Live Yeast (Saccharomyces cerevisiae var. boulardii) Supplementation in a European Sea Bass (Dicentrarchus labrax) Diet: Effects on the Growth and Immune Response Parameters
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics Statements
2.2. Fish Rearing Conditions
2.3. Diets and Feeding Regime
2.4. Viability Test of the Probiotic in the Intestinal Tract
2.5. Fish Sampling and Dissection
2.6. Zootechnical Parameters
- i
- Weight gain (WG) (g): BW final (g) − BW initial (g)
- ii
- Specific Growth Rate (SGR) (%): [(ln BW final (g) − ln BW initial (g))/feeding days] × 100
- iii
- Feed Conversion Ratio (FCR): total supplied feed as DM (g)/WG (g), (where DM indicates Dry Matter)
- iv
- Protein Efficiency Ratio (PER): WG (g)/total protein fed (g)
- v
- Feeding rate (FR) (%): (ingested feed (g)/days of feeding) × 100
- i.
- Viscerosomatic index (VSI): (viscera weight/BW) × 100
- ii
- Hepatosomatic index (HSI): (liver weight/BW) × 100
- iii
- Coefficient of fatness (CF): (perivisceral fat weight/BW) × 100
- iv
- Condition factor (K): (BW/BL3) × 100
- v
- Relative Intestinal Length (RIL): intestinal length/BW
2.7. Histological Analysis: Light Microscopy
2.8. Morphological Analysis: Scanning Electron Microscopy (SEM)
2.9. Innate Immunity Response Parameters
2.9.1. Lysozyme Content in the Mucus, Plasma, and Kidney Samples
2.9.2. Spontaneous Hemolytic Activity (SH50)
2.9.3. Hemagglutininating Titer
2.9.4. Respiratory Burst Activity
2.9.5. Antibacterial Activity of the Serum, Kidneys, and Skin and Intestinal Mucus
2.9.6. Peroxidase Activity of the Serum
2.10. Analysis of Cytokine Gene Expression
2.10.1. RNA Extraction and cDNA Synthesis
2.10.2. Quantitative Real-Time PCR
2.11. Statistical Analysis
3. Results
3.1. Viability of the Probiotic
3.2. Zootechnical Parameters and Morphometric Indices
3.3. Histological Analysis: Microscopy
3.4. Scanning Electron Microscopy (SEM)
3.5. Immune Innate Response
3.5.1. Lysozyme
3.5.2. Hemolytic Activity (SH50)
3.5.3. Hemagglutinating Titer
3.5.4. Respiratory Burst Activity
3.5.5. Peroxidase Activity
3.5.6. Antibacterial Activity of the Serum, Kidneys, Skin, and Intestinal Mucus
3.6. Cytokine Gene Expression
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. Probiotics in Food; Food and Nutrition; FAO: Rome, Italy, 2001. [Google Scholar]
- Chauhan, A.; Singh, R. Probiotics in Aquaculture: A Promising Emerging Alternative Approach. Symbiosis 2019, 77, 99–113. [Google Scholar] [CrossRef]
- Reyes-Becerril, M.; Angulo, C.; Angulo, M.; Esteban, M.Á. Probiotic Properties of Debaryomyces hansenii BCS004 and Their Immunostimulatory Effect in Supplemented Diets for Gilthead Seabream (Sparus aurata). Aquac. Res. 2021, 52, 2715–2726. [Google Scholar] [CrossRef]
- Yilmaz, S.; Yilmaz, E.; Dawood, M.A.O.; Ringø, E.; Ahmadifar, E.; Abdel-Latif, H.M.R. Probiotics, Prebiotics, and Synbiotics Used to Control Vibriosis in Fish: A Review. Aquaculture 2022, 547, 737514. [Google Scholar] [CrossRef]
- Harish, K.; Varghese, T. Probiotics in Humans—Evidence Based Review. Calicut Med. J. 2006, 4, 3. [Google Scholar]
- Kerry, R.G.; Patra, J.K.; Gouda, S.; Park, Y.; Shin, H.S.; Das, G. Benefaction of Probiotics for Human Health: A Review. J. Food Drug Anal. 2018, 26, 927–939. [Google Scholar] [CrossRef]
- Chattaraj, S.; Ganguly, A.; Mandal, A.; Das Mohapatra, P.K.; Mohapatra, P.K. Das A Review of the Role of Probiotics for the Control of Viral Diseases in Aquaculture. Aquac. Int. 2022, 30, 2513–2539. [Google Scholar] [CrossRef]
- Rawling, M.D.; Pontefract, N.; Rodiles, A.; Anagnostara, I.; Leclercq, E.; Schiavone, M.; Castex, M.; Merrifield, D.L. The Effect of Feeding a Novel Multistrain Yeast Fraction on European Seabass (Dicentrachus labrax) Intestinal Health and Growth Performance. J. World Aquac. Soc. 2019, 50, 1108–1122. [Google Scholar] [CrossRef]
- Sharma, S.; Dahiya, T.; Jangra, M.; Muwal, A.; Singh, C. Saccharomyces cerevisiae as Probiotics in Aquaculture. J. Entomol. Zool. Stud. 2022, 10, 101–104. [Google Scholar] [CrossRef]
- del Valle, J.C.; Bonadero, M.C.; Fernández-Gimenez, A.V. Saccharomyces cerevisiae as Probiotic, Prebiotic, Synbiotic, Postbiotics and Parabiotics in Aquaculture: An Overview. Aquaculture 2023, 569, 739342. [Google Scholar] [CrossRef]
- Abass, D.A.; Obirikorang, K.A.; Campion, B.B.; Edziyie, R.E.; Skov, P.V. Dietary Supplementation of Yeast (Saccharomyces cerevisiae) Improves Growth, Stress Tolerance, and Disease Resistance in Juvenile Nile Tilapia (Oreochromis niloticus). Aquac. Int. 2018, 26, 843–855. [Google Scholar] [CrossRef]
- Kuebutornye, F.K.A.; Abarike, E.D.; Lu, Y. A Review on the Application of Bacillus as Probiotics in Aquaculture. Fish Shellfish Immunol. 2019, 87, 820–828. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Tawwab, M.; Adeshina, I.; Issa, Z.A. Antioxidants and Immune Responses, Resistance to Aspergilus flavus Infection, and Growth Performance of Nile Tilapia, Oreochromis niloticus, Fed Diets Supplemented with Yeast, Saccharomyces cerevisiae. Anim. Feed Sci. Technol. 2020, 263, 114484. [Google Scholar] [CrossRef]
- Meidong, R.; Nakao, M.; Sakai, K.; Tongpim, S. Lactobacillus paraplantarum L34b-2 Derived from Fermented Food Improves the Growth, Disease Resistance and Innate Immunity in Pangasius Bocourti. Aquacult. 2021, 531, 735878. [Google Scholar] [CrossRef]
- Dang, Y.; Sun, Y.; Zhou, Y.; Men, X.; Wang, B.; Li, B.; Ren, Y. Effects of Probiotics on Growth, the Toll-like Receptor Mediated Immune Response and Susceptibility to Aeromonas salmonicida Infection in Rainbow Trout Oncorhynchus mykiss. Aquaculture 2022, 561, 738668. [Google Scholar] [CrossRef]
