Analysis and Comparison of Proteomics of Placental Proteins from Cows Using Different Proteases
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Placenta Collection and Preparation
2.2. Liquid Chromatography (LC)-Electrospray Ionization (ESI) Tandem MS (MS/MS) Analysis
2.3. Label Free Analysis
2.4. Bioinformatics Analysis
3. Results
3.1. Comparative Evaluation of Protein Extraction Efficiency in Cow Placenta Hydrolyzed by Three Proteases
3.2. Analysis of Cow Placenta Quantifiable Proteins with Three Proteases
3.3. GO and KEGG Analysis of Cow Placenta Quantifiable Proteins with Three Proteases
3.4. Identification of Differentially Expressed Proteins (DEPs)
3.5. Cluster Analysis of DEPs
3.6. GO and KEGG Enrichment Analysis of the DEPs
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, S.; Regnault, T.R.; Barker, P.L.; Botting, K.J.; McMillen, I.C.; McMillan, C.M.; Roberts, C.T.; Morrison, J.L. Placental adaptations in growth restriction. Nutrients 2015, 7, 360–389. [Google Scholar] [CrossRef] [PubMed]
- Cross, J.C.; Werb, Z.; Fisher, S.J. Implantation and the placenta: Key pieces of the development puzzle. Science 1994, 266, 1508–1518. [Google Scholar] [CrossRef] [PubMed]
- Canisso, I.F.; Loux, S.C.; Lima, F.S. Biomarkers for placental disease in mares. Theriogenology 2020, 150, 302–307. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.; Long, W.; Zhao, C.; Guo, X.; Shen, R.; Ding, H. Comparative proteomics analysis suggests that placental mitochondria are involved in the development of pre-eclampsia. PLoS ONE 2013, 8, e64351. [Google Scholar] [CrossRef] [PubMed]
- Pan, H.T.; Ding, H.G.; Fang, M.; Yu, B.; Cheng, Y.; Tan, Y.J.; Fu, Q.Q.; Lu, B.; Cai, H.G.; Jin, X.; et al. Proteomics and bioinformatics analysis of altered protein expression in the placental villous tissue from early recurrent miscarriage patients. Placenta 2018, 61, 1–10. [Google Scholar] [CrossRef]
- Olsen, J.V.; Ong, S.E.; Mann, M. Trypsin cleaves exclusively C-terminal to arginine and lysine residues. Mol. Cell. Proteom. 2004, 3, 608–614. [Google Scholar] [CrossRef]
- Imre, T.; Schlosser, G.; Pocsfalvi, G.; Siciliano, R.; Molnár-Szöllosi, E.; Kremmer, T.; Malorni, A.; Vékey, K. Glycosylation site analysis of human alpha-1-acid glycoprotein (AGP) by capillary liquid chromatography-electrospray mass spectrometry. J. Mass Spectrom. 2005, 40, 1472–1483. [Google Scholar] [CrossRef]
- Zhu, Y. Extraction of Dairy Cow Derived Polypeptides and Analysis & Identification for the Reductive Component. Master’s Thesis, Sichuan Agricultural University, Chengdu, China, 2020; p. 89. [Google Scholar] [CrossRef]
- Shen, L.; You, S.; Zhu, Y.; Zhang, Y.; Hussain, S.; Qian, B.; Lü, S.; Shen, Y.; Yu, S.; Zong, X.; et al. Preparation of reductive polypeptides from fresh placentas of dairy cows. Vet. Res. Forum 2022, 13, 163–168. [Google Scholar] [CrossRef]
- Bindea, G.; Mlecnik, B.; Hackl, H.; Charoentong, P.; Tosolini, M.; Kirilovsky, A.; Fridman, W.H.; Pagès, F.; Trajanoski, Z.; Galon, J. ClueGO: A Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 2009, 25, 1091–1093. [Google Scholar] [CrossRef]
