Sustenance Trial to Analyze the Effects of Black Soldier Fly Larvae Meal on the Reproductive Efficiency of Sows and the Hematological Properties of Suckling and Weaning Piglets
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals, Diets, and Experimental Procedure
2.2. Sample Collection
2.3. Statistical Analysis
3. Results
3.1. Reproductive Performance of the Sows
3.2. Piglet Growth Performance
3.3. Hematological Composition and Blood Properties of Sows
3.4. Piglets Anatomical Parameters
3.5. Hematological Composition and Blood Properties of Piglets
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alexandratos, N.; Bruinsma, J. World Agriculture Towards 2030/2050: The 2012 Revision; ESA Working Paper; Food and Agriculture Organization: Rome, Italy, 2012; Volume 12, Available online: http://www.fao.org/docrep/016/ap106e/ap106e.pdf (accessed on 1 October 2023).
- Cho, J.H.; Kim, I.H. Fish meal–nutritive value. J. Anim. Physiol. Anim. Nutr. 2011, 95, 685–692. [Google Scholar] [CrossRef] [PubMed]
- Kerr, B.J.; Urriola, P.E.; Jha, R.; Thomson, J.E.; Curry, S.M.; Shurson, G.C. Amino acid composition and digestible amino acid content in animal protein by-product meals fed to growing pigs. J. Anim. Sci. 2019, 97, 4540–4547. [Google Scholar] [CrossRef] [PubMed]
- Colombo, S.M.; Roy, K.; Mraz, J.; Wan, A.H.L.; Davies, S.J.; Tibbetts, S.M.; Øverland, M.; Francis, D.S.; Rocker, M.M.; Gasco, L.; et al. Towards achieving circularity and sustainability in feeds for farmed blue foods. Rev. Aquacult. 2023, 15, 1115–1141. [Google Scholar] [CrossRef]
- Mohanty, A.; Rout, P.R.; Dubey, B.; Meena, S.S.; Pal, P.; Goel, M. A critical review on biogas production from edible and non-edible oil cakes. Biomass Convers. Biorefin 2021, 12, 949–966. [Google Scholar] [CrossRef] [PubMed]
- Ritchie, H.; Roser, M. Forests and Deforestation. [Online Resource]. 2021. Available online: https://ourworldindata.org/forests-and-deforestation (accessed on 1 October 2023).
- Stabile, M.C.C.; Guimarães, A.L.; Silva, D.S.; Ribeiro, V.; Macedo, M.N.; Coe, M.T.; Pinto, E.; Moutinho, P.; Alencar, A.; Moutinho, P.; et al. Solving Brazil’s land use puzzle: Increasing production and slowing Amazon deforestation. Land. Use Policy 2020, 91, 104362. [Google Scholar] [CrossRef]
- Van Huis, A.; Dicke, M.; van Loon, J.J.A. Insects to feed the world. J. Insects Food Feed. 2015, 1, 3–5. [Google Scholar] [CrossRef]
- Sogari, G.; Amato, M.; Biasato, I.; Chiesa, S.; Gasco, L. The potential role of insects as feed: A multi-perspective review. Animals 2019, 9, 119. [Google Scholar] [CrossRef]
- Lalander, C.; Diener, S.; Zurbrügg, C.; Vinnerås, B. Effects of feedstock on larval development and process efficiency in waste treatment with black soldier fly (Hermetia illucens). J. Cleaner Prod. 2019, 208, 211–219. [Google Scholar] [CrossRef]
- Van Huis, A.; Gasco, L. Insects as feed for livestock production. Science 2023, 379, 138–139. [Google Scholar] [CrossRef]