- Ajdari, A.; Ghafarifarsani, H.; Hoseinifar, S.H.; Javahery, S.; Narimanizad, F.; Gatphayak, K.; Van Doan, H. Effects of Dietary Supplementation of PrimaLac, Inulin, and Biomin Imbo on Growth Performance, Antioxidant, and Innate Immune Responses of Common Carp (Cyprinus carpio). Aquac. Nutr. 2022, 2022, 8297479. [Google Scholar] [CrossRef]
- Xia, R.; Hao, Q.; Xie, Y.; Zhang, Q.; Ran, C.; Yang, Y.; Zhou, W.; Chu, F.; Zhang, X.; Wang, Y.; et al. Effects of Dietary Saccharomyces cerevisiae on Growth, Intestinal and Liver Health, Intestinal Microbiota and Disease Resistance of Channel Catfish (Ictalurus punctatus). Aquac. Rep. 2022, 24, 101157. [Google Scholar] [CrossRef]
- Shadrack, R.S.; Manabu, I.; Koshio, S.; Yokoyama, S.; Zhang, Y.; Mzengereza, K.; El Basuini, M.F.; Dawood, M.A.O. Effects of Single and Mixture Probiotic Supplements on Growth, Digestive Activity, Antioxidative Status, Immune and Growth-Related Genes, and Stress Response of Juvenile Red Sea Bream (Pagrus major). Aquac. Nutr. 2022, 2022, 8968494. [Google Scholar] [CrossRef]
- Sumon, M.A.A.; Sumon, T.A.; Hussain, M.A.; Lee, S.-J.; Jang, W.J.; Sharifuzzaman, S.M.; Brown, C.L.; Lee, E.-W.; Hasan, M.T. Single and Multi-Strain Probiotics Supplementation in Commercially Prominent Finfish Aquaculture: Review of the Current Knowledge. J. Microbiol. Biotechnol. 2022, 32, 02032. [Google Scholar] [CrossRef]
- Yousuf, S.; Tyagi, A.; Singh, R. Probiotic Supplementation as an Emerging Alternative to Chemical Therapeutics in Finfish Aquaculture: A Review. Probiotics Antimicrob. Proteins 2022, 15, 1151–1168. [Google Scholar] [CrossRef]
- Eissa, E.H.; Baghdady, E.S.; Gaafar, A.Y.; El-badawi, A.A.; Bazina, W.K.; Al-kareem, O.M.A.; El-hamed, N.N.B.A. Assessing the Influence of Dietary Pediococcus acidilactici Probiotic Supplementation in the Feed of European Sea Bass (Dicentrarchus labrax L.) (Linnaeus, 1758) on Farm Water Quality, Growth, Feed Utilization, Survival Rate, Body Composition, Body Composition, Blood Biochemical Parameters, And Intestinal Histology. Aquac. Nutr. 2022, 2022, 11. [Google Scholar] [CrossRef]
- Hartono, D.; Barades, E. Effectiveness of Using Commercial Probiotics in Biofloc System Culture Media on Growth, FCR, and Feed Efficiency of Catfish (Clarias gariepinus). IOP Conf. Ser.: Earth Environ. Sci. 2022, 1012, 012019. [Google Scholar] [CrossRef]
- Naiel, M.A.E.; Abdelghany, M.F.; Khames, D.K.; El-hameed, S.A.A.A.; Mansour, E.M.G.; El-nadi, A.S.M.; Shoukry, A.A. Administration of Some Probiotic Strains in the Rearing Water Enhances the Water Quality, Performance, Body Chemical Analysis, Antioxidant and Immune Responses of Nile Tilapia, Oreochromis niloticus. Appl. Water Sci. 2022, 12, 209. [Google Scholar] [CrossRef]
- Tran, N.T.; Yang, W.; Nguyen, X.T.; Zhang, M.; Ma, H.; Zheng, H.; Zhang, Y.; Chan, K.-G.; Li, S. Application of Heat-Killed Probiotics in Aquaculture. Aquaculture 2022, 548, 737700. [Google Scholar] [CrossRef]
- Mugwanya, M.; Dawood, M.A.O.; Kimera, F.; Sewilam, H. Updating the Role of Probiotics, Prebiotics, and Synbiotics for Tilapia Aquaculture as Leading Candidates for Food Sustainability: A Review. Probiotics Antimicrob. Proteins 2022, 14, 130–157. [Google Scholar] [CrossRef] [PubMed]
- Chizhayeva, A.; Amangeldi, A.; Oleinikova, Y.; Alybaeva, A.; Sadanov, A. Living Resources Lactic Acid Bacteria as Probiotics in Sustainable Development of Aquaculture. Aquat. Living Resour. 2022, 35, 10. [Google Scholar] [CrossRef]
- Kuebutornye, F.K.A.; Abarike, E.D.; Lu, Y.; Hlordzi, V.; Sakyi, M.E.; Afriyie, G.; Li, Y.; Xie, C.X. Mechanisms and the Role of Probiotic Bacillus in Mitigating Fish Pathogens in Aquaculture. Fish Physiol. Biochem. 2020, 46, 819–841. [Google Scholar] [CrossRef] [PubMed]
- Amit; Pandey, A.; Tyagi, A.; Khairnar, S.O. Oral Feed-Based Administration of Lactobacillus plantarum Enhances Growth, Haematological and Immunological Responses in Cyprinus carpio. Emerg. Anim. Species 2022, 3, 100003. [Google Scholar] [CrossRef]
- Ghodrati, M.; Rajabi Islami, H.; Hosseini Shekarabi, S.P.; Shenavar Masouleh, A.; Shamsaie Mehrgan, M. Combined Effects of Enzymes and Probiotics on Hemato-Biochemical Parameters and Immunological Responses of Juvenile Siberian Sturgeon (Acipenser baerii). Fish Shellfish Immunol. 2021, 112, 116–124. [Google Scholar] [CrossRef]
- Kord, M.I.; Maulu, S.; Srour, T.M.; Omar, E.A.; Farag, A.A.; Nour, A.A.M.; Hasimuna, O.J.; Abdel-Tawwab, M.; Khalil, H.S. Impacts of Water Additives on Water Quality, Production Efficiency, Intestinal Morphology, Gut Microbiota, and Immunological Responses of Nile Tilapia Fingerlings under a Zero-Water-Exchange System. Aquaculture 2022, 547, 737503. [Google Scholar] [CrossRef]
- de Fátima Marques de Mesquita, E.; Calixto, F.A.A.; Takata, R. Probiotics and Prebiotics in Fish Aquaculture. In Probiotics and Prebiotics in Foods; Elsevier: Amsterdam, The Netherlands, 2021; pp. 263–281. [Google Scholar]
- El-bab, A.F.F.; Saghir, S.A.M.; El-naser, I.A.A.; El-kheir, S.M.M.A.; Abdel-kader, M.F.; Alruhaimi, R.S.; Alqhtani, H.A.; Mahmoud, A.M.; Naiel, M.A.E.; El-raghi, A.A. The Effect of Dietary Saccharomyces Cerevisiae on Growth Performance, Oxidative Status, and Immune Response of Sea Bream (Sparus aurata). Life 2022, 12, 1013. [Google Scholar] [CrossRef]
