hebert, E.M.; Garro, M.S.; Savoy de Giori, G. Proteolytic Activity of Lactobacillus Strains on Soybean Proteins. LWT-Food Sci. Technol. 2014, 59, 780–785. [Google Scholar] [CrossRef]
- García-Cano, I.; Rocha-Mendoza, D.; Ortega-Anaya, J.; Wang, K.; Kosmerl, E.; Jiménez-Flores, R. Lactic Acid Bacteria Isolated from Dairy Products as Potential Producers of Lipolytic, Proteolytic and Antibacterial Proteins. Appl. Microbiol. Biotechnol. 2019, 103, 5243–5257. [Google Scholar] [CrossRef]
- Al-Shawi, S.G.; Dang, D.S.; Yousif, A.Y.; Al-Younis, Z.K.; Najm, T.A.; Matarneh, S.K. The Potential Use of Probiotics to Improve Animal Health, Efficiency, and Meat Quality: A Review. Agriculture 2020, 10, 452. [Google Scholar] [CrossRef]
- Krungleviciute, V.; Zelvyte, R.; Monkeviciene, I.; Kantautaite, J.; Stankevicius, R.; Ruzauskas, M.; Bartkiene, E. Applicability of Pediococcus Strains for Fermentation of Cereal Bran and Its Influence on the Milk Yield of Dairy Cattle. Zemdirb.-Agric. 2017, 104, 63–70. [Google Scholar] [CrossRef]
- Wisener, L.V.; Sargeant, J.M.; O’Connor, A.M.; Faires, M.C.; Glass-Kaastra, S.K. The Use of Direct-Fed Microbials to Reduce Shedding of Escherichia coli O157 in Beef Cattle: A Systematic Review and Meta-Analysis. Zoonoses Public Health 2015, 62, 75–89. [Google Scholar] [CrossRef]
- Karmali, M.A.; Gannon, V.; Sargeant, J.M. Verocytotoxin-Producing Escherichia coli (VTEC). Vet. Microbiol. 2010, 140, 360–370. [Google Scholar] [CrossRef]
- Liu, Y.; Thaker, H.; Wang, C.; Xu, Z.; Dong, M. Diagnosis and Treatment for Shiga Toxin-Producing Escherichia coli Associated Hemolytic Uremic Syndrome. Toxins 2023, 15, 10. [Google Scholar] [CrossRef]
- Stephens, T.P.; Loneragan, G.H.; Karunasena, E.; Brashears, M.M. Reduction of Escherichia coli O157 and Salmonella in Feces and on Hides of Feedlot Cattle Using Various Doses of a Direct-Fed Microbial. J. Food Prot. 2007, 70, 2386–2391. [Google Scholar] [CrossRef] [PubMed]
- Flach, M.G.; Dogan, O.B.; Kreikemeier, W.M.; Nightingale, K.K.; Brashears, M.M. Reduction of Pathogens in Feces and Lymph Nodes Collected from Beef Cattle Fed Lactobacillus salivarius (L28), Lactobacillus acidophilus (NP51) and Propionibacterium freudenreichii (NP28), Commercially Available Direct-Fed Microbials. Foods 2022, 11, 3834. [Google Scholar] [CrossRef]
- Tonini, D.; Albizzati, P.F.; Astrup, T.F. Environmental Impacts of Food Waste: Learnings and Challenges from a Case Study on UK. Waste Manag. 2018, 76, 744–766. [Google Scholar] [CrossRef]
- Torres-León, C.; Ramírez-Guzman, N.; Londoño-Hernandez, L.; Martinez-Medina, G.A.; Díaz-Herrera, R.; Navarro-Macias, V.; Alvarez-Pérez, O.B.; Picazo, B.; Villarreal-Vázquez, M.; Ascacio-Valdes, J.; et al. Food Waste and Byproducts: An Opportunity to Minimize Malnutrition and Hunger in Developing Countries. Front. Sustain. Food Syst. 2018, 2, 52. [Google Scholar] [CrossRef]
- Gigli, I.; Calafat, M. Introductory Chapter: Dairy By-Products—Why Should We Care? IntechOpen: London, UK, 2019; ISBN 978-1-83880-926-3. [Google Scholar]
- Kareb, O.; Aïder, M. Whey and Its Derivatives for Probiotics, Prebiotics, Synbiotics, and Functional Foods: A Critical Review. Probiotics Antimicrob. Proteins 2019, 11, 348–369. [Google Scholar] [CrossRef]
- Lupo, C.R.; Grecco, F.C.d.A.R.; Eleodoro, J.I.; Filho, L.F.C.C.; Serafim, C.C.; dos Santos, J.S.; Ludovico, A.; de Almeida, M.F.; Zundt, M.; Garrido, J.V.; et al. Viability of the Use of Bovine Milk Whey at Lamb Finishing: Performance, Carcass, and Meat Parameters. J. Appl. Anim. Res. 2019, 47, 449–453. [Google Scholar] [CrossRef]