- Gasco, L.; Biasato, I.; Dabbou, S.; Schiavone, A.; Gai, F. Animals fed insect-based diets: State-of-the-art on digestibility, performance and product quality. Animals 2019, 9, 170. [Google Scholar] [CrossRef]
- Velten, S.; Neumann, C.; Dorper, A.; Liebert, F. Response of piglets due to amino acid optimization of mixed diets with 75% replacement of soybean-meal by partly defatted insect meal (H. illucens). In Proceedings of the INSECTA, Berin, Germany, 7–8 September 2017; p. 63. [Google Scholar]
- Spranghers, T.; Michiels, J.; Vrancx, J.; Ovyn, A.; Eeckhout, M.; De Clercq, P.; De Smet, S. Gut antimicrobial effects and nutritional value of black soldier fly (Hermetia illucens L.) prepupae for weaned piglets. Anim. Feed. Sci. Technol. 2018, 235, 33–42. [Google Scholar] [CrossRef]
- Biasato, I.; Renna, M.; Gai, F.; Dabbou, S.; Meneguz, M.; Perona, G.; Martinez, S.; Lajusticia, A.C.B.; Bergagna, S.; Sardi, L.; et al. Partially defatted black soldier fly larva meal inclusion in piglet diets: Effects on the growth performance, nutrient digestibility, blood profile, gut morphology and histological features. J. Anim. Sci. Biotechnol. 2019, 10, 12. [Google Scholar] [CrossRef]
- Yu, M.; Li, Z.; Chen, W.; Rong, T.; Wang, G.; Li, J.; Ma, X. Use of Hermetia illucens larvae as a dietary protein source: Effects on growth performance, carcass traits, and meat quality in finishing pigs. Meat Sci. 2019, 158, 107837. [Google Scholar] [CrossRef] [PubMed]
- Zhuo, Y.; Feng, B.; Xuan, Y.; Che, L.; Fang, Z.; Lin, Y.; Xu, S.; Li, J.; Feng, B.; Wu, D.; et al. Inclusion of purified dietary fiber during gestation improved the reproductive performance of sows. J. Anim. Sci. Biotechnol. 2020, 11, 47. [Google Scholar] [CrossRef] [PubMed]
- Qin, F.; Wei, W.; Gao, J.; Jiang, X.; Che, L.; Fang, Z.; Lin, Y.; Feng, B.; Zhuo, Y.; Hua, L.; et al. Effect of dietary fiber on reproductive performance, intestinal microorganisms and immunity of the sow: A review. Microorganisms 2023, 11, 2292. [Google Scholar] [CrossRef] [PubMed]
- Mohan, K.; Ganesan, A.R.; Muralisankar, T.; Jayakumar, R.; Sathishkumar, P.; Uthayakumar, V.; Chandirasekar, R.; Revathi, N. Recent insights into the extraction, characterization, and bioactivities of chitin and chitosan from insects. Trends Food Sci. Technol. 2020, 105, 17–42. [Google Scholar] [CrossRef]
- Borrelli, L.; Coretti, L.; Dipineto, L.; Bovera, F.; Menna, F.; Chiariotti, L.; Nizza, A.; Lembo, F.; Fioretti, A.; Lembo, F.; et al. Insect-based diet, a promising nutritional source, modulates gut microbiota composition and SCFAs production in laying hens. Sci. Rep. 2017, 7, 16269. [Google Scholar] [CrossRef]
- Rodriguez, J.; Neyrinck, A.M.; Zhang, Z.; Seethaler, B.; Nazare, J.A.; Robles Sánchez, C.; Roumain, M.; Muccioli, G.G.; Bindels, L.B.; Cani, P.D.; et al. Metabolite profiling reveals the interaction of chitin-glucan with the gut microbiota. Gut Microbes 2020, 12, 1810530. [Google Scholar] [CrossRef]