- Randazzo, B.; Di Marco, P.; Zarantoniello, M.; Daniso, E.; Cerri, R.; Finoia, M.G.; Capoccioni, F.; Tibaldi, E.; Olivotto, I.; Cardinaletti, G. Effects of Supplementing a Plant Protein-Rich Diet with Insect, Crayfish or Microalgae Meals on Gilthead Sea Bream (Sparus aurata) and European Seabass (Dicentrarchus labrax) Growth, Physiological Status and Gut Health. Aquaculture 2023, 575, 739811. [Google Scholar] [CrossRef]
- Sakai, M.; Hikima, J.I.; Kono, T. Fish Cytokines: Current Research and Applications. Fish. Sci. 2021, 87, 1–9. [Google Scholar] [CrossRef]
- Lin, Y.; Saputra, F.; Chen, Y.; Hu, S. Fish and Shell Fi Sh Immunology Dietary Administration of Bacillus amyloliquefaciens R8 Reduces Hepatic Oxidative Stress and Enhances Nutrient Metabolism and Immunity against Aeromonas hydrophila and Streptococcus agalactiae in Zebra Fi Sh (Danio rerio). Fish Shellfish Immunol. 2019, 86, 410–419. [Google Scholar] [CrossRef] [PubMed]
- Jinendiran, S.; Archana, R.; Sathishkumar, R.; Kannan, R.; Selvakumar, G.; Sivakumar, N. Dietary Administration of Probiotic Aeromonas veronii V03 on the Modulation of Innate Immunity, Expression of Immune-Related Genes and Disease Resistance Against Aeromonas hydrophila Infection in Common Carp (Cyprinus carpio). Probiotics Antimicrob. Proteins 2021, 13, 1709–1722. [Google Scholar] [CrossRef]
- Naya-català, F.; Pereira, V.; Piazzon, M.C.; Fernandes, A.M.; Josep Alvar, C.; Sitjà-bobadilla, A.; Conceição, L.E.C.; Pérez-Sánchez, J. Cross-Talk Between Intestinal Microbiota and Host Gene Expression in Gilthead Sea Bream (Sparus aurata) Juveniles: Insights in Fish Feeds for Increased Circularity and Resource Utilization. Front. Physiol. 2021, 12, 748265. [Google Scholar] [CrossRef]
- Simón, R.; Docando, F.; Nuñez-Ortiz, N.; Tafalla, C.; Díaz-Rosales, P. Mechanisms Used by Probiotics to Confer Pathogen Resistance to Teleost Fish. Front. Immunol. 2021, 12, 653025. [Google Scholar] [CrossRef]
- Naiel, M.A.E.; Shehata, A.M.; El-Kholy, A.I.; El-Naggar, K.; Farag, M.R.; Alagawany, M. The Mitigating Role of Probiotics against the Adverse Effects of Suboptimal Temperature in Farmed Fish: A Review. Aquaculture 2022, 550, 737877. [Google Scholar] [CrossRef]
- Dawood, M.A.O.; El-kader, M.F.A.; Farid, M.A.; Abd-elghany, M.F.; Alkafafy, M.; van Doan, H.; Aquaculture, S.; El-sheikh, K.; Arabia, S. Saccharomyces cerevisiae Enhanced the Growth, Immune and Antioxidative Responses of European Seabass (Dicentrarchus labrax). Ann. Anim. Sci. Anim. Sci. 2021, 21, 1423–1433. [Google Scholar] [CrossRef]
- Mahdy, M.A.; Jamal, M.T.; Al-harb, M.; Al-mur, B.A.; Haque, F. Use of Yeasts in Aquaculture Nutrition and Immunostimulation: A Review. J. Appl. Biol. Biotechnol. 2022, 10, 59–65. [Google Scholar] [CrossRef]
- Siddik, M.A.B.; Foysal, M.J.; Fotedar, R.; Francis, D.S.; Gupta, S.K. Probiotic Yeast Saccharomyces cerevisiae Coupled with Lactobacillus casei Modulates Physiological Performance and Promotes Gut Microbiota in Juvenile Barramundi, Lates calcarifer. Aquaculture 2021, 546, 737346. [Google Scholar] [CrossRef]
- Islam, S.M.M.; Rohani, M.F.; Shahjahan, M. Probiotic Yeast Enhances Growth Performance of Nile Tilapia (Oreochromis niloticus) through Morphological Modifications of Intestine. Aquac. Reports 2021, 21, 100800. [Google Scholar] [CrossRef]
- Bardócz, S.; Duguid, T.J.; Brown, D.S.; Grant, G.; Pusztai, A.; White, A.; Ralph, A. The Importance of Dietary Polyamines in Cell Regeneration and Growth. Br. J. Nutr. 1995, 73, 819–828. [Google Scholar] [CrossRef] [PubMed]
- Hirano, T. Interleukin 6 in Autoimmune and Inflammatory Diseases: A Personal Memoir. Proc. Japan Acad. Ser. B 2010, 86, 717–730. [Google Scholar] [CrossRef]
- Abid, R.; Waseem, H.; Ali, J.; Ghazanfar, S.; Muhammad Ali, G.; Elasbali, A.M.; Alharethi, S.H.; Ali, G.M.; Elasbali, A.M.; Alharethi, S.H. Probiotic Yeast Saccharomyces: Back to Nature to Improve Human Health. J. Fungi 2022, 8, 444. [Google Scholar] [CrossRef] [PubMed]
- Chan, M.Z.A.; Liu, S.-Q.Q. Fortifying Foods with Synbiotic and Postbiotic Preparations of the Probiotic Yeast, Saccharomyces boulardii. Curr. Opin. Food Sci. 2022, 43, 216–224. [Google Scholar] [CrossRef]
- Fu, J.J.; Liu, J.; Wen, X.P.; Zhang, G.; Cai, J.; Qiao, Z.; An, Z.; Zheng, J.; Li, L. Unique Probiotic Properties and Bioactive Metabolites of Saccharomyces boulardii. Probiotics Antimicrob. Proteins 2022, 15, 967–982. [Google Scholar] [CrossRef]
- Gu, Y.; Wang, C.; Qin, X.; Zhou, B.; Liu, X.; Liu, T.; Xie, R.; Liu, J.; Wang, B.; Cao, H. Saccharomyces boulardii, a Yeast Probiotic, Inhibits Gut Motility through Upregulating Intestinal Serotonin Transporter and Modulating Gut Microbiota. Pharmacol. Res. 2022, 181, 106291. [Google Scholar] [CrossRef]
- Pais, P.; Almeida, V.; Yılmaz, M.; Teixeira, M.C. Saccharomyces boulardii: What Makes It Tick as Successful Probiotic? J. Fungi 2020, 6, 78. [Google Scholar] [CrossRef]
- Rocha, V.P.; Araújo, L.R.S.; de Mendonça, I.B.; Martins, L.P.; de Alcântara Araújo, G.G.; Watanabe, P.H.; Andrade, T.S.; Evangelista, J.N.B. Effects of Saccharomyces cerevisiae Var. boulardii CNCM I-1079 on Performance, Colostrum and Milk Composition, and Litter Performance of Mixed-Parity Sows in a Tropical Humid Climate. Trop. Anim. Health Prod. 2022, 54, 41. [Google Scholar] [CrossRef]
- Tamang, J.P.; Lama, S. Probiotic Properties of Yeasts in Traditional Fermented Foods and Beverages. J. Appl. Microbiol. 2022, 132, 3533–3542. [Google Scholar] [CrossRef]
- Maricchiolo, G.; Caccamo, L.; Mancuso, M.; Cusimano, G.M.; Gai, F.; Genovese, M.; Ghonimy, A.; Genovese, L. Saccharomyces cerevisiae Var. boulardii Preserves the Integrity of Intestinal Mucosa in Gilthead Seabream, Sparus aurata Subjected to a Bacterial Challenge with Vibrio anguillarum. Aquac. Res. 2017, 48, 725–728. [Google Scholar] [CrossRef]