- Pires, A.F.; Marnotes, N.G.; Rubio, O.D.; Garcia, A.C.; Pereira, C.D. Dairy By-Products: A Review on the Valorization of Whey and Second Cheese Whey. Foods 2021, 10, 1067. [Google Scholar] [CrossRef]
- Bartkiene, E.; Zavistanaviciute, P.; Lele, V.; Ruzauskas, M.; Bartkevics, V.; Bernatoniene, J.; Gallo, P.; Tenore, G.C.; Santini, A. Lactobacillus plantarum LUHS135 and Paracasei LUHS244 as Functional Starter Cultures for the Food Fermentation Industry: Characterisation, Mycotoxin-Reducing Properties, Optimisation of Biomass Growth and Sustainable Encapsulation by Using Dairy by-Products. LWT 2018, 93, 649–658. [Google Scholar] [CrossRef]
- Bartkiene, E.; Lele, V.; Ruzauskas, M.; Domig, K.J.; Starkute, V.; Zavistanaviciute, P.; Bartkevics, V.; Pugajeva, I.; Klupsaite, D.; Juodeikiene, G.; et al. Lactic Acid Bacteria Isolation from Spontaneous Sourdough and Their Characterization Including Antimicrobial and Antifungal Properties Evaluation. Microorganisms 2020, 8, 64. [Google Scholar] [CrossRef]
- EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP). Guidance on the Assessment of Bacterial Susceptibility to Antimicrobials of Human and Veterinary Importance. EFSA J. 2012, 10, 2740. [Google Scholar] [CrossRef]
- Ning, W.; Wei, Y.; Gao, L.; Han, C.; Gou, Y.; Fu, S.; Liu, D.; Zhang, C.; Huang, X.; Wu, S.; et al. HemI 2.0: An Online Service for Heatmap Illustration. Nucleic Acids Res. 2022, 50, W405–W411. [Google Scholar] [CrossRef]
- Reinholds, I.; Pugajeva, I.; Bartkevics, V. A Reliable Screening of Mycotoxins and Pesticide Residues in Paprika Using Ultra-High Performance Liquid Chromatography Coupled to High Resolution Orbitrap Mass Spectrometry. Food Control 2016, 60, 683–689. [Google Scholar] [CrossRef]
- ISO 15214:1998; Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of Mesophilic Lactic Acid Bacteria—Colony-Count Technique at 30 Degrees C. ISO: Geneva, Switzerland, 1998.
- Zavistanaviciute, P.; Klementaviciute, J.; Klupsaite, D.; Zokaityte, E.; Ruzauskas, M.; Buckiuniene, V.; Viskelis, P.; Bartkiene, E. Effects of Marinades Prepared from Food Industry By-Products on Quality and Biosafety Parameters of Lamb Meat. Foods 2023, 12, 1391. [Google Scholar] [CrossRef]
- Bartkiene, E.; Bartkevics, V.; Mozuriene, E.; Krungleviciute, V.; Novoslavskij, A.; Santini, A.; Rozentale, I.; Juodeikiene, G.; Cizeikiene, D. The Impact of Lactic Acid Bacteria with Antimicrobial Properties on Biodegradation of Polycyclic Aromatic Hydrocarbons and Biogenic Amines in Cold Smoked Pork Sausages. Food Control 2017, 71, 285–292. [Google Scholar] [CrossRef]
- D-LACTIC ACID (D-LACTATE) (Rapid) and L-LACTIC ACID (L-LACTATE) ASSAY PROCEDURES. Available online: https://www.megazyme.com/documents/Assay_Protocol/K-DLATE_DATA.pdf (accessed on 25 May 2023).
- ISO 4833-2:2013; Microbiology of the Food Chain—Horizontal Method for the Enumeration of Microorganisms—Part 2: Colony Count at 30 °C by the Surface Plating Technique. ISO: Geneva, Switzerland, 2013.
- ISO 21528-2:2017; Microbiology of the Food Chain—Horizontal Method for the Detection and Enumeration of Enterobacteriaceae—Part 2: Colony-Count Technique. ISO: Geneva, Switzerland, 2017.
- ISO 21527-2:2008; Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of Yeasts and Moulds—Part 2: Colony Count Technique in Products with Water Activity Less than or Equal to 0.95. ISO: Geneva, Switzerland, 2008; 0.
- Law Republic of Lithuania Law Amending the Law on the Care, Keeping and Use of Animals; No. 130-6595; FAO: Vilnius, Lithuania, 2012.