- Zhao, J.; Ban, T.; Miyawaki, H.; Hirayasu, H.; Izumo, A.; Iwase, S.I.; Kasai, K.; Kawasaki, K.; Kawasaki, K. Long-term dietary fish meal substitution with the black soldier fly larval meal modifies the caecal microbiota and microbial pathway in laying hens. Animals 2023, 13, 2629. [Google Scholar] [CrossRef]
- Yu, M.; Li, Z.; Chen, W.; Rong, T.; Wang, G.; Ma, X. Hermetia illucens larvae as a potential dietary protein source altered the microbiota and modulated mucosal immune status in the colon of finishing pigs. J. Anim. Sci. Biotechnol. 2019, 10, 50. [Google Scholar] [CrossRef]
- Campbell, J.M.; Crenshaw, J.D.; Polo, J. The biological stress of early weaned piglets. J. Anim. Sci. Biotechnol. 2013, 4, 19. [Google Scholar] [CrossRef] [PubMed]
- Gonyou, H.W.; Stookey, J.M. Maternal and neonatal behavior. Vet. Clin. North. Am. Food Anim. Pract. 1987, 3, 231–249. [Google Scholar] [CrossRef]
- Kobek-Kjeldager, C.; Vodolazs’ka, D.; Lauridsen, C.; Canibe, N.; Pedersen, L.J. Impact of supplemental liquid feed pre-weaning and piglet weaning age on feed intake post-weaning. Livest. Sci. 2021, 252, 104680. [Google Scholar] [CrossRef]
- Vente-Spreeuwenberg, M.A.M.; Verdonk, J.M.A.J.; Bakker, G.C.M.; Beynen, A.C.; Verstegen, M.W.A. Effect of dietary protein source on feed intake and small intestinal morphology in newly weaned piglets. Livest. Prod. Sci. 2004, 86, 169–177. [Google Scholar] [CrossRef]
- Association of Officiating Analytical Chemists (AOAC). Official Method of Analysis, 18th ed.; AOAC: Washington, DC, USA, 2006; Method 920.39, 934.01, 942.05, 976.06, 978.10, 982.30 E(a,b,c) chp. 45.3.05, and 993.14. [Google Scholar]
- Jonas-Levi, A.; Martinez, J.J.I. 2017. The high level of protein content reported in insects for food and feed is overestimated. J. Food Compos. Anal. 2017, 62, 184–188. [Google Scholar] [CrossRef]
- Janssen, R.H.; Vincken, J.P.; van den Broek, L.A.; Fogliano, V.; Lakemond, C.M. Nitrogen-to-protein conversion factors for three edible insects: Tenebrio molitor, Alphitobius diaperinus, and Hermetia illucens. J. Agric. Food Chem. 2017, 65, 2275–2278. [Google Scholar] [CrossRef]
- Boulos, S.; Tännler, A.; Nyström, L. Nitrogen-to-Protein Conversion Factors for Edible Insects on the Swiss Market: T. molitor, A. domesticus, and L. migratoria. Front. Nutr. 2020, 7, 89. [Google Scholar] [CrossRef]
- Tsukahara, T.; Kishino, E.; Inoue, R.; Nakanishi, N.; Nakayama, K.; Ito, T.; Ushida, K. Correlation between villous height and the disaccharidase activity in the small intestine of piglets from nursing to growing. Anim. Sci. J. 2013, 84, 54–59. [Google Scholar] [CrossRef] [PubMed]
- Kawasaki, K.; Wada, K.; Sato, A.; Zhao, J.; Takao, N.; Sato, M.; Ban, T.; Yano, K.; Yano, K. Effects of dietary bamboo (Phyllostachys pubescens Mazel) culm powder on blood properties and intestinal environment of rabbits. Anim. Sci. J. 2022, 93, e13774. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing. 2023. Available online: https://www.R-project.org (accessed on 1 October 2023).