- Czerucka, D.; Rampal, P. Diversity of Saccharomyces boulardii CNCM I-745 Mechanisms of Action against Intestinal Infections. World J. Gastroenterol. 2019, 25, 2188–2203. [Google Scholar] [CrossRef]
- Goda, A.M.; Omar, E.A.; Srour, T.M.; Kotiet, A.M.; El-Haroun, E.; Davies, S.J. Effect of Diets Supplemented with Feed Additives on Growth, Feed Utilization, Survival, Body Composition and Intestinal Bacterial Load of Early Weaning European Seabass, Dicentrarchus labrax Post-Larvae. Aquac. Int. 2018, 26, 169–183. [Google Scholar] [CrossRef]
- Öztürk, F.; Esendal, Ö.M. Usage of Lactobacillus rhamnosus as a Probiotic in Sea Bass (Dicentrarchus labrax). J. Anatol. Environ. Anim. Sci. 2020, 5, 93–99. [Google Scholar]
- Addo, S.; Carrias, A.A.; Williams, M.A.; Liles, M.R.; Terhune, J.S.; Davis, D.A. Effects of Bacillus Subtilis Strains on Growth, Immune Parameters, and Streptococcus iniae Susceptibility in Nile Tilapia, Oreochromis niloticus. J. World Aquac. Soc. 2017, 48, 257–267. [Google Scholar] [CrossRef]
- Sheikhzadeh, N.; Makhloughi, A.R.; Nofouzi, K.; Tukmechi, A. Influence of Diets Enriched with Two Different Saccharomyces cerevisiae Strains on Growth Performance, Innate Immune System and Disease Resistance in Rainbow Trout (Onchorhynchus mykiss). Aquac. Res. 2015, 47, 2691–2695. [Google Scholar] [CrossRef]
- Person-Le Ruyet, J.; Mahé, K.; Le Bayon, N.; Le Delliou, H. Effects of Temperature on Growth and Metabolism in a Mediterranean Population of European Sea Bass, Dicentrarchus labrax. Aquaculture 2004, 237, 269–280. [Google Scholar] [CrossRef]
- Martínez-Llorens, S.; Baeza-Ariño, R.; Nogales-Mérida, S.; Jover-Cerdá, M.; Tomás-Vidal, A. Carob Seed Germ Meal as a Partial Substitute in Gilthead Sea Bream (Sparus aurata) Diets: Amino Acid Retention, Digestibility, Gut and Liver Histology. Aquaculture 2012, 338–341, 124–133. [Google Scholar] [CrossRef]
- Nogales Mérida, S.; Tomás-Vidal, A.; Martínez-Llorens, S.; Jover Cerdá, M. Sunflower Meal as a Partial Substitute in Juvenile Sharpsnout Sea Bream (Diplodus puntazzo) Diets: Amino Acid Retention, Gut and Liver Histology. Aquaculture 2010, 298, 275–281. [Google Scholar] [CrossRef]
- McFadzen, I.R.; Coombs, S.; Halliday, N. Histological Indices of the Nutritional Condition of Sardine, Sardina pilchardus (Walbaum) Larvae off the North Coast of Spain. J. Exp. Mar. Bio. Ecol. 1997, 212, 239–258. [Google Scholar] [CrossRef]
- Osserman, E.F.; Lawlor, D.P. Serum and Urinary Lysozyme (Muramidase) In Monocytic and Monomyelocytic Leukemia. J. Exp. Med. 1966, 124, 921–952. [Google Scholar] [CrossRef]
- Roed, K.H.; Fjalestad, K.; Larsen, H.J.; Midthjel, L. Genetic Variation in Haemolytic Activity in Atlantic Salmon (Salmo salar L.). J. Fish Biol. 1992, 40, 739–750. [Google Scholar] [CrossRef]
- Sunyer, J.O.; Tort, L. Natural Hemolytic and Bactericidal Activities of Sea Bream Sparus aurata Serum Are Effected by the Alternative Complement Pathway. Vet. Immunol. Immunopathol. 1995, 45, 333–345. [Google Scholar] [CrossRef]
- Harrell, L.W.; Etlinger, H.M.; Hodgins, H.O. Humoral Factors Important in Resistance of Salmonid Fish to Bacterial Disease. II. Anti-Vibrio anguillarum Activity in Mucus and Observations on Complement. Aquaculture 1976, 7, 363–370. [Google Scholar] [CrossRef]
- Caruso, G.; Denaro, M.G.; Caruso, R.; Mancari, F.; Genovese, L.; Maricchiolo, G. Response to Short Term Starvation of Growth, Haematological, Biochemical and Non-Specific Immune Parameters in European Sea Bass (Dicentrarchus labrax) and Blackspot Sea Bream (Pagellus bogaraveo). Mar. Environ. Res. 2011, 72, 46–52. [Google Scholar] [CrossRef] [PubMed]
- Caruso, G.; Maricchiolo, G.; Genovese, L.; Caruso, R.; Denaro, M.G.; Delia, S.; Laganà, P. Comparative Study of Antibacterial and Haemolytic Activities in Sea Bass, European Eel and Blackspot Seabream. Open Mar. Biol. J. 2014, 8, 10–16. [Google Scholar] [CrossRef]
- Quade, M.J.; Roth, J.A. A Rapid, Direct Assay to Measure Degranulation of Bovine Neutrophil Primary Granules. Vet. Immunol. Immunopathol. 1997, 58, 239–248. [Google Scholar] [CrossRef] [PubMed]
- McFarland, L.V.; Bernasconi, P. Saccharomyces boulardii’. A Review of an Innovative Biotherapeutic Agent. Microb. Ecol. Health Dis. 1993, 6, 157–171. [Google Scholar] [CrossRef]
- Shruthi, B.; Deepa, N.; Somashekaraiah, R.; Adithi, G.; Divyashree, S.; Sreenivasa, M.Y. Exploring Biotechnological and Functional Characteristics of Probiotic Yeasts: A Review. Biotechnol. Rep. 2022, 34, e00716. [Google Scholar] [CrossRef] [PubMed]
- Savin, V.; Patriche, N.; Mocanu, E.; Tenciu, M.; Lăcătuș, M.; Popa, D.; Savin, C. The Effect of Saccharomyces boulardii Yeast Feed Supplementation On Growth Parameters And Biochemical Composition Of Carp (Cyprinus carpio). Univ. Agric. Sci. Vet. Med. Iasi 2019, 72, 188–192. [Google Scholar]
- Roy, J.; Terrier, F.; Marchand, M.; Herman, A.; Heraud, C.; Surget, A.; Lanuque, A.; Sandres, F.; Marandel, L. Effects of Low Stocking Densities on Zootechnical Parameters and Physiological Responses of Rainbow Trout (Oncorhynchus mykiss) Juveniles. Biology 2021, 10, 1040. [Google Scholar] [CrossRef] [PubMed]
- de Souza Silva, L.T.; de Padua Pereira, U.; de Oliveira, H.M.; Brasil, E.M.; Pereira, S.A.; Chagas, E.C.; Jesus, G.F.A.; Cardoso, L.; Mourino, J.L.P.; Martins, M.L. Hemato-Immunological and Zootechnical Parameters of Nile Tilapia Fed Essential Oil of Mentha Piperita after Challenge with Streptococcus agalactiae. Aquaculture 2019, 506, 205–211. [Google Scholar] [CrossRef]