- Alhaag, H.; Yuan, X.; Mala, A.; Bai, J.; Shao, T. Fermentation Characteristics of Lactobacillus plantarum and Pediococcus Species Isolated from Sweet Sorghum Silage and Their Application as Silage Inoculants. Appl. Sci. 2019, 9, 1247. [Google Scholar] [CrossRef]
- Muhammad, Z.; Ramzan, R.; Abdelazez, A.; Amjad, A.; Afzaal, M.; Zhang, S.; Pan, S. Assessment of the Antimicrobial Potentiality and Functionality of Lactobacillus plantarum Strains Isolated from the Conventional Inner Mongolian Fermented Cheese Against Foodborne Pathogens. Pathogens 2019, 8, 71. [Google Scholar] [CrossRef]
- Dincer, E.; Kivanc, M. Characterization of Lactobacillus plantarum Strains Isolated from Turkish Pastırma and Possibility to Use of Food Industry. Food Sci. Technol. 2020, 40, 498–507. [Google Scholar] [CrossRef]
- Carvalho, F.M.; Teixeira-Santos, R.; Mergulhão, F.J.M.; Gomes, L.C. Effect of Lactobacillus plantarum Biofilms on the Adhesion of Escherichia coli to Urinary Tract Devices. Antibiotics 2021, 10, 966. [Google Scholar] [CrossRef]
- Ding, S.; Wang, Y.; Yan, W.; Li, A.; Jiang, H.; Fang, J. Effects of Lactobacillus plantarum 15-1 and Fructooligosaccharides on the Response of Broilers to Pathogenic Escherichia coli O78 Challenge. PLoS ONE 2019, 14, e0212079. [Google Scholar] [CrossRef]
- Potočnjak, M.; Pušić, P.; Frece, J.; Abram, M.; Janković, T.; Gobin, I. Three New Lactobacillus plantarum Strains in the Probiotic Toolbox against Gut Pathogen Salmonella enterica Serotype Typhimurium. Food Technol. Biotechnol. 2017, 55, 48–54. [Google Scholar] [CrossRef]
- Chappell, T.C.; Nair, N.U. Engineered Lactobacilli Display Anti-Biofilm and Growth Suppressing Activities against Pseudomonas Aeruginosa. Npj Biofilms Microbiomes 2020, 6, 48. [Google Scholar] [CrossRef]
- Bartkiene, E.; Lele, V.; Sakiene, V.; Zavistanaviciute, P.; Ruzauskas, M.; Bernatoniene, J.; Jakstas, V.; Viskelis, P.; Zadeike, D.; Juodeikiene, G. Improvement of the Antimicrobial Activity of Lactic Acid Bacteria in Combination with Berries/Fruits and Dairy Industry by-Products. J. Sci. Food Agric. 2019, 99, 3992–4002. [Google Scholar] [CrossRef]
- Reuben, R.C.; Roy, P.C.; Sarkar, S.L.; Rubayet Ul Alam, A.S.M.; Jahid, I.K. Characterization and Evaluation of Lactic Acid Bacteria from Indigenous Raw Milk for Potential Probiotic Properties. J. Dairy Sci. 2020, 103, 1223–1237. [Google Scholar] [CrossRef] [PubMed]
- Crouzet, L.; Derrien, M.; Cherbuy, C.; Plancade, S.; Foulon, M.; Chalin, B.; van Hylckama Vlieg, J.E.T.; Grompone, G.; Rigottier-Gois, L.; Serror, P. Lactobacillus paracasei CNCM I-3689 Reduces Vancomycin-Resistant Enterococcus Persistence and Promotes Bacteroidetes Resilience in the Gut Following Antibiotic Challenge. Sci. Rep. 2018, 8, 5098. [Google Scholar] [CrossRef] [PubMed]
- Son, S.-H.; Jeon, H.-L.; Yang, S.-J.; Lee, N.-K.; Paik, H.-D. In Vitro Characterization of Lactobacillus brevis KU15006, an Isolate from Kimchi, Reveals Anti-Adhesion Activity against Foodborne Pathogens and Antidiabetic Properties. Microb. Pathog. 2017, 112, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, S.A.; Ayivi, R.D.; Zimmerman, T.; Siddiqui, S.A.; Altemimi, A.B.; Fidan, H.; Esatbeyoglu, T.; Bakhshayesh, R.V. Lactic Acid Bacteria as Antimicrobial Agents: Food Safety and Microbial Food Spoilage Prevention. Foods 2021, 10, 3131. [Google Scholar] [CrossRef] [PubMed]
- Landers, T.F.; Cohen, B.; Wittum, T.E.; Larson, E.L. A Review of Antibiotic Use in Food Animals: Perspective, Policy, and Potential. Public Health Rep. 2012, 127, 4–22. [Google Scholar] [CrossRef]
- Peterson, E.; Kaur, P. Antibiotic Resistance Mechanisms in Bacteria: Relationships Between Resistance Determinants of Antibiotic Producers, Environmental Bacteria, and Clinical Pathogens. Front. Microbiol. 2018, 9, 2928. [Google Scholar] [CrossRef]