- Gebhardt, J.T.; Tokach, M.D.; Dritz, S.S.; DeRouchey, J.M.; Woodworth, J.C.; Goodband, R.D.; Henry, S.C. Postweaning mortality in commercial swine production. I: Review of non-infectious contributing factors. Transl. Anim. Sci. 2020, 4, 462–484. [Google Scholar] [CrossRef]
- Verheyen, A.J.; Maes, D.G.; Mateusen, B.; Deprez, P.; Janssens, G.P.; de Lange, L.; Counotte, G. Serum biochemical reference values for gestating and lactating sows. Vet. J. 2007, 174, 92–98. [Google Scholar] [CrossRef]
- Sipos, W.; Duvigneau, C.J.; Hartl, R.T.; Schwendenwein, I. Exploratory reference intervals on hematology and cellular immune system of multiparous Large White sows. Vet. Immunol. Immunopathol. 2011, 141, 307–311. [Google Scholar] [CrossRef] [PubMed]
- Boulbria, G.; Costa, C.T.; Normand, V.; Bachy, V.; Rochel, D.; Brissonnier, M.; Berton, P.; Bouchet, F.; Lebret, A.; Bouchet, F.; et al. Haematological reference intervals of sows at end gestation in ten French herds, the impact of parity on haematological parameters and the consequences on reproductive performance. Porcine Health Manag. 2021, 7, 47. [Google Scholar] [CrossRef] [PubMed]
- Kawasaki, K.; Osafune, T.; Tamehira, S.; Yano, K. Piglets can secrete acidic mammalian chitinase from the pre weaning stage. Sci. Rep. 2021, 11, 1297. [Google Scholar] [CrossRef]
- Liu, S.; Wang, J.; Li, L.; Duan, Y.; Zhang, X.; Wang, T.; Zang, J.; Piao, X.; Ma, Y.; Li, D. Endogenous chitinase might lead to differences in growth performance and intestinal health of piglets fed different levels of black soldier fly larva meal. Anim. Nutr. 2023, 14, 411–424. [Google Scholar] [CrossRef]
- Schoknecht, P.A.; Pond, W.G. Short-term ingestion of a high protein diet increases liver and kidney mass and protein accretion but not cellularity in young pigs. Proc. Soc. Exp. Biol. Med. 1993, 203, 251–254. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Yu, B.; Liu, Q.; Zhang, Y.; Zhu, M.; Shi, L.; Chen, H. Assessment of hematologic and biochemical parameters for healthy commercial pigs in China. Animals 2022, 12, 2464. [Google Scholar] [CrossRef]
- Leong, S.Y.; Kutty, S.R.M.; Tan, C.K.; Tey, L.H. Comparative study on the effect of organic waste on lauric acid produced by Hermetia illucens larvae via bioconversion. J. Eng. Sci. Technol. 2015, 8, 52–63. [Google Scholar]
- Meneguz, M.; Schiavone, A.; Gai, F.; Dama, A.; Lussiana, C.; Renna, M.; Gasco, L. Effect of rearing substrate on growth performance, waste reduction efficiency and chemical composition of black soldier fly (Hermetia illucens) larvae. J. Sci. Food Agric. 2018, 98, 5776–5784. [Google Scholar] [CrossRef]
- Kawasaki, K.; Hashimoto, Y.; Hori, A.; Kawasaki, T.; Hirayasu, H.; Iwase, S.I.; Hashizume, A.; Ido, A.; Miura, C.; Miura, T.; et al. Evaluation of black soldier fly (Hermetia illucens) Larvae and Pre-Pupae Raised on Household Organic Waste, as Potential Ingredients for Poultry Feed. Animals 2019, 9, 98. [Google Scholar] [CrossRef]
- Ewald, N.; Vidakovic, A.; Langeland, M.; Kiessling, A.; Sampels, S.; Lalander, C. Fatty acid composition of black soldier fly larvae (Hermetia illucens)—Possibilities and limitations for modification through diet. Waste Manag. 2020, 102, 40–47. [Google Scholar] [CrossRef]
- Eggink, K.M.; Lund, I.; Pedersen, P.B.; Hansen, B.W.; Dalsgaard, J. Biowaste and by-products as rearing substrates for black soldier fly (Hermetia illucens) larvae: Effects on larval body composition and performance. PLoS ONE 2022, 17, e0275213. [Google Scholar] [CrossRef]
- Alvanou, M.V.; Kyriakoudi, A.; Makri, V.; Lattos, A.; Feidantsis, K.; Papadopoulos, D.K.; Georgoulis, I.; Apostolidis, A.P.; Michaelidis, B.; Mourtzinos, I.; et al. Effects of dietary substitution of fishmeal by black soldier fly (Hermetia illucens) meal on growth performance, whole-body chemical composition, and fatty acid profile of Pontastacus leptodactylus juveniles. Front. Physiol. 2023, 14, 1156394. [Google Scholar] [CrossRef] [PubMed]
- Ohlsson, L. Dairy products and plasma cholesterol levels. Food Nutr. Res. 2010, 54, 5124. [Google Scholar] [CrossRef]
- Xia, J.; Yu, P.; Zeng, Z.; Ma, M.; Zhang, G.; Wan, D.; Gong, D.; Deng, S.; Wang, J.; