Assessing Disease Risks in Wildlife Translocation Projects: A Comprehensive Review of Disease Incidents
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
Project Eligibility
- Have ‘essential information’ readily available—whether through the primary article in the review or supplementary articles that were cited by the primary one. ‘Essential information’ included the following:
- a.
- The source of the animals to be translocated.
- b.
- The destination of the translocated animals.
- c.
- The year of the translocation.
- d.
- The translocated species.
- e.
- The species affected by disease because of the translocation.
- f.
- The suspected disease or pathogen.
- Be in any language.
- Be for the purpose of conservation, where the released animals were intended to either establish or supplement wild populations.
- Be any publication type (peer-reviewed or otherwise).
- Involve an infectious disease, whether officially diagnosed or merely suspected.
- Meet the criteria for a ‘translocation significant disease incursion’ (TSDI), whether this occurred following release or in captivity pre-release. A TSDI is hereby defined as a disease that occurs during or following the translocation of wildlife, whereby the consequences of which have a long-lasting negative effect on either (i) the translocated species or (ii) an endemic species at the translocation site. This can include the failure of the species to become established at the site or negative growth rates of the affected species.
- The species failed to thrive due to reasons other than disease, i.e., predation, infertility, starvation.
- The project only translocated plant species.
- The project occurred prior to the initiation of the IUCN (1948).
- The project was an experiment studying the suitability of areas for translocation.
3. Results
3.1. TSDI Demographics
3.2. TSDI Event
4. Discussion
4.1. TSDI Risk Factors and Their Mitigation
4.1.1. Host
4.1.2. Pathogens and Vectors
4.1.3. Environment
4.2. The Importance of Disease Risk Analysis
4.3. Further Recommendations
4.4. Limitations
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Total TSDI Collected from the Systematic Literature Review
Year Project Commenced | Species Translocated | Direction of Transmission | Species Affected (If Was not the Translocated) | Source of Animals | Destination of Animals | Disease/Pathogen Suspected or Diagnosed | References | |
---|---|---|---|---|---|---|---|---|
1 | 1995 | Grey wolf (Canis lupus) | E | N/A | Canada (W/C) | USA | Canine Parvovirus (V) Canine adenovirus-1 (V) Canine hepatitis virus (V) Canine Distemper Virus (V) Mange (P) | [17,18,31,32] |
2 | 1979 | Bighorn sheep (Ovis canadensis canadensis) | E | N/A | USA (W/C) | USA | Bacterial Pneumonia (B) | [17,35,37] |
3 | 1978 | Whooping Crane (Grus americana) | C | N/A | USA (C/B) | USA | Disseminated visceral coccidiosis (P) | [6,40,41] |
4 | ~1971 | Moose (Alces alces americana) & Caribou (Ranifer tarandus) | E | N/A | Norway (W/C) | Canada | Meningeal worm (Paralaphosstrongylus tenuis; P) | [6,32,42] |
5 | 1954 | Elk (Cervus candensis) | E | N/A | USA (W/C) | USA | Arterial worm (Elaeophora schneideri; P) | [6,32,43] |
6 | 1994 | Stitchbird (Notiomystis cincta) | E | N/A | New Zealand (W/C) | New Zealand | Aspergillosis (F) | [44,45] |
7 | 2011 | European bison (bison bonasus) | I | Wild ruminants | Poland (W/C) | Czech Republic | Ashworthius siderni (P) | [39,46] |
8 | 1981 | Razorback sucker (Xyrauchen texanus) & Colorado squawfish (Ptychocheilus lucius) | E | N/A | USA (C/B) | USA | Lemaea cyprinacea (P) | [27,31,47] |
9 | 1988 | Beavers (Castor fiber) | U | N/A | Germany (W/C) | Netherlands | Yersiniosis (B) & Leptospirosis (B) | [32] |
10 | 2005 | Green and Golden Bell Frog (Litoria aurea) | E | N/A | Australia (C/B) | Australia | Chytridiomycosis (F) | [31,48,49,50,51] |
11 | 1998 | Green and Golden Bell Frog (Litoria aurea) | E | N/A | Australia (C/B) | Australia | Chytridiomycosis (F) | [48,52] |
12 | 2013 | Alpine Tree Frog (Litoria verreauxii) | E | N/A | Australia (C/B) | Australia | Chytridiomycosis (F) | [33,34] |
13 | 2010 | Growling grass frog (Litoria raniformis) | E | N/A | Australia (W/C) | Australia | Chytridiomycosis (F) | [34,53] |
14 | 2008 | Southern corroboree frog (Pseudophryne corroboree) | E | N/A | Australia (C/B) | Australia | Chytridiomycosis (F) | [34,54] |
15 | 2008 | Booroolong frog (Litoria booroolongensis) | E | N/A | Australia (C/B) | Australia | Chytridiomycosis (F) | [34,55] |
16 | 1997 | Southern corroboree frog (Pseudophryne corroboree) | E | N/A | Australia (C/B) | Australia | Chytridiomycosis (F) | [34,54] |
17 | 2004 | Bongo (Tragelaphus eurycerus isaaci) | E | N/A | USA (C/B) | Kenya | Theileriosis (P) | [5,7] |
18 | 2006 | Black rhino (Diceros bicornis) & White rhino (Ceratotherium simum) | E | N/A | Kenya (W/C) | Kenya | Trypanosomiasis (P), Tsetse (P), Theileriosis (P) & ticks (P) | [7,31,56] |
19 | 2004 | Laysan ducks (Anas lysanensis) | E | N/A | USA (W/C) | USA | Botulism (B) | [26,57] |
20 | 1993 | Alala (Corvus hawaiiensis) | E | N/A | USA (C/B) | USA | Toxoplasmosis (P) | [26,57] |
21 | 1990 | Bonobo (Pan paniscus) | C | N/A | N/A (C/B) | Democratic Republic of Congo | Encephalomyocarditis virus (V) | [58] |
22 | 2015 | Bighorn sheep (Ovis canadensis) | E | N/A | Canada (W/C) | USA | Mycoplasma ovipneumoniae (B) | [24,25] |
23 | 1985 | Black-footed ferret (Mustela nigripes) | C | N/A | USA (W/C) | N/A | Canine Distemper Virus (V) | [6,59,60,61] |
24 | 1984 | Whooping Crane (Grus americana) | C | N/A | USA (C/B) | USA | Eastern Equine Encephalitis virus (EEE) | [6,8,59,62] |
25 | 1987 | Eastern Box Turtle (Terrapene carolina carolina) | E | N/A | USA (W/C) | USA | U | [63,64] |
26 | 2008 | Eastern Box turtles (Terrapene carolina carolina) | E | N/A | USA (W/C) | USA | Ranovirus (V) | [65] |
27 | 2007 | Water voles (Arvicola amphibious) | E | N/A | UK (C/B) | UK | Leptospirosis (B) | [21] |
28 | 1989 | Arabian oryx (Oryx leucoryx) | C | N/A | Unknown (C/B) | Saudi Arabia | Tuberculosis (B) | [8,66] |
29 | 1999 | Canada lynx (Lynx canadensis) | E | N/A | Canada & USA (W/C) | USA | Yersiniosis (B) | [67,68] |
30 | 1980 | Bighorn sheep (Ovis canadensis californiana) | E | N/A | USA (C/B) | USA | Bacterial pneumonia (B) | [17,35,37] |
References
- Young, H.S.; McCauley, D.J.; Galetti, M.; Dirzo, R. Patterns, causes, and consequences of anthropocene defaunation. Annu. Rev. Ecol. Evol. Syst. 2016, 47, 333–358. [Google Scholar] [CrossRef]
- Gaywood, M.J. Reintroducing the Eurasian beaver Castor fiber to Scotland. Mammal. Rev. 2018, 48, 48–61. [Google Scholar] [CrossRef]
- Xia, C.; Cao, J.; Zhang, H.; Gao, X.; Yang, W.; Blank, D. Reintroduction of Przewalski’s horse (Equus ferus przewalskii) in Xinjiang, China: The status and experience. Biol. Conserv. 2014, 177, 142–147. [Google Scholar] [CrossRef]
- Soorae, P.S. Global Reintroduction Perspectives: Case Studies from around the Globe; xiv + 286; IUCN/SSC Reintroduction Specialist Group: Gland, Switzerland; Environment Agency: Abu Dhabi, United Arab Emirates, 2018.