- Gotcheva, V.; Petrova, G.; Petkova, M.; Kuzmanova, Y.; Angelov, A. Molecular and in Vitro Assessment of Some Probiotic Characteristics of Amylolytic Lactobacillus plantarum Strains from Bulgarian Fermented Products. Eng. Life Sci. 2018, 18, 820–830. [Google Scholar] [CrossRef]
- Muhialdin, B.J.; Saari, N.; Meor Hussin, A.S. Review on the Biological Detoxification of Mycotoxins Using Lactic Acid Bacteria to Enhance the Sustainability of Foods Supply. Molecules 2020, 25, 2655. [Google Scholar] [CrossRef]
- Rämö, S.; Kahala, M.; Joutsjoki, V. Aflatoxin B1 Binding by Lactic Acid Bacteria in Protein-Rich Plant Material Fermentation. Appl. Sci. 2022, 12, 12769. [Google Scholar] [CrossRef]
- Afshar, P.; Shokrzadeh, M.; Raeisi, S.N.; Ghorbani-HasanSaraei, A.; Nasiraii, L.R. Aflatoxins Biodetoxification Strategies Based on Probiotic Bacteria. Toxicon 2020, 178, 50–58. [Google Scholar] [CrossRef] [PubMed]
- Hamidi, A.; Mirnejad, R.; Yahaghi, E.; Behnod, V.; Mirhosseini, A.; Amani, S.; Sattari, S.; Darian, E.K. The Aflatoxin B1 Isolating Potential of Two Lactic Acid Bacteria. Asian Pac. J. Trop. Biomed. 2013, 3, 732–736. [Google Scholar] [CrossRef] [PubMed]
- Liew, W.-P.-P.; Nurul-Adilah, Z.; Than, L.T.L.; Mohd-Redzwan, S. The Binding Efficiency and Interaction of Lactobacillus casei Shirota Toward Aflatoxin B1. Front. Microbiol. 2018, 9, 1503. [Google Scholar] [CrossRef]
- Pourmohammadi, K.; Sohrabi, M.; Hashemi, S.M.B.; Amiri, M.J. A Kinetic Analysis of the Aflatoxin Detoxification Potential of Lactic Acid Bacteria in Terxine (a Cereal-Based Food). FEMS Microbiol. Lett. 2021, 368, fnab104. [Google Scholar] [CrossRef]
- Haskard, C.A.; El-Nezami, H.S.; Kankaanpää, P.E.; Salminen, S.; Ahokas, J.T. Surface Binding of Aflatoxin B1 by Lactic Acid Bacteria. Appl. Environ. Microbiol. 2001, 67, 3086–3091. [Google Scholar] [CrossRef]
- Lahtinen, S.J.; Haskard, C.A.; Ouwehand, A.C.; Salminen, S.J.; Ahokas, J.T. Binding of Aflatoxin B1 to Cell Wall Components of Lactobacillus rhamnosus Strain GG. Food Addit. Contam. 2004, 21, 158–164. [Google Scholar] [CrossRef]
- Huang, L.; Duan, C.; Zhao, Y.; Gao, L.; Niu, C.; Xu, J.; Li, S. Reduction of Aflatoxin B1 Toxicity by Lactobacillus plantarum C88: A Potential Probiotic Strain Isolated from Chinese Traditional Fermented Food “Tofu”. PLoS ONE 2017, 12, e0170109. [Google Scholar] [CrossRef]
- Zokaityte, E.; Lele, V.; Starkute, V.; Zavistanaviciute, P.; Klupsaite, D.; Bartkevics, V.; Pugajeva, I.; Bērziņa, Z.; Gruzauskas, R.; Sidlauskiene, S.; et al. The Influence of Combined Extrusion and Fermentation Processes on the Chemical and Biosafety Parameters of Wheat Bran. LWT 2021, 146, 111498. [Google Scholar] [CrossRef]
- González-López, N.M.; Huertas-Ortiz, K.A.; Leguizamon-Guerrero, J.E.; Arias-Cortés, M.M.; Tere-Peña, C.P.; García-Castañeda, J.E.; Rivera-Monroy, Z.J. Omics in the Detection and Identification of Biosynthetic Pathways Related to Mycotoxin Synthesis. Anal. Methods 2021, 13, 4038–4054. [Google Scholar] [CrossRef]
- Khan Achakzai, A.K.; Yaqoob, M.; Khan Barozai, M.Y. Chemical Structure, Occurrence and Health Hazard Status of Ochratoxin A (OTA) in Cereal Food and Feeds of Pakistan: A Review. J. Chem. Soc. Pak. 2017, 39, 867–878. [Google Scholar]
- Adunphatcharaphon, S.; Petchkongkaew, A.; Visessanguan, W. In Vitro Mechanism Assessment of Zearalenone Removal by Plant-Derived Lactobacillus plantarum BCC 47723. Toxins 2021, 13, 286. [Google Scholar]
- Złoch, M.; Rogowska, A.; Pomastowski, P.; Railean-Plugaru, V.; Walczak-Skierska, J.; Rudnicka, J.; Buszewski, B. Use of Lactobacillus paracasei Strain for Zearalenone Binding and Metabolization. Toxicon 2020, 181, 9–18. [Google Scholar] [CrossRef]
- Adhikari, M.; Negi, B.; Kaushik, N.; Adhikari, A.; Al-Khedhairy, A.A.; Kaushik, N.K.; Choi, E.H. T-2 Mycotoxin: Toxicological Effects and Decontamination Strategies. Oncotarget 2017, 8, 33933–33952. [Google Scholar] [PubMed]