- De Moraes, A.V.; Owatari, M.S.; da Silva, E.; de Oliveira Pereira, M.; Piola, M.; Ramos, C.; Farias, D.R.; Schleder, D.D.; Jesus, G.F.A.; Jatobá, A. Effects of Microencapsulated Probiotics-Supplemented Diet on Growth, Non-Specific Immunity, Intestinal Health and Resistance of Juvenile Nile Tilapia Challenged with Aeromonas hydrophila. Anim. Feed Sci. Technol. 2022, 287, 115286. [Google Scholar] [CrossRef]
- Picoli, F.; de Alcantara Lopes, D.L.; Zampar, A.; Serafini, S.; Freccia, A.; Veronezi, L.O.; Kowalski, M.W.; Ghizzo, J.B.; Emerenciano, M.G.C. Dietary Bee Pollen Affects Hepatic–Intestinal Histomorphometry of Nile Tilapia Fingerlings. Aquac. Res. 2019, 50, 3295–3304. [Google Scholar] [CrossRef]
- Romano, N.; Kumar, V.; Yang, G.; Kajbaf, K.; Rubio, M.B.; Overturf, K.; Brezas, A.; Hardy, R. Bile Acid Metabolism in Fish: Disturbances Caused by Fishmeal Alternatives and Some Mitigating Effects from Dietary Bile Inclusions. Rev. Aquac. 2020, 12, 1792–1817. [Google Scholar] [CrossRef]
- Gasco, L.; Gai, F.; Maricchiolo, G.; Genovese, L.; Ragonese, S.; Bottari, T.; Caruso, G. Supplementation of Vitamins, Minerals, Enzymes and Antioxidants in Fish Feeds. In Feeds for the Aquaculture Sector; Springer: Berlin/Heidelberg, Germany, 2018; pp. 63–103. [Google Scholar]
- Jobling, M. Fish Nutrition Research: Past, Present and Future. Aquac. Int. 2016, 24, 767–786. [Google Scholar] [CrossRef]
- Martin, S.A.M.; Król, E. Nutrigenomics and Immune Function in Fish: New Insights from Omics Technologies. Dev. Comp. Immunol. 2017, 75, 86–98. [Google Scholar] [CrossRef] [PubMed]
- Faeed, M.; Kasra Kermanshahi, R.; Pourkazemi, M.; Ahmadnezhad, M. In Vivo Study on Probiotic Lactobacillus brevis in Sander lucioperca and Some of Their Nonspecific Immune Parameters, Intestinal Morphology and Survival against Aeromonas hydrophila. Iran. J. Fish. Sci. 2022, 21, 387–402. [Google Scholar] [CrossRef]
- Hooshyar, Y.; Abedian Kenari, A.; Paknejad, H.; Gandomi, H. Effects of Lactobacillus rhamnosus ATCC 7469 on Different Parameters Related to Health Status of Rainbow Trout (Oncorhynchus mykiss) and the Protection Against Yersinia Ruckeri. Probiotics Antimicrob. Proteins 2020, 12, 1370–1384. [Google Scholar] [CrossRef]
- Guardiola, F.A.; Porcino, C.; Cerezuela, R.; Cuesta, A.; Faggio, C.; Esteban, M.A. Impact of Date Palm Fruits Extracts and Probiotic Enriched Diet on Antioxidant Status, Innate Immune Response and Immune-Related Gene Expression of European Seabass (Dicentrarchus labrax). Fish Shellfish Immunol. 2016, 52, 298–308. [Google Scholar] [CrossRef]
- Rahimi, R.; Mirahmadi, S.A.; Hajirezaee, S.; Fallah, A.A. How Probiotics Impact on Immunological Parameters in Rainbow Trout (Oncorhynchus mykiss)? A Systematic Review and Meta-Analysis. Rev. Aquac. 2022, 14, 27–53. [Google Scholar] [CrossRef]
- Cabib, E.; Roberts, R.; Bowers, B. Synthesis of the Yeast Cell Wall and Its Regulation. Annu. Rev. Biochem. 1982, 51, 763–793. [Google Scholar] [CrossRef] [PubMed]
- Bagherpour, G.; Ghasemi, H.; Zand, B.; Zarei, N.; Roohvand, F.; Ardakani, E.M.; Azizi, M.; Khalaj, V. Oral Administration of Recombinant Saccharomyces boulardii Expressing Ovalbumin-CPE Fusion Protein Induces Antibody Response in Mice. Front. Microbiol. 2018, 9, 723. [Google Scholar] [CrossRef]
- Buts, J.-P.P.; Bernasconi, P.; Vaerman, J.-P.P.; Dive, C. Stimulation of Secretory IgA and Secretory Component of Immunoglobulins in Small Intestine of Rats Treated with Saccharomyces boulardii. Dig. Dis. Sci. 1990, 35, 251–256. [Google Scholar] [CrossRef] [PubMed]
- Espinosa, C.; Esteban, M.Á. Effect of Dietary Supplementation with Yeast Saccharomyces cerevisiae on Skin, Serum and Liver of Gilthead Seabream (Sparus aurata L). J. Fish Biol. 2020, 97, 869–881. [Google Scholar] [CrossRef]
- Ortuño, J.; Cuesta, A.; Rodríguez, A.; Esteban, M.A.; Meseguer, J. Oral Administration of Yeast, Saccharomyces cerevisiae, Enhances the Cellular Innate Immune Response of Gilthead Seabream (Sparus aurata L.). Vet. Immunol. Immunopathol. 2002, 85, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Abu-Elala, N.M.; Younis, N.A.; AbuBakr, H.O.; Ragaa, N.M.; Borges, L.L.; Bonato, M.A. Influence of Dietary Fermented Saccharomyces cerevisiae on Growth Performance, Oxidative Stress Parameters, and Immune Response of Cultured Oreochromis niloticus. Fish Physiol. Biochem. 2020, 46, 533–545. [Google Scholar] [CrossRef] [PubMed]
- Sönmez, A.Y. Evaluating Two Different Additive Levels of Fully Autolyzed Yeast, Saccharomyces cerevisiae, on Rainbow Trout (Oncorhynchus mykiss) Growth Performance, Liver Histology and Fatty Acid Composition. Turkish J. Fish. Aquat. Sci. 2017, 17, 379–385. [Google Scholar] [CrossRef]
- Vidakovic, A.; Huyben, D.; Sundh, H.; Nyman, A.; Vielma, J.; Passoth, V.; Kiessling, A.; Lundh, T. Growth Performance, Nutrient Digestibility and Intestinal Morphology of Rainbow Trout (Oncorhynchus mykiss) Fed Graded Levels of the Yeasts Saccharomyces cerevisiae and Wickerhamomyces anomalus. Aquac. Nutr. 2020, 26, 275–286. [Google Scholar] [CrossRef]
- Hoseinifar, S.H.; Mirvaghefi, A.; Merrifield, D.L. The Effects of Dietary Inactive Brewer’s Yeast Saccharomyces cerevisiae Var. ellipsoideus on the Growth, Physiological Responses and Gut Microbiota of Juvenile Beluga (Huso huso). Aquaculture 2011, 318, 90–94. [Google Scholar] [CrossRef]