- Kock, R.; Soorae, P.; Mohammed, O. Role of veterinarians in re-introductions. Int. Zoo Yearb. 2007, 41, 24–37. [Google Scholar] [CrossRef]
- Viggers, K.L.; Lindenmayer, D.B.; Spratt, D.M. The importance of disease in reintroduction programs. Wildl. Res. 1993, 20, 687–698. [Google Scholar] [CrossRef]
- Kock, R.A.; Woodford, M.H.; Rossiter, P.B. Disease risks associated with the translocation of wildlife. Rev. Off. Int. Epizoot. 2010, 29, 329–350. [Google Scholar] [CrossRef]
- Woodford, M.H.; Rossiter, P.B. Disease risks associated with wildlife translocation projects. Rev. Off. Int. Epizoot. 1993, 12, 115–135. [Google Scholar] [CrossRef]
- Hartley, M.; Sainsbury, A. Methods of disease risk analysis in wildlife translocations for conservation purposes. EcoHealth 2010, 29, 329–350. [Google Scholar] [CrossRef]
- Clarivate. Web of Science Core Collection; Thomson Reuters: New York, NY, USA, 2023. [Google Scholar]
- Elsevier. Scopus. London, UK. 2023. Available online: https://www.scopus.com/sources (accessed on 25 February 2023).
- CAB abstracts. New York, NY: Thomson Reuters. 2023. Available online: https://www.webofscience.com/wos/cabi/basic-search (accessed on 25 February 2023).
- Wickham, H. Ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016. [Google Scholar]
- Last, J.M. Dictionary of epidemiology. Can. Med. Assoc. J. 1993, 149, 400. [Google Scholar] [CrossRef]
- Louten, J. Virus transmission and epidemiology. Essent. Hum. Virol. 2016, 71, 71–92. [Google Scholar]
- Beck, B.B.; Rapaport, L.G.; Price, M.S.; Wilson, A.C. Reintroduction of captive-born animals. In Creative Conservation: Interactive Management of Wild and Captive Animals; Springer: Berlin/Heidelberg, Germany, 1994; pp. 265–286. [Google Scholar]
- Almberg, E.S.; Cross, P.C.; Dobson, A.P.; Smith, D.W.; Hudson, P.J. Parasite invasion following host reintroduction: A case study of Yellowstone’s wolves. Philos. Trans. R. Soc. B Biol. Sci. Philos. 2012, 367, 2840–2851. [Google Scholar] [CrossRef] [PubMed]
- Smith, D.W.; Bangs, E.E. Reintroduction of Wolves to Yellowstone National Park: History, Values and Ecosystem Restoration. In Reintroduction of Top-Order Predators; Wiley-Blackwell: Hoboken, NJ, USA, 2009; pp. 92–125. [Google Scholar]
- Jule, K.R.; Leaver, L.A.; Lea, S.E.G. The effects of captive experience on reintroduction survival in carnivores: A review and analysis. Biol. Conserv. 2008, 141, 355–363. [Google Scholar] [CrossRef]
- Nolet, B.; Broekhuizen, S.; Dorrestein, G.; Rienks, K. Infectious diseases as main causes of mortality to beavers Castor fiber after translocation to The Netherlands. J. Zool. 1997, 241, 35–42. [Google Scholar] [CrossRef]
- Gelling, M.; Zochowski, W.; Macdonald, D.W.; Johnson, A.; Palmer, M.; Mathews, F. Leptospirosis acquisition following the reintroduction of wildlife. Vet. Rec. 2015, 177, 140. [Google Scholar] [CrossRef] [PubMed]
- Kołodziej-Sobocińska, M.; Demiaszkiewicz, A.W.; Pyziel, A.M.; Kowalczyk, R. Increased parasitic load in captive-released European bison (Bison bonasus) has important implications for reintroduction programs. EcoHealth 2018, 15, 467–471. [Google Scholar] [CrossRef]
- Moustafa, M.A.M.; Chel, H.M.; Thu, M.J.; Bawm, S.; Htun, L.L.; Win, M.M. Anthropogenic interferences lead to gut microbiome dysbiosis in Asian elephants and may alter adaptation processes to surrounding environments. Sci. Rep. 2021, 11, 741. [Google Scholar] [CrossRef]
- Werdel, T.J.; Jenks, J.A. Survival of translocated bighorn sheep in the Deadwood region of the Black Hills, South Dakota. Northwest Nat. 2018, 99, 222–231. [Google Scholar] [CrossRef]