- Chu, C.; Yan, N.; Du, Y.; Liu, X.; Chu, M.; Shi, J.; Zhang, H.; Liu, Y.; Zhang, Z. iTRAQ-based proteomic analysis reveals the accumulation of bioactive compounds in Chinese wild rice (Zizania latifolia) during germination. Food Chem. 2019, 289, 635–644. [Google Scholar] [CrossRef]
- Chiaradia, E.; Pepe, M.; Sassi, P.; Mohren, R.; Orvietani, P.L.; Paolantoni, M.; Tognoloni, A.; Sforna, M.; Eveque, M.; Tombolesi, N.; et al. Comparative label-free proteomic analysis of equine osteochondrotic chondrocytes. J. Proteom. 2020, 228, 103927. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Jiang, X.; Sun, D.; Han, G.; Wang, F.; Ye, M.; Wang, L.; Zou, H. Glycoproteomics analysis of human liver tissue by combination of multiple enzyme digestion and hydrazide chemistry. J. Proteome Res. 2009, 8, 651–661. [Google Scholar] [CrossRef]
- Xu, L.L.; Zhang, H.W.; Zhang, X.M.; Lin, H.; Guo, Y.M.; Yu, C.; Sun, L.R.; Li, Z.X. Natural Shrimp (Litopenaeus vannamei) Tropomyosin Shows Higher Allergic Properties than Recombinant Ones as Compared through SWATH-MS-Based Proteomics and Immunological Response. J. Agric. Food Chem. 2020, 68, 11553–11567. [Google Scholar] [CrossRef] [PubMed]
- Boukil, A.; Perreault, V.; Chamberland, J.; Mezdour, S.; Pouliot, Y.; Doyen, A. High Hydrostatic Pressure-Assisted Enzymatic Hydrolysis Affect Mealworm Allergenic Proteins. Molecules 2020, 25, 2685. [Google Scholar] [CrossRef] [PubMed]
- Huang, B.B.; Lin, H.C.; Chang, Y.W. Analysis of proteins and potential bioactive peptides from tilapia (Oreochromis spp.) processing co-products using proteomic techniques coupled with BIOPEP database. J. Funct. Foods 2015, 19, 629–640. [Google Scholar] [CrossRef]
- Li, Q.; Fu, Y.; Zhang, L.; Otte, J.; Lametsch, R. Plastein from hydrolysates of porcine hemoglobin and meat using Alcalase and papain. Food Chem. 2020, 320, 126654. [Google Scholar] [CrossRef]
- Sainz Hernández, J.C.; Cordova Murueta, J.H. Activity of trypsin from Litopenaeus vannamei. Aquaculture 2009, 290, 190–195. [Google Scholar] [CrossRef]
- Jiao, F.; Zhang, D.; Jiang, M.; Mi, J.; Liu, X.; Zhang, H.; Hu, Z.; Xu, X.; Hu, X. Label-free proteomic analysis of placental proteins during Toxoplasma gondii infection. J. Proteom. 2017, 150, 31–39. [Google Scholar] [CrossRef]
- Wawrzykowski, J.; Franczyk, M.; Hoedemaker, M.; Kankofer, M. The comparison of protein map between retained and released bovine placenta. Res. Vet. Sci. 2019, 125, 45–51. [Google Scholar] [CrossRef]
- López-Ferrer, D.; Petritis, K.; Robinson, E.W.; Hixson, K.K.; Tian, Z.; Lee, J.H.; Lee, S.W.; Tolić, N.; Weitz, K.K.; Belov, M.E.; et al. Pressurized pepsin digestion in proteomics: An automatable alternative to trypsin for integrated top-down bottom-up proteomics. Mol. Cell. Proteom. 2011, 10, M110.001479. [Google Scholar] [CrossRef]
- Tejano, L.A.; Peralta, J.P.; Yap, E.E.S.; Panjaitan, F.C.A.; Chang, Y.W. Prediction of bioactive peptides from chlorella sorokiniana proteins using proteomic techniques in combination with bioinformatics analyses. Int. J. Mol. Sci. 2019, 20, 1786. [Google Scholar] [CrossRef] [PubMed]