- Iwashita, M.K.P.; Nakandakare, I.B.; Terhune, J.S.; Wood, T.; Ranzani-Paiva, M.J.T. Dietary Supplementation with Bacillus subtilis, Saccharomyces cerevisiae and Aspergillus oryzae Enhance Immunity and Disease Resistance against Aeromonas hydrophila and Streptococcus iniae Infection in Juvenile Tilapia Oreochromis niloticus. Fish Shellfish Immunol. 2015, 43, 60–66. [Google Scholar] [CrossRef] [PubMed]
- Abram, Q.; Dixon, B.; Katzenback, B. Impacts of Low Temperature on the Teleost Immune System. Biology 2017, 6, 39. [Google Scholar] [CrossRef] [PubMed]
- Irianto, A.; Austin, B. Probiotics in Aquaculture. J. Fish Dis. 2002, 25, 633–642. [Google Scholar] [CrossRef]
- Panigrahi, A.; Kiron, V.; Puangkaew, J.; Kobayashi, T.; Satoh, S.; Sugita, H. The Viability of Probiotic Bacteria as a Factor Influencing the Immune Response in Rainbow Trout Oncorhynchus mykiss. Aquaculture 2005, 243, 241–254. [Google Scholar] [CrossRef]
- Rodríguez, A. Immunostimulant Properties of a Cell Wall-Modified Whole Saccharomyces cerevisiae Strain Administered by Diet to Seabream (Sparus aurata L.). Vet. Immunol. Immunopathol. 2003, 96, 183–192. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.F.; Wu, T.X.; Cai, L.S.; Zhang, L.J.; Zheng, X.D. Effects of Dietary Supplementation with Clostridium butyricum on the Growth Performance and Humoral Immune Response in Miichthys miiuy. J. Zhejiang Univ. Sci. B. 2006, 7, 596–602. [Google Scholar] [CrossRef]
- Boonanuntanasarn, S.; Ditthab, K.; Jangprai, A.; Nakharuthai, C. Effects of Microencapsulated Saccharomyces cerevisiae on Growth, Hematological Indices, Blood Chemical, and Immune Parameters and Intestinal Morphology in Striped Catfish, Pangasianodon hypophthalmus. Probiotics Antimicrob. Proteins 2019, 11, 427–437. [Google Scholar] [CrossRef]
- Abdel-Latif, H.M.R.; Chaklader, M.R.; Shukry, M.; Ahmed, H.A.; Khallaf, M.A. A Multispecies Probiotic Modulates Growth, Digestive Enzymes, Immunity, Hepatic Antioxidant Activity, and Disease Resistance of Pangasianodon hypophthalmus Fingerlings. Aquaculture 2023, 563, 738948. [Google Scholar] [CrossRef]
- Tao, J.; Wang, S.; Qiu, H.; Xie, R.; Zhang, H.; Chen, N.; Li, S. Modulation of Growth Performance, Antioxidant Capacity, Non-Specific Immunity and Disease Resistance in Largemouth Bass (Micropterus salmoides) upon Compound Probiotic Cultures Inclusion. Fish Shellfish Immunol. 2022, 127, 804–812. [Google Scholar] [CrossRef]
- Mohapatra, S.; Chakraborty, T.; Kumar, V.; Deboeck, G.; Mohanta, K.N. Aquaculture and Stress Management: A Review of Probiotic Intervention. J. Anim. Physiol. Anim. Nutr. 2013, 97, 405–430. [Google Scholar] [CrossRef]
- Chiu, C.H.; Cheng, C.H.; Gua, W.R.; Guu, Y.K.; Cheng, W. Dietary Administration of the Probiotic, Saccharomyces cerevisiae P13, Enhanced the Growth, Innate Immune Responses, and Disease Resistance of the Grouper, Epinephelus coioides. Fish Shellfish Immunol. 2010, 29, 1053–1059. [Google Scholar] [CrossRef]
- Sakai, M. Current Research Status of Fish Immunostimulants. Aquaculture 1999, 172, 63–92. [Google Scholar] [CrossRef]
- Kim, D.H.; Austin, B. Innate Immune Responses in Rainbow Trout (Oncorhynchus mykiss, Walbaum) Induced by Probiotics. Fish Shellfish Immunol. 2006, 21, 513–524. [Google Scholar] [CrossRef] [PubMed]
- Vazirzadeh, A.; Roosta, H.; Masoumi, H.; Farhadi, A.; Jeffs, A. Long-Term Effects of Three Probiotics, Singular or Combined, on Serum Innate Immune Parameters and Expressions of Cytokine Genes in Rainbow Trout during Grow-Out. Fish Shellfish Immunol. 2020, 98, 748–757. [Google Scholar] [CrossRef] [PubMed]
- Harikrishnan, R.; Kim, M.C.; Kim, J.S.; Balasundaram, C.; Heo, M.S. Immunomodulatory Effect of Probiotics Enriched Diets on Uronema Marinum Infected Olive Flounder. Fish Shellfish Immunol. 2011, 30, 964–971. [Google Scholar] [CrossRef]
- Taoka, Y.; Maeda, H.; Jo, J.Y.; Kim, S.M.; Park, S.I.; Yoshikawa, T.; Sakata, T. Use of Live and Dead Probiotic Cells in Tilapia Oreochromis niloticus. Fish. Sci. 2006, 72, 755–766. [Google Scholar] [CrossRef]
- Zaineldin, A.I.; Hegazi, S.; Koshio, S.; Ishikawa, M.; Dawood, M.A.O.; Dossou, S.; Yukun, Z.; Mzengereza, K. Singular Effects of Bacillus subtilis C-3102 or Saccharomyces cerevisiae Type 1 on the Growth, Gut Morphology, Immunity, and Stress Resistance of Red Sea Bream (Pagrus major). Ann. Anim. Sci. 2021, 21, 589–608. [Google Scholar] [CrossRef]
- Tukmechi, A.; Rahmati Andani, H.R.; Manaffar, R.; Sheikhzadeh, N. Dietary Administration of Beta-Mercapto-Ethanol Treated Saccharomyces cerevisiae Enhanced the Growth, Innate Immune Response and Disease Resistance of the Rainbow Trout, Oncorhynchus mykiss. Fish Shellfish Immunol. 2011, 30, 923–928. [Google Scholar] [CrossRef]
- Tewary, A.; C Patra, B. Oral Administration of Baker’s Yeast (Saccharomyces cerevisiae) Acts as a Growth Promoter and Immunomodulator in Labeo rohita (Ham.). J. Aquac. Res. Dev. 2011, 2, 1000109. [Google Scholar] [CrossRef]
- Bandyopadhyay, P.; Mishra, S.; Sarkar, B.; Swain, S.K.; Pal, A.; Tripathy, P.P.; Ojha, S.K. Dietary Saccharomyces cerevisiae Boosts Growth and Immunity of IMC Labeo rohita (Ham.) Juveniles. Indian J. Microbiol. 2015, 55, 81–87. [Google Scholar] [CrossRef]
- Munir, M.B.; Hashim, R.; Nor, S.A.M.; Marsh, T.L. Effect of Dietary Prebiotics and Probiotics on Snakehead (Channa striata) Health: Haematology and Disease Resistance Parameters against Aeromonas hydrophila. Fish Shellfish Immunol. 2018, 75, 99–108. [Google Scholar] [CrossRef] [PubMed]