- Werdel, T.J.; Jenks, J.A.; Besser, T.E.; Kanta, J.T.; Lehman, C.P.; Frink, T.J. Restoration of a bighorn sheep population impeded by Mycoplasma ovipneumoniae exposure. Rest. Ecol. 2020, 28, 387–395. [Google Scholar] [CrossRef]
- Work, T.M.; Massey, J.G.; Rideout, B.A.; Gardiner, C.H.; Ledig, D.B.; Kwok, O. Fatal toxoplasmosis in free-ranging endangered ‘Alala from Hawaii. J. Wildl. Dis. 2000, 36, 205–212. [Google Scholar] [CrossRef]
- Hendrickson, D.A. Evaluation of the Razorback Sucker (Xyrauchen texanus) and Colorado squawfish (Ptychocheilus lucius) Reintroduction Programs in Central Arizona Based on Surveys of Fish Populations in the Salt and Verde Rivers from 1986 to 1990; Nongame and Endangered Wildlife Program, Arizona Game and Fish Department: Phoenix, AZ, USA; The University of Texas at Austin: Austin, TX, USA, 1993. [Google Scholar]
- Clulow, S.; Gould, J.; James, H.; Stockwell, M.; Clulow, J.; Mahony, M. Elevated salinity blocks pathogen transmission and improves host survival from the global amphibian chytrid pandemic: Implications for translocations. J. Appl. Ecol. 2018, 55, 830–840. [Google Scholar] [CrossRef]
- World Organisation for Animal Health (OIE); International Union for Conservation of Nature (IUCN). Guidelines for Wildlife Disease Risk Analysis; OIE: Paris, France, 2014. [Google Scholar]
- Wenzel, J.G.; Nusbaum, K.E. Veterinary expertise in biosecurity and biological risk assessment. J. Am. Vet. Med. Assoc. 2007, 230, 1476–1480. [Google Scholar] [CrossRef] [PubMed]
- Moreno Mañas, E.; Gonzálvez Juan, M.; Ruiz De Ybáñez Carnero, M.D.R.; Gilbert, T.; Ortiz, J.; Espeso, G. Survey of husbandry practices for bovidae in zoos: The importance of parasite management for reintroduction programmes. Vet. Rec. 2019, 184, 282. [Google Scholar] [CrossRef] [PubMed]
- Northover, A.S.; Lymbery, A.J.; Wayne, A.F.; Godfrey, S.S.; Thompson, R.C.A. The hidden consequences of altering host-parasite relationships during fauna translocations. Biol. Conserv. 2018, 220, 140–148. [Google Scholar] [CrossRef]
- Brannelly, L.A.; Hunter, D.A.; Skerratt, L.F.; Scheele, B.C.; Lenger, D.; McFadden, M.S. Chytrid infection and post-release fitness in the reintroduction of an endangered alpine tree frog. Anim. Conserv. 2016, 19, 153–162. [Google Scholar] [CrossRef]
- Scheele, B.C.; Hollanders, M.; Hoffmann, E.P.; Newell, D.A.; Lindenmayer, D.B.; McFadden, M. Conservation translocations for amphibian species threatened by chytrid fungus: A review, conceptual framework, and recommendations. Conserv. Sci. Pract. 2021, 3, e524. [Google Scholar] [CrossRef]
- Foreyt, W.J.; Jessup, D.A. Fatal pneumonia of bighorn sheep following association with domestic sheep. J. Wildl. Dis. 1982, 18, 163–168. [Google Scholar] [CrossRef]
- Moorhouse, T.P.; Gelling, M.; Macdonald, D.W. Water vole restoration in the Upper Thames. In Wildlife Conservation on Farmland: Managing for Nature on Lowland Farms; Oxford University Press: Oxford, UK, 2015; Volume 42, pp. 255–268. [Google Scholar]
- Griffith, B.; Scott, J.M.; Carpenter, J.W.; Reed, C. Animal translocations and potential disease transmission. J. Zoo Wildl. Med. 1993, 24, 231–236. [Google Scholar]
- Brichieri-Colombi, T.A.; Moehrenschlager, A. Alignment of threat, effort, and perceived success in North American conservation translocations. Conserv. Biol. 2016, 30, 1159–1172. [Google Scholar] [CrossRef]
- Vadlejch, J.; Kyriánová, I.A.; Rylková, K.; Zikmund, M.; Langrová, I. Health risks associated with wild animal translocation: A case of the European bison and an alien parasite. Biol. Invasions 2017, 19, 1121–1125. [Google Scholar] [CrossRef]
- Novilla, M.N.; Carpenter, J.W.; Spraker, T.R.; Jeffers, T.K. Parental Development of Eimerian Coccidia in Sandhill and Whooping Cranes. J. Protozool. 1981, 28, 248–255. [Google Scholar] [CrossRef]