- Esfandi, R.; Willmore, W.G.; Tsopmo, A. Peptidomic analysis of hydrolyzed oat bran proteins, and their in vitro antioxidant and metal chelating properties. Food Chem. 2019, 279, 49–57. [Google Scholar] [CrossRef] [PubMed]
- López-Pedrouso, M.; Borrajo, P.; Pateiro, M.; Lorenzo, J.M.; Franco, D. Antioxidant activity and peptidomic analysis of porcine liver hydrolysates using alcalase, bromelain, flavourzyme and papain enzymes. Food Res. Int. 2020, 137, 109389. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Mao, J.L.; Yao, H.; Aubourg, S.P. Label-free based proteomics analysis of protein changes in frozen whiteleg shrimp (Litopenaeus vannamei) pre-soaked with sodium trimetaphosphate. Food Res. Int. 2020, 137, 109455. [Google Scholar] [CrossRef]
- Ner-Kluza, J.; Wawrzykowski, J.; Franczyk, M.; Siberring, J.; Kankofer, M. Identification of protein patterns in bovine placenta at early-mid pregnancy—Pilot studies. Rapid Commun. Mass Spectrom. 2019, 33, 1084–1090. [Google Scholar] [CrossRef] [PubMed]
- Wen, S.; Zhou, G.; Song, S.; Xu, X.; Voglmeir, J.; Liu, L.; Zhao, F.; Li, M.; Li, L.; Yu, X.; et al. Discrimination of in vitro and in vivo digestion products of meat proteins from pork, beef, chicken, and fish. Proteomics 2015, 15, 3688–3698. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Zheng, N.; Zhao, X.; Yang, J.; Zhang, Y.; Han, R.; Zhao, S.; Li, S.; Wen, F.; Wang, J. Changes in whey proteome with lactation stage and parity in dairy cows using a label-free proteomics approach. Food Res. Int. 2020, 128, 108760. [Google Scholar] [CrossRef]
Sample Name | Proteins | Peptides | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
BR 1 | BR 2 | BR 3 | Mean | SD | CV (%) | BR 1 | BR 2 | BR 3 | Mean | SD | CV (%) | |
TRY | 401 | 443 | 430 | 425 | 18 | 4 | 2022 | 2489 | 2002 | 2171 | 225 | 10 |
PEP | 117 | 111 | 113 | 114 | 2 | 2 | 993 | 939 | 816 | 916 | 74 | 8 |
PAP | 64 | 59 | 44 | 56 | 8 | 15 | 99 | 98 | 62 | 86 | 17 | 20 |
Comparisons | Consistent Presence/Absence Expression Profile | |
---|---|---|
Presence | Absence | |
Papain group vs. Trypsin group | 31 | 391 |
Trypsin group vs. Pepsin group | 47 | 340 |
Pepsin group vs. Papain group | 96 | 34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, L.; Zhang, Z.; Zhang, Y.; Zhao, Y.; Fan, L.; Yu, S.; Cao, S.; Huang, Y. Analysis and Comparison of Proteomics of Placental Proteins from Cows Using Different Proteases. Animals 2023, 13, 3395. https://doi.org/10.3390/ani13213395
Shen L, Zhang Z, Zhang Y, Zhao Y, Fan L, Yu S, Cao S, Huang Y. Analysis and Comparison of Proteomics of Placental Proteins from Cows Using Different Proteases. Animals. 2023; 13(21):3395. https://doi.org/10.3390/ani13213395
Chicago/Turabian StyleShen, Liuhong, Zeru Zhang, Yue Zhang, Yuquan Zhao, Lei Fan, Shumin Yu, Suizhong Cao, and Yixin Huang. 2023. "Analysis and Comparison of Proteomics of Placental Proteins from Cows Using Different Proteases" Animals 13, no. 21: 3395. https://doi.org/10.3390/ani13213395
APA StyleShen, L., Zhang, Z., Zhang, Y., Zhao, Y., Fan, L., Yu, S., Cao, S., & Huang, Y. (2023). Analysis and Comparison of Proteomics of Placental Proteins from Cows Using Different Proteases. Animals, 13(21), 3395. https://doi.org/10.3390/ani13213395