- Arcella, D.; Gergelova, P.; Innocenti, M.L.; Steinkellner, H. Human and Animal Dietary Exposure to T-2 and HT-2 Toxin. EFSA J. 2017, 15, e04972. [Google Scholar]
- Janik, E.; Niemcewicz, M.; Podogrocki, M.; Ceremuga, M.; Stela, M.; Bijak, M. T-2 Toxin—The Most Toxic Trichothecene Mycotoxin: Metabolism, Toxicity, and Decontamination Strategies. Molecules 2021, 26, 6868. [Google Scholar] [CrossRef]
- Juodeikiene, G.; Trakselyte-Rupsiene, K.; Reikertaite, K.; Janic Hajnal, E.; Bartkevics, V.; Pugajeva, I.; Gruzauskas, V.; Švazas, M.; Gruzauskas, R.; Santini, A.; et al. Influence of Biotreatment on Hordeum Vulgare L. Cereal Wholemeal Contamination and Enzymatic Activities. Foods 2023, 12, 1050. [Google Scholar] [CrossRef] [PubMed]
- Zadeike, D.; Vaitkeviciene, R.; Bartkevics, V.; Bogdanova, E.; Bartkiene, E.; Lele, V.; Juodeikiene, G.; Cernauskas, D.; Valatkeviciene, Z. The Expedient Application of Microbial Fermentation after Whole-Wheat Milling and Fractionation to Mitigate Mycotoxins in Wheat-Based Products. LWT 2021, 137, 110440. [Google Scholar] [CrossRef]
- Ekwomadu, T.I.; Akinola, S.A.; Mwanza, M. Fusarium Mycotoxins, Their Metabolites (Free, Emerging, and Masked), Food Safety Concerns, and Health Impacts. Int. J. Environ. Res. Public Health 2021, 18, 11741. [Google Scholar] [CrossRef]
- Lee, S.-J.; Jeon, H.-S.; Yoo, J.-Y.; Kim, J.-H. Some Important Metabolites Produced by Lactic Acid Bacteria Originated from Kimchi. Foods 2021, 10, 2148. [Google Scholar] [CrossRef] [PubMed]
- Zokaityte, E.; Cernauskas, D.; Klupsaite, D.; Lele, V.; Starkute, V.; Zavistanaviciute, P.; Ruzauskas, M.; Gruzauskas, R.; Juodeikiene, G.; Rocha, J.M.; et al. Bioconversion of Milk Permeate with Selected Lactic Acid Bacteria Strains and Apple By-Products into Beverages with Antimicrobial Properties and Enriched with Galactooligosaccharides. Microorganisms 2020, 8, 1182. [Google Scholar] [CrossRef] [PubMed]
- Mills, S.; Stanton, C.; Fitzgerald, G.F.; Ross, R. Enhancing the Stress Responses of Probiotics for a Lifestyle from Gut to Product and Back Again. Microb. Cell Factories 2011, 10, S19. [Google Scholar]
- Papadimitriou, K.; Alegría, Á.; Bron, P.A.; de Angelis, M.; Gobbetti, M.; Kleerebezem, M.; Lemos, J.A.; Linares, D.M.; Ross, P.; Stanton, C.; et al. Stress Physiology of Lactic Acid Bacteria. Microbiol. Mol. Biol. Rev. 2016, 80, 837–890. [Google Scholar] [CrossRef] [PubMed]
- Boyaci Gunduz, C.P.; Agirman, B.; Gaglio, R.; Franciosi, E.; Francesca, N.; Settanni, L.; Erten, H. Evaluation of the Variations in Chemical and Microbiological Properties of the Sourdoughs Produced with Selected Lactic Acid Bacteria Strains during Fermentation. Food Chem. X 2022, 14, 100357. [Google Scholar] [CrossRef] [PubMed]
- De Vuyst, L.; Leroy, F. Functional Role of Yeasts, Lactic Acid Bacteria and Acetic Acid Bacteria in Cocoa Fermentation Processes. FEMS Microbiol. Rev. 2020, 44, 432–453. [Google Scholar]
- Díaz-Muñoz, C.; De Vuyst, L. Functional Yeast Starter Cultures for Cocoa Fermentation. J. Appl. Microbiol. 2022, 133, 39–66. [Google Scholar] [CrossRef]
- Kang, K.P.; Lee, S.; Kang, S.K. D-Lactic Acidosis in Humans: Review of Update. Electrolyte Blood Press 2006, 4, 53–56. [Google Scholar] [CrossRef]
- Pohanka, M. D-Lactic Acid as a Metabolite: Toxicology, Diagnosis, and Detection. BioMed Res. Int. 2020, 2020, 3419034. [Google Scholar] [CrossRef]
- Klupsaite, D.; Juodeikiene, G.; Arbones, E.; Quintáns, A.P.; Zadeike, D.; Bartkiene, E.; Glasner, C.; Dikiy, A.; Shumilina, E. A Comparison Study on the Production and Recovery of Lactic Acid by Fermenting Dairy By-Products with P. Acidilactici and Lb. Delbrüeckii Spp. Bulgaricus. Waste Biomass Valorization 2019, 10, 1519–1528. [Google Scholar] [CrossRef]
- Narayanan, N.; Roychoudhury, P.K.; Srivastava, A. L (+) Lactic Acid Fermentation and Its Product Polymerization. Electron. J. Biotechnol. 2004, 7, 167–178. [Google Scholar]