- Reyes-Cerpa, S.; Maisey, K.; Reyes-Lpez, F.; Toro-Ascuy, D.; Mara, A.; Imarai, M. Fish Cytokines and Immune Response. In New Advances and Contributions to Fish Biology; IntechOpen: London, UK, 2012. [Google Scholar]
- Yang, X.; He, Y.; Lin, S.; Dong, X.; Yang, Q.; Liu, H.; Zhang, S.; Chi, S.; Tan, B. Saccharomyces cerevisiae Extracts Improved the Effects of a Low Fishmeal, Complex Plant Protein Diet in the Orange-Spotted Grouper, Epinephelus coioides. Aquac. Rep. 2021, 19, 100574. [Google Scholar] [CrossRef]
- Huyben, D.; Vidakovic, A.; Sundh, H.; Sundell, K.; Kiessling, A.; Lundh, T. Haematological and Intestinal Health Parameters of Rainbow Trout Are Influenced by Dietary Live Yeast and Increased Water Temperature. Fish Shellfish Immunol. 2019, 89, 525–536. [Google Scholar] [CrossRef]
- Sawa, Y.; Ueki, T.; Hata, M.; Iwasawa, K.; Tsuruga, E.; Kojima, H.; Ishikawa, H.; Yoshida, S. LPS-Induced IL-6, IL-8, VCAM-1, and ICAM-1 Expression in Human Lymphatic Endothelium. J. Histochem. Cytochem. 2008, 56, 97–109. [Google Scholar] [CrossRef]
- Wei, X.; Li, B.; Wu, L.; Yin, X.; Zhong, X.; Li, Y.; Wang, Y.; Guo, Z.; Ye, J. Interleukin-6 Gets Involved in Response to Bacterial Infection and Promotes Antibody Production in Nile Tilapia (Oreochromis niloticus). Dev. Comp. Immunol. 2018, 89, 141–151. [Google Scholar] [CrossRef] [PubMed]
- Fidan, I.; Kalkanci, A.; Yesilyurt, E.; Yalcin, B.; Erdal, B.; Kustimur, S.; Imir, T. Effects of Saccharomyces boulardii on Cytokine Secretion from Intraepithelial Lymphocytes Infected by Escherichia coli and Candida albicans. Mycoses 2009, 52, 29–34. [Google Scholar] [CrossRef] [PubMed]
Ingredients (g/kg) | LSB0 | LSB100 | LSB300 |
---|---|---|---|
Herring fish meal (CP 1, 70%) | 480 | 480 | 480 |
Corn gluten | 140 | 140 | 140 |
Gelatinized starch | 135 | 135 | 135 |
Soybean meal (CP 1, 44%) | 115 | 115 | 115 |
Cod liver oil | 110 | 110 | 110 |
Vitamin mixture 2 | 10 | 10 | 10 |
Mineral mixture 3 | 10 | 10 | 10 |
LEVUCELL SB20® TITAN | - | 0.1 | 0.3 |
Proximate composition, % DM 4 | |||
Dry Matter | 94.5 | ||
Crude protein | 50.0 | ||
Ether extract | 15.3 | ||
Ash | 8.2 | ||
Nitrogen free extracts 5 | 26.5 | ||
Gross energy 6, MJ/kg DM | 22.4 |
Cytokine Gene | Primer Sequence | AT° | Accession No. |
---|---|---|---|
il-1ß | FW: GAGACACTGATGAGCACTGAGT RV: CTGATGTTCAAACCGGAGTC | 61.2 62.2 | AJ269472.1 |
il-6 | FW: AAACATGCCCTGAGAAGTCC RV: TTGACGTGTTCTCTGTGCCT | 63.0 63.6 | AM490062.1 |
tnf-α | FW: CTCAACACAGCGGATATGGA RV: CCTTCTAAATGGATGGCTGC | 63.7 63.4 | DQ070246.1 |
ß-Actin | FW: GGTACCCATCTCCTGCTCCAA RV: GAGCGTGGCTACTCCTTCACC | 69.0 61.9 | AJ537421.1 |
Days of Feeding | LSB0 | LSB100 | LSB300 | |
---|---|---|---|---|
Weight Gain (g) | 21 | 21.13 ± 3.77 | 22.77 ± 3.59 | 22.06 ± 5.94 |
45 | 54.53 ± 2.45 | 56.00 ± 7.74 | 56.66 ± 8.71 | |
90 | 105.22 ± 8.56 | 105.24 ± 8.90 | 97.35 ± 13.36 | |
Specific Growth Rate (%) | 21 | 0.55 ± 0.11 | 0.61 ± 0.09 | 0.56 ± 0.13 |
45 | 0.55 ± 0.02 | 0.57 ± 0.07 | 0.55 ± 0.05 | |
90 | 0.61 ± 0.05 | 0.62 ± 0.03 | 0.56 ± 0.04 | |
Feed Conversion Rate | 21 | 1.93 ± 0.24 | 1.86 ± 0.31 | 2.10 ± 0.59 |
45 | 2.30 ± 0.11 | 2.24 ± 0.27 | 2.31 ± 0.21 | |
90 | 2.28 ± 0.19 | 2.26 ± 0.09 | 2.37 ± 0.22 | |
Protein Efficiency Ratio | 21 | 1.06 ± 0.14 | 1.09 ± 0.17 | 1.00 ± 0.24 |
45 | 0.88 ± 0.04 | 0.90 ± 0.10 | 0.87 ± 0.08 | |
90 | 0.89 ± 0.07 | 0.88 ± 0.04 | 0.78 ± 0.06 | |
VSI (%) | 21 | 11.42 ± 0.96 | 12.38 ± 2.21 | 11.71 ± 1.97 |
45 | 11.43 ± 1.35 | 11.52 ± 1.17 | 11.16 ± 1.32 | |
90 | 11.01 ± 1.21 | 11.00 ± 2.11 | 10.08 ± 1.42 | |
HSI (%) | 21 | 2.22 ± 0.43 | 2.39 ± 0.57 | 2.23 ± 0.39 |
45 | 2.45 ± 0.77 | 1.92 ± 0.35 | 2.26 ± 0.48 | |
90 | 2.00 ± 0.37 | 2.01 ± 0.25 | 2.22 ± 0.34 | |
Coefficient of Fatness (%) | 21 | 6.23 ± 0.97 | 6.34 ± 1.06 | 6.53 ± 1.63 |
45 | 6.42 ± 1.00 | 6.86 ± 1.06 | 6.38 ± 1.03 | |
90 | 6.48 ± 1.21 | 6.53 ± 1.95 | 5.47 ± 1.32 | |
K | 21 | 0.50 ± 0.20 | 0.47 ± 0.19 | 0.56 ± 0.23 |
45 | 0.82 ± 0.41 | 0.59 ± 0.37 | 0.79 ± 0.45 | |
90 | 0.75 ± 0.51 | 0.74 ± 0.29 | 1.15 ± 0.65 | |
Relative Intestinal Length | 21 | 0.52 ± 0.06 | 0.56 ± 0.09 | 0.52 ± 0.07 |
45 | 0.49 ± 0.13 | 0.52 ± 0.12 | 0.50 ± 0.07 | |
90 | 0.43 ± 0.13 | 0.42 ± 0.08 | 0.38 ± 0.10 |
Days of Feeding | |||||||||
---|---|---|---|---|---|---|---|---|---|
21 | 45 | 90 | |||||||
LSB0 | LSB100 | LSB300 | LSB0 | LSB100 | LSB300 | LSB0 | LSB100 | LSB300 | |
VL (µm) | 381.54 ± 97.22 ab | 336.39 ± 90.23 b | 481.83 ± 137.26 a | 267.67 ± 70.96 | 279.69 ± 83.54 | 278.56 ± 91.11 | 299.54 ± 73.23 ab | 345.42 ± 72.26 a | 278.38 ± 37.28 b |
VT (µm) | 86.65 ± 20.39 | 92.28 ± 19.85 | 102.12 ± 14.90 | 82.41 ± 14.40 | 95.01 ± 28.82 | 82.54 ± 17.68 | 84.73 ± 18.01 | 95.39 ± 22.24 | 86.54 ± 11.67 |
GC | 5.07 ± 4.41 | 6.92 ± 3.05 | 4.33 ± 8.80 | 3.07 ± 2.50 | 3.23 ± 2.85 | 3.5 ± 2.59 | 2.85 ± 1.90 | 2.5 ± 2.01 | 2.5 ± 1.57 |
LP (µm) | 8.68 ± 4.05 | 10.8 ± 1.28 | 8.77 ± 2.52 | 10.89 ± 1.78 | 11.32 ± 2.91 | 10.8 ± 2.07 | 10.78 ± 2.04 | 12.55 ± 3.46 | 12.12 ± 2.01 |
MT (µm) | 3.48 ± 0.64 | 3.44 ± 0.52 | 4.11 ± 1.34 | 4.02 ± 0.64 | 3.92 ± 0.82 | 3.7 ± 0.46 | 3.85 ± 0.77 b | 4.49 ± 0.80 a | 3.57 ± 0.41 c |
SL thickness (µm) | 42.10 ± 16.10 | 47.28 ± 20.16 | 62.94 ± 28.42 | 63.46 ± 19.89 | 52.11 ± 18.18 | 60.41 ± 23.53 | 49.27 ± 15.20 | 45.7 ± 17.30 | 37.93 ± 13.21 |
ML thickness (µm) | 89.63 ± 32.32 | 80.59 ± 32.05 | 110.99 ± 34.10 | 115.11 ± 37.60 | 91.89 ± 40.28 | 117.97 ± 34.84 | 97.69 ± 28.92 | 86.06 ± 35.83 | 93.87 ± 26.52 |
SML thickness (µm) | 23.41 ± 6.62 | 29.89 ± 7.97 | 28.66 ± 10.02 | 26.69 ± 13.34 b | 36.28 ± 8.01 a | 32.59 ± 9.19 ab | 27.51 ± 11.12 | 30.78 ± 14.46 | 27.81 ± 9.76 |