- Spalding, M.G.; Carpenter, J.W.; Novilla, M.N. Disseminated visceral coccidiosis in cranes. In Parasitic Diseases of Wild Birds; Wiley-Blackwell: Ames, IA, USA, 2009; pp. 181–194. [Google Scholar]
- Anderson, R.C. The ecological relationships of meningeal worm and native cervids in North America. J. Wildl. Dis. 1972, 8, 304–310. [Google Scholar] [CrossRef] [PubMed]
- Hibler, C.; Adcock, J.L.; Davis, R.; Abdelbaki, Y. Elaeophorosis in deer and elk in the Gila Forest, New Mexico. Bull. Wildl. Dis. Assoc. 1969, 5, 27–30. [Google Scholar] [CrossRef]
- Perrott, J.K.; Armstrong, D.P. Aspergillus fumigatus Densities in Relation to Forest Succession and Edge Effects: Implications for Wildlife Health in Modified Environments. EcoHealth 2011, 8, 290–300. [Google Scholar] [CrossRef] [PubMed]
- Low, M. Which factors limited stitchbird population growth on Mokoia Island? N. Z. J. Ecol. 2010, 34, 269–271. [Google Scholar]
- Gonzalvez, M.; Moreno, E.; Perez-Cutillas, P.; Gilbert, T.; Ortiz, J.; Valera, F. Zoological institutions as hotspots of gastrointestinal parasites that may affect the success of ungulate reintroduction programmes. Vet. Rec. 2021, 189, e506. [Google Scholar] [CrossRef]
- Robinson, A.T.; Hines, P.P.; Sorensen, J.A.; Bryan, S.D. Parasites and fish health in a desert stream, and management implications for two endangered fishes. N. Am. J. Fish. Manag. 1998, 18, 599–608. [Google Scholar] [CrossRef]
- Klop-Toker, K.; Valdez, J.; Stockwell, M.; Fardell, L.; Clulow, S.; Clulow, J. We Made Your Bed, Why Won’t You Lie in It? Food Availability and Disease May Affect Reproductive Output of Reintroduced Frogs. PLoS ONE 2016, 11, e0159143. [Google Scholar] [CrossRef]
- Klop-Toker, K.; Valdez, J.; Stockwell, M.; Fardell, L.; Clulow, S.; Clulow, J. Improving breed-and-release programmes in the face of a threatening pathogen, Batrachochytrium dendrobatidis. Aquat. Conserv. Mar. Freshw. Ecosyst. 2021, 31, 2788–2803. [Google Scholar] [CrossRef]
- Venesky, M.D.; Mendelson, J.R.; Sears, B.F.; Stiling, P.; Rohr, J.R. Selecting for Tolerance against Pathogens and Herbivores to Enhance Success of Reintroduction and Translocation. Conserv. Biol. 2012, 26, 586–592. [Google Scholar] [CrossRef]
- Stockwell, M.; Clulow, S.; Clulow, J.; Mahony, M. The impact of the amphibian chytrid fungus Batrachochytrium dendrobatidis on a green and golden bell frog Litoria aurea reintroduction program at the Hunter Wetlands Centre Australia in the Hunter Region of NSW. Aust. Zool. 2008, 34, 379–386. [Google Scholar] [CrossRef]
- Pyke, G.; Rowley, J.; Shoulder, J.; White, A. Attempted introduction of the endangered Green and Golden Bell Frog to Long Reef Golf Course: A step towards recovery? Aust. Zool. 2008, 34, 361–372. [Google Scholar] [CrossRef]
- Koehler, S.; Gilmore, D.; Newell, D. Translocation of the threatened growling grass frog Litoria raniformis: A case study. Aust. Zool. 2015, 37, 321–336. [Google Scholar] [CrossRef]
- Hunter, D. Conservation Management of Two Threatened Frog Species in South-Eastern New South Wales. Ph.D. Thesis, University of Canberra, Canberra, ACT, Australia, 2007. [Google Scholar]
- McFadden, M.; Hunter, D.; Harlow, P.; Pietsch, R.; Scheele, B. Captive management and experimental reintroduction of the booroolong frog on the South Western Slopes region, New South Wales, Australia. In Global Re-Introduction Perspectives: Additional Case Studies from around the Globe; IUCN: Gland, Switzerland, 2010; pp. 77–80. [Google Scholar]