- Bartkiene, E.; Bartkevics, V.; Pugajeva, I.; Borisova, A.; Zokaityte, E.; Lele, V.; Sakiene, V.; Zavistanaviciute, P.; Klupsaite, D.; Zadeike, D.; et al. Challenges Associated with Byproducts Valorization—Comparison Study of Safety Parameters of Ultrasonicated and Fermented Plant-Based Byproducts. Foods 2020, 9, 614. [Google Scholar] [CrossRef] [PubMed]
- Adeva-Andany, M.; López-Ojén, M.; Funcasta-Calderón, R.; Ameneiros-Rodríguez, E.; Donapetry-García, C.; Vila-Altesor, M.; Rodríguez-Seijas, J. Comprehensive Review on Lactate Metabolism in Human Health. Mitochondrion 2014, 17, 76–100. [Google Scholar] [CrossRef] [PubMed]
- Bianchetti, D.G.A.M.; Amelio, G.S.; Lava, S.A.G.; Bianchetti, M.G.; Simonetti, G.D.; Agostoni, C.; Fossali, E.F.; Milani, G.P. D-Lactic Acidosis in Humans: Systematic Literature Review. Pediatr. Nephrol. 2018, 33, 673–681. [Google Scholar] [CrossRef]
- Abedi, E.; Hashemi, S.M.B. Lactic Acid Production–Producing Microorganisms and Substrates Sources-State of Art. Heliyon 2020, 6, e04974. [Google Scholar] [CrossRef]
- Kowlgi, N.G.; Chhabra, L. D-Lactic Acidosis: An Underrecognized Complication of Short Bowel Syndrome. Gastroenterol. Res. Pract. 2015, 2015, 476215. [Google Scholar] [CrossRef]
- Plaza-Diaz, J.; Ruiz-Ojeda, F.J.; Gil-Campos, M.; Gil, A. Mechanisms of Action of Probiotics. Adv. Nutr. 2019, 10, S49–S66. [Google Scholar] [CrossRef]
- Ağagündüz, D.; Yılmaz, B.; Şahin, T.Ö.; Güneşliol, B.E.; Ayten, Ş.; Russo, P.; Spano, G.; Rocha, J.M.; Bartkiene, E.; Özogul, F. Dairy Lactic Acid Bacteria and Their Potential Function in Dietetics: The Food–Gut-Health Axis. Foods 2021, 10, 3099. [Google Scholar] [CrossRef]
- Santarmaki, V.; Kourkoutas, Y.; Zoumpopoulou, G.; Mavrogonatou, E.; Kiourtzidis, M.; Chorianopoulos, N.; Tassou, C.; Tsakalidou, E.; Simopoulos, C.; Ypsilantis, P. Survival, Intestinal Mucosa Adhesion, and Immunomodulatory Potential of Lactobacillus plantarum Strains. Curr. Microbiol. 2017, 74, 1061–1067. [Google Scholar] [CrossRef]
- Rodriguez-Palacios, A.; Staempfli, H.R.; Weese, J.S. High Doses of Halotolerant Gut-Indigenous Lactobacillus plantarum Reduce Cultivable Lactobacilli in Newborn Calves without Increasing Its Species Abundance. Int. J. Microbiol. 2017, 2017, e2439025. [Google Scholar] [CrossRef]
- Bleul, U.; Götz, E. The Effect of Lactic Acidosis on the Generation and Compensation of Mixed Respiratory-Metabolic Acidosis in Neonatal Calves. Vet. Rec. 2013, 172, 528. [Google Scholar] [CrossRef]
- Adesulu-Dahunsi, A.T.; Dahunsi, S.O.; Olayanju, A. Synergistic Microbial Interactions between Lactic Acid Bacteria and Yeasts during Production of Nigerian Indigenous Fermented Foods and Beverages. Food Control 2020, 110, 106963. [Google Scholar] [CrossRef]
- Badaras, S.; Ruzauskas, M.; Gruzauskas, R.; Zokaityte, E.; Starkute, V.; Klupsaite, D.; Mockus, E.; Klementaviciute, J.; Vadopalas, L.; Zokaityte, G.; et al. Different Creep Compound Feed Formulations for New Born Piglets: Influence on Growth Performance and Health Parameters. Front. Vet. Sci. 2022, 9, 971783. [Google Scholar] [CrossRef] [PubMed]
- Chida, S.; Sakamoto, M.; Takino, T.; Kawamoto, S.; Hagiwara, K. Changes in Immune System and Intestinal Bacteria of Cows during the Transition Period. Vet. Anim. Sci. 2021, 14, 100222. [Google Scholar] [CrossRef] [PubMed]
- Fan, P.; Kim, M.; Liu, G.; Zhai, Y.; Liu, T.; Driver, J.D.; Jeong, K.C. The Gut Microbiota of Newborn Calves and Influence of Potential Probiotics on Reducing Diarrheic Disease by Inhibition of Pathogen Colonization. Front. Microbiol. 2021, 12, 772863. [Google Scholar] [CrossRef]
- Alawneh, J.I.; Barreto, M.O.; Moore, R.J.; Soust, M.; Al-harbi, H.; James, A.S.; Krishnan, D.; Olchowy, T.W.J. Systematic Review of an Intervention: The Use of Probiotics to Improve Health and Productivity of Calves. Prev. Vet. Med. 2020, 183, 105147. [Google Scholar] [CrossRef]