Parameter | Days of Feeding | Diets | ||
---|---|---|---|---|
LSB0 | LSB100 | LSB300 | ||
Skin mucus lysozyme (U/mL) | 0 | 1.397 ± 0.120 | ||
21 | 1.384 ± 0.084 | 1.397 ± 0.103 | 1.397 ± 0.103 | |
45 | 1.421 ± 0.055 | 1.570 ± 0.081 | 1.570 ± 0.081 | |
90 | 1.137 ± 0.194 | 1.236 ± 0.200 | 1.236 ± 0.200 | |
Plasma lysozyme (U/mL) | 0 | 2.287± 0.105 | ||
21 | 2.184 ± 0.103 | 2.287 ± 0.084 | 2.328 ± 0.075 | |
45 | 2.522 ± 0.152 | 2.596 ± 0.071 | 2.596 ± 0.089 | |
90 | 2.497 ± 0.164 | 2.534 ± 0.122 | 2.534 ± 0.084 | |
Kidney lysozyme (U/mL) | 0 | 2.027 ± 0.167 | ||
21 | 1.669 ± 0.138 | 1.875 ± 0.098 | 1.936 ± 0.121 | |
45 | 1.730 ± 0.187 | 1.710 ± 0.098 | 1.916 ± 0.187 | |
90 | 1.730 ± 0.137 | 1.710 ± 0.197 | 1.916 ± 0.098 | |
Hemolytic activity (SH 50 Units) | 0 | 1.407± 0.650 | ||
21 | 1.470 ± 0.384 | 1.806 ± 0.487 | 2.528 ± 0.826 | |
45 | 1.000 ± 0.990 | 1.319 ± 0.630 | 2.271 ± 1.530 | |
90 | 3.140 ± 1.140 | 3.578 ± 0.922 | 3.680 ± 0.623 | |
Hemagglutinating titer | 0 | 4 ± 0 | ||
21 | 8 ± 2 | 8 ± 2 | 128 ± 42 | |
45 | 8 ± 2 | 8 ± 2 | 8 ± 2 | |
90 | 256 ± 32 | 32 ± 12 | 8 ± 0 | |
Respiratory Burst (nmol O2/106 granulocytes) | 0 | 0.022 ± 0.010 | ||
21 | 0.060 ± 0.020 | 0.027 ± 0.010 | 0.033 ± 0.030 | |
45 | 0.387 ± 0.080 | 0.355 ± 0.020 | 1.771 ± 0.080 | |
90 | 0.175 ± 0.040 | 0.291 ± 0.010 | 1.931 ± 0.500 | |
Peroxidase activity (U/mL) | 0 | 0.063 ± 0.010 | ||
21 | 0.053 ± 0.006 | 0.087 ± 0.050 | 0.062 ± 0.020 | |
45 | 0.138 ± 0.080 | 0.091 ± 0.040 | 0.072 ± 0.020 | |
90 | 0.097 ± 0.020 | 0.202 ± 0.080 | 0.247 ± 0.020 |
Antibacterial Activity | ||||||
---|---|---|---|---|---|---|
Days of feeding | E. coli | P. aeruginosa | S. aureus | S. epidermis | ||
Serum | 0 | LSB0 | 0 | 0 | 0 | 0 |
21 | LSB0 | 0 | 0 | 0 | 100 | |
LSB100 | 0 | 0 | 0 | 0 | ||
LSB300 | 0 | 0 | 0 | 100 | ||
45 | LSB0 | 0 | 0 | 0 | 0 | |
LSB100 | 0 | 0 | 0 | 0 | ||
LSB300 | 0 | 0 | 0 | 50 | ||
90 | LSB0 | 0 | 0 | 0 | 50 | |
LSB100 | 0 | 0 | 0 | 100 | ||
LSB300 | 0 | 50 | 0 | 0 | ||
Kidney | 0 | LSB0 | 0 | 50 | 50 | 0 |
21 | LSB0 | 50 | 50 | 50 | 0 | |
LSB100 | 0 | 100 | 0 | 0 | ||
LSB300 | 0 | 50 | 0 | 0 | ||
45 | LSB0 | 0 | 100 | 0 | 0 | |
LSB100 | 0 | 50 | 0 | 0 | ||
LSB300 | 50 | 0 | 0 | 0 | ||
90 | LSB0 | 100 | 0 | 0 | 0 | |
LSB100 | 0 | 50 | 0 | 0 | ||
LSB300 | 0 | 50 | 0 | 0 | ||
Intestinal Mucus | 0 | LSB0 | 25 | 100 | 0 | 25 |
21 | LSB0 | - | - | - | - | |
LSB100 | - | - | - | - | ||
LSB300 | - | - | - | - | ||
45 | LSB0 | 0 | 0 | 50 | 50 | |
LSB100 | 0 | 50 | 0 | 0 | ||
LSB300 | 100 | 50 | 0 | 0 | ||
90 | LSB0 | 0 | 100 | 0 | 100 | |
LSB100 | 0 | 100 | 0 | 100 | ||
LSB300 | 0 | 0 | 0 | 0 | ||
Skin Mucus | 0 | LSB0 | - | - | 50 | - |
21 | LSB0 | - | 100 | 100 | - | |
LSB100 | - | 100 | 100 | - | ||
LSB300 | - | 100 | 100 | - | ||
45 | LSB0 | - | 100 | 100 | 100 | |
LSB100 | - | 100 | 100 | 100 | ||
LSB300 | - | 100 | 100 | 100 | ||
90 | LSB0 | - | 100 | 100 | 100 | |
LSB100 | - | 100 | 100 | 100 | ||
LSB300 | - | 100 | 100 | 100 |
Days of Feeding | |||||||||
---|---|---|---|---|---|---|---|---|---|
21 | 45 | 90 | |||||||
LSB0 | LSB100 | LSB300 | LSB0 | LSB100 | LSB300 | LSB0 | LSB100 | LSB300 | |
il-1β | 1.29 ± 0.24 | 1.33 ± 0.19 | 1.19 ± 0.43 | 1.02 ± 0.25 ab | 1.11 ± 0.3 a | 0.59 ± 0.33 b | 0.87 ± 0.28 | 0.73 ± 0.47 | 0.67 ± 0.18 |
il-6 | 0.67 ± 0.15 a | 0.46 ± 0.13 b | 0.26 ± 0.12 c | 0.44 ± 0.33 | 0.29 ± 0.11 | 0.31 ± 0.12 | 0.35 ± 0.09 c,b | 0.4 ± 0.22 b | 0.65 ± 0.13 a |
tnf-α | 0.86 ± 0.49 | 0.91 ± 0.42 | 0.85 ± 0.61 | 0.75 ± 0.37 | 0.57 ± 0.38 | 0.41 ± 0.31 | 0.73 ± 0.43 | 0.87 ± 0.32 | 0.72 ± 0.62 |
Days of Feeding | |||||||||
---|---|---|---|---|---|---|---|---|---|
21 | 45 | 90 | |||||||
LSB0 | LSB100 | LSB300 | LSB0 | LSB100 | LSB300 | LSB0 | LSB100 | LSB300 | |
il-1β | 1.07 ± 0.06 a | 0.63 ± 0.21 b | 0.83 ± 0.45 ab | 0.99 ± 0.2 | 1.03 ± 0.18 | 0.68 ± 0.59 | 0.76 ± 0.08 | 0.95 ± 0.52 | 0.78 ± 0.13 |
il-6 | 0.79 ± 0.29 | 0.74 ± 0.17 | 0.83 ± 0.33 | 0.88 ± 0.32 ab | 1.02 ± 0.21 a | 0.70 ± 0.2 b | 0.76 ± 0.25 | 0.70 ± 0.06 | 1.04 ± 0.46 |
tnf-α | 1.1 ± 0.42 | 1.25 ± 0.36 | 1.21 ± 0.33 | 1.16 ± 0.36 | 0.79 ± 0.38 | 0.89 ± 0.36 | 0.90 ± 0.33 | 1.18 ± 0.37 | 1.01 ± 0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perdichizzi, A.; Meola, M.; Caccamo, L.; Caruso, G.; Gai, F.; Maricchiolo, G. Live Yeast (Saccharomyces cerevisiae var. boulardii) Supplementation in a European Sea Bass (Dicentrarchus labrax) Diet: Effects on the Growth and Immune Response Parameters. Animals 2023, 13, 3383. https://doi.org/10.3390/ani13213383
Perdichizzi A, Meola M, Caccamo L, Caruso G, Gai F, Maricchiolo G. Live Yeast (Saccharomyces cerevisiae var. boulardii) Supplementation in a European Sea Bass (Dicentrarchus labrax) Diet: Effects on the Growth and Immune Response Parameters. Animals. 2023; 13(21):3383. https://doi.org/10.3390/ani13213383
Chicago/Turabian StylePerdichizzi, Anna, Martina Meola, Letteria Caccamo, Gabriella Caruso, Francesco Gai, and Giulia Maricchiolo. 2023. "Live Yeast (Saccharomyces cerevisiae var. boulardii) Supplementation in a European Sea Bass (Dicentrarchus labrax) Diet: Effects on the Growth and Immune Response Parameters" Animals 13, no. 21: 3383. https://doi.org/10.3390/ani13213383
APA StylePerdichizzi, A., Meola, M., Caccamo, L., Caruso, G., Gai, F., & Maricchiolo, G. (2023). Live Yeast (Saccharomyces cerevisiae var. boulardii) Supplementation in a European Sea Bass (Dicentrarchus labrax) Diet: Effects on the Growth and Immune Response Parameters. Animals, 13(21), 3383. https://doi.org/10.3390/ani13213383