- Mihok, S.; Munyoki, E.; Brett, R.A.; Jonyo, J.F.; Rottcher, D.; Majiwa, P.A. Trypanosomiasis and the conservation of black rhinoceros (Diceros bicornis) at the Ngulia Rhino sanctuary, Tsavo West National park, Kenya. Afr. J. Ecol. 1992, 30, 103–115. [Google Scholar] [CrossRef]
- Deem, S.L.; Cruz, M.B.; Higashiguchi, J.M.; Parker, P.G. Diseases of poultry and endemic birds in Galapagos: Implications for the reintroduction of native species. Anim. Conserv. 2012, 15, 73–82. [Google Scholar] [CrossRef]
- Jones, P.; Mahamba, C.; Rest, J.; André, C. Fatal inflammatory heart disease in a bonobo (Pan paniscus). J. Med. Primatol. 2005, 34, 45–49. [Google Scholar] [CrossRef]
- Snyder, N.F.R.; Derrickson, S.R.; Beissinger, S.R.; Wiley, J.W.; Smith, T.B.; Toone, W.D. Limitations of captive breeding in endangered species recovery. Conserv. Biol. 1996, 10, 338–348. [Google Scholar] [CrossRef]
- Mathews, F.; Moro, D.; Strachan, R.; Gelling, M.; Buller, N. Health surveillance in wildlife reintroductions. Biol. Conserv. 2006, 131, 338–347. [Google Scholar] [CrossRef]
- Williams, E.S.; Thome, E.; Appel, M.J.; Belitsky, D.W. Canine distemper in black-footed ferrets (Mustela nigripes) from Wyoming. J. Wildl. Dis. 1998, 24, 385–398. [Google Scholar] [CrossRef]
- Dein, F.J.; Carpenter, J.W.; Clark, G.G.; Montali, R.J.; Crabbs, C.; Tsai, T.F. Mortality of captive whooping cranes caused by eastern equine encephalitis virus. J. Am. Vet. Med. Assoc. 1986, 189, 1006–1010. [Google Scholar]
- Wimberger, K.; Armstrong, A.J.; Downs, C.T. Can Rehabilitated Leopard Tortoises, Stigmochelys pardalis, Be Successfully Released into the Wild? Chelonian Conserv. Biol. 2009, 8, 173–184. [Google Scholar] [CrossRef]
- Cook, R. Dispersal, home range establishment, survival, and reproduction of translocated eastern box turtles, Terrapene c. carolina. Appl. Herpetol. 2004, 1, 197–228. [Google Scholar] [CrossRef]
- Farnsworth, S.D.; Seigel, R.A. Responses, Movements, and Survival of Relocated Box Turtles during Construction of the Intercounty Connector Highway in Maryland. Transp. Res. Rec. 2013, 2362, 1–8. [Google Scholar] [CrossRef]
- Islam, M.Z.-U.; Ismail, K.; Boug, A. Restoration of the endangered Arabian Oryx Oryx leucoryx, Pallas 1766 in Saudi Arabia lessons learnt from the twenty years of re-introduction in arid fenced and unfenced protected areas: (Mammalia: Artiodactyla). Zool. Middle East 2011, 54, 125–140. [Google Scholar] [CrossRef]
- Jachowski, D.S.; Gitzen, R.A.; Grenier, M.B.; Holmes, B.; Millspaugh, J.J. The importance of thinking big: Large-scale prey conservation drives black-footed ferret reintroduction success. Biol. Conserv. 2011, 144, 1560–1566. [Google Scholar] [CrossRef]
- Wild, M.A.; Shenk, T.M.; Spraker, T.R. Plague as a mortality factor in Canada lynx (Lynx canadensis) reintroduced to Colorado. J. Wildl. Dis. 2006, 42, 646–650. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Warne, R.K.; Chaber, A.-L. Assessing Disease Risks in Wildlife Translocation Projects: A Comprehensive Review of Disease Incidents. Animals 2023, 13, 3379. https://doi.org/10.3390/ani13213379
Warne RK, Chaber A-L. Assessing Disease Risks in Wildlife Translocation Projects: A Comprehensive Review of Disease Incidents. Animals. 2023; 13(21):3379. https://doi.org/10.3390/ani13213379
Chicago/Turabian StyleWarne, Regina Kate, and Anne-Lise Chaber. 2023. "Assessing Disease Risks in Wildlife Translocation Projects: A Comprehensive Review of Disease Incidents" Animals 13, no. 21: 3379. https://doi.org/10.3390/ani13213379
APA StyleWarne, R. K., & Chaber, A. -L. (2023). Assessing Disease Risks in Wildlife Translocation Projects: A Comprehensive Review of Disease Incidents. Animals, 13(21), 3379. https://doi.org/10.3390/ani13213379