- Zábranský, L.; Poborská, A.; Gálik, B.; Šoch, M.; Brož, P.; Kantor, M.; Kernerová, N.; Řezáč, I.; Rolinec, M.; Hanušovský, O.; et al. Influence of Probiotic Strains Bifidobacterium, Lactobacillus, and Enterococcus on the Health Status and Weight Gain of Calves, and the Utilization of Nitrogenous Compounds. Antibiotics 2022, 11, 1273. [Google Scholar] [CrossRef]
- Fernández, S.; Fraga, M.; Silveyra, E.; Trombert, A.N.; Rabaza, A.; Pla, M.; Zunino, P. Probiotic Properties of Native Lactobacillus Spp. Strains for Dairy Calves. Benef. Microbes 2018, 9, 613–624. [Google Scholar] [CrossRef]
- Deaver, J.A.; Eum, S.Y.; Toborek, M. Circadian Disruption Changes Gut Microbiome Taxa and Functional Gene Composition. Front. Microbiol. 2018, 9, 737. [Google Scholar] [CrossRef]
- Newbold, C.J.; Ramos-Morales, E. Review: Ruminal Microbiome and Microbial Metabolome: Effects of Diet and Ruminant Host. Animal 2020, 14, s78–s86. [Google Scholar] [CrossRef]
- Yáñez-Ruiz, D.R.; Abecia, L.; Newbold, C.J. Manipulating Rumen Microbiome and Fermentation through Interventions during Early Life: A Review. Front. Microbiol. 2015, 6, 1133. [Google Scholar] [CrossRef] [PubMed]
Experimental Groups | Experimental Diet Feeding Composition | ||||
---|---|---|---|---|---|
SMR, L Per Calf Per Day | AW, mL | L.pl135, log10 CFU mL−1 | Lpc244, log10 CFU mL−1 | L.pl135 × Lpc244, log10 CFU mL−1 | |
Ccontrol) | 8–10 | 50 | - | - | - |
C-AWL.pl135 | >7.0 | - | - | ||
C-AWLpc244 | - | >7.0 | - | ||
C-AWL.pl135×Lpc244 | - | - | >7.0 |
Pathogenic and Opportunistic Strain | Diameter of Inhibition Zone, mm | ||
---|---|---|---|
L.pl135 | L.pc244 | L.pl135 × L.pc244 | |
Pseudomona aeruginosa | 13.5 ± 0.2d | 12.0 ± 0.3b | 13.1 ± 0.4 |
Staphylococcus aureus | 13.0 ± 0.4d | 13.5 ± 0.3c | 12.4 ± 0.3e |
Escherichia coli | 10.5 ± 0.5a | 10.5 ± 0.4a | 9.00 ± 0.1a |
Streptococcus mutans | 15.5 ± 0.2e | 14.5 ± 0.7c | 12.8 ± 0.5e |
Enterococcus faecium | 14.2 ± 0.3d | 14.0 ± 0.4c | 10.4 ± 0.4c |
Klebsiella pneumoniae | 12.0 ± 0.1c | 13.5 ± 0.6c | nd. |
Enterococcus faecalis | 11.5 ± 0.3b | 11.0 ± 0.2a | 9.4 ± 0.2b |
Bacillus cereus | 17.0 ± 0.6f | 14.5 ± 0.5c | 15.5 ± 0.7 |
Proteus mirabilis | 14.0 ±0.4d | 13.5 ±0.4c | 12.4 ± 0.4e |
Citrobacter freundii | 13.7 ± 0.5d | 16.0 ± 0.5d | 17.8 ± 0.6f |
Salmonella enterica | 10.5 ± 0.2a | 10.5 ± 0.5a | 11.3 ± 0.3d |
Antibiotics | L.pl135 | L.pc244 | FEEDAP Breakpoint, mg mL −1 |
---|---|---|---|
Resistance to Antibiotics, MIC, mg mL−1 | |||
GEN | 16.0 | 16.0 | 16 |
TET | 1.50 | 1.00 | 8 |
ERY | 0.250 | 0.500 | 1 |
AML | 0.047 | 0.032 | n.r. |
TMP | 0.25 | 0.75 | n.r. |
Duration of Fermentation | ||||
---|---|---|---|---|
12 h | 24 h | 36 h | 48 h | |
LAB Count log10 CFU mL−1 | ||||
AWL.pl135 | 6.29 ± 0.09b;A | 6.89 ± 0.05b;B | 7.14 ± 0.06a;C | 7.53 ± 0.12a;D |
AWL.pc244 | 5.20 ± 0.11a;A | 6.07 ± 0.12a;B | 7.00 ± 0.10a;C | 7.48 ± 0.08a;D |
pH | ||||
AWL.pl135 | 4.45 ± 0.02a;D | 4.05 ± 0.03a;C | 3.97 ± 0.02a;B | 3.89 ± 0.02a;A |
AWL.pc244 | 4.64 ± 0.01b;C | 4.28 ± 0.02b;B | 4.07 ± 0.03b;A | 4.03 ± 0.01b;A |
TA, °N | ||||
AWL.pl135 | 6.1 ± 0.1b;A | 6.4 ± 0.1a;B | 7.4 ± 0.2b;C | 7.8 ± 0.1b;D |
AWL.pc244 | 5.0 ± 0.1a;A | 6.2 ± 0.1a;B | 6.5 ± 0.1a;C | 6.9 ± 0.1a;D |
Variable | Day | Treatments | p-Value | |||
---|---|---|---|---|---|---|
Ccontrol | C-AWL.pl135 | C-AWL.pl135 | C-AWL.pl135 × L.pc244 | Day × Treat Int | ||
pH | Baseline | 7.32 ± 0.04A;a | 7.36 ± 0.03A;a | 7.37 ± 0.01A;a | 7.31 ± 0.06A;a | 0.457 |
14 | 7.36 ± 0.02A;a | 7.38 ± 0.01A;a | 7.38 ± 0.03A;a | 7.38 ± 0.04A;a | ||
pCO2, mmHg | Baseline | 66.73 ± 3.29B;a | 58.73 ± 2.16B;a | 61.72 ± 3.51B;a | 67.03 ± 3.09A;a | 0.0001 |
14 | 57.35 ± 1.49A;c | 32.15 ± 1.85A;a | 37.70 ± 2.11A;b | 63.85 ± 3.18A;d | ||
pO2, mmHg | Baseline | 19.20 ± 1.61A;a | 22.70 ± 1.01A;a | 21.11 ± 1.65A;a | 26.46 ± 1.53A;b | 0.0001 |
14 | 18.90 ± 1.91A;a | 24.90 ± 1.55A;b | 37.70 ± 1.11B;c | 41.40 ±2.10B;d | ||
O2 saturation, % | Baseline | 7.97 ± 0.44A;a | 8.07 ± 0.17B;a | 10.80 ± 0.87A;b | 19.18 ± 1.02A;c | 0.079 |
14 | 7.35 ± 0.63A;b | 7.01 ± 0.19A;a | 11.10 ± 0.93A;c | 20.35 ± 1.02A;d | ||
Na, mmol L−1 | Baseline | 137.24 ± 2.62A;a | 136.36 ± 2.83A;a | 141.28 ± 2.52A;a | 138.25 ± 3.77A;a | 0.319 |
14 | 135.74 ± 1.71A;a | 136.16 ± 3.12A;a | 135.27 ± 2.52A;a | 134.25 ± 3.02A;a | ||
K, mmol L−1 | Baseline | 5.11 ± 0.16B;a | 5.07 ± 0.27A;a | 4.97 ± 0.15A;a | 5.38 ± 0.46A;b | 0.048 |
14 | 4.45 ± 0.24A;a | 5.25 ± 0.15A;b | 4.67 ± 0.25A;a | 4.70 ± 0.35A;a | ||
iCa, mmol L−1 | Baseline | 1.33 ± 0.03A;a | 1.25 ± 0.06A;a | 1.23 ± 0.03A;a | 1.23 ± 0.03A;a | 0.001 |
14 | 1.40 ± 0.02B;b | 1.40 ± 0.02B;b | 1.20 ± 0.02A;a | 1.18 ± 0.06A;a | ||
tCO2, mmHg | Baseline | 36.17 ± 1.98A;a | 35.23 ± 2.46A;a | 37.90 ± 2.12A;a | 42.85 ± 2.73A;a | 0.458 |
14 | 34.40 ± 1.41A;a | 33.90 ± 1.19A;a | 38.10 ± 1.65A;a | 39.40 ± 1.23A;a | ||
Hct, % fraction | Baseline | 20.30 ± 1.81A;a | 22.00 ± 1.97A;a | 30.00 ± 1.46A;b | 29.25 ± 1.30B;b | 0.454 |
14 | 17.02 ± 1.41A;a | 25.53 ± 1.51A;b | 31.30 ± 1.08A;c | 24.25 ± 1.53A;b | ||
Hgb, g dL−1 | Baseline | 6.92 ± 0.32A;a | 7.50 ± 0.56A;b | 10.30 ± 0.21A;d | 9.95 ± 0.64A;b | 0.0001 |
14 | 5.71 ± 0.56A;a | 8.72 ± 0.62A;b | 10.53 ± 0.34A;c | 13.68 ± 0.84B;d | ||
Glu, mmol/L | Baseline | 5.67 ± 0.13A;c | 4.80 ± 0.24A;a | 6.83 ± 0.36B;d | 4.93 ± 0.27A;b | 0.517 |
14 | 5.25 ± 0.49A;b | 5.37 ± 0.35A;b | 5.37 ± 0.48A;b | 4.30 ± 0.37A;a | ||
Lactate, mmol/L | Baseline | 4.22 ± 0.09B;d | 2.30 ± 0.09B;b | 2.10 ± 0.08B;a | 3.40 ± 0.03B;c | 0.0001 |
14 | 3.66 ± 0.04A;d | 1.33 ± 0.03A;a | 1.44 ± 0.05A;b | 1.56 ± 0.07A;c |
Variable | Day | Treatments | p-Value | |||
---|---|---|---|---|---|---|
Ccontrol | C-AWL.pl135 | C-AWL.pc244 | C-AWL.pl135 × L.pc244 | Day × Treat Int | ||
TCM | Baseline | 7.09 ± 0.02B;a | 7.71 ± 0.05B;b | 7.11 ± 0.09B;a | 7.71 ± 0.04B;b | 0.0001 |
14 | 7.94 ± 0.05A;c | 6.87 ± 0.07A;a | 6.83 ± 0.04A;a | 7.51 ± 0.06A;b | ||
LAB | Baseline | 6.16 ± 0.04A;b | 6.02 ± 0.08A;b | 6.25 ± 0.04A;c | 5.37 ± 0.05A;a | 0.0001 |
14 | 6.19 ± 0.09A;a | 6.53 ± 0.09B;b | 7.08 ± 0.06B;c | 6.45 ± 0.08B;b | ||
TCE | Baseline | 7.11 ± 0.07B;a | 7.57 ± 0.04B;c | 7.13 ± 0.03B;a | 7.38 ± 0.08B;b | 0.0001 |
14 | 6.80 ± 0.09A;c | 4.77 ± 0.07A;a | 6.47 ± 0.09A;b | 7.05 ± 0.06A;d | ||
YM | Baseline | 2.03 ± 0.05A;a | 3.19 ± 0.08A;c | 2.91 ± 0.02A;b | 5.58 ± 0.03B;d | 0.0001 |
14 | 2.39 ± 0.06B;a | 4.20 ± 0.06B;c | 4.02 ± 0.03B;b | 4.79 ± 0.07A;d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zavistanaviciute, P.; Ruzauskas, M.; Antanaitis, R.; Televicius, M.; Lele, V.; Santini, A.; Bartkiene, E. Antimicrobial and Mycotoxin Reducing Properties of Lactic Acid Bacteria and Their Influence on Blood and Feces Parameters of Newborn Calves. Animals 2023, 13, 3345. https://doi.org/10.3390/ani13213345
Zavistanaviciute P, Ruzauskas M, Antanaitis R, Televicius M, Lele V, Santini A, Bartkiene E. Antimicrobial and Mycotoxin Reducing Properties of Lactic Acid Bacteria and Their Influence on Blood and Feces Parameters of Newborn Calves. Animals. 2023; 13(21):3345. https://doi.org/10.3390/ani13213345
Chicago/Turabian StyleZavistanaviciute, Paulina, Modestas Ruzauskas, Ramunas Antanaitis, Mindaugas Televicius, Vita Lele, Antonello Santini, and Elena Bartkiene. 2023. "Antimicrobial and Mycotoxin Reducing Properties of Lactic Acid Bacteria and Their Influence on Blood and Feces Parameters of Newborn Calves" Animals 13, no. 21: 3345. https://doi.org/10.3390/ani13213345
APA StyleZavistanaviciute, P., Ruzauskas, M., Antanaitis, R., Televicius, M., Lele, V., Santini, A., & Bartkiene, E. (2023). Antimicrobial and Mycotoxin Reducing Properties of Lactic Acid Bacteria and Their Influence on Blood and Feces Parameters of Newborn Calves. Animals, 13(21), 3345. https://doi.org/10.3390/ani13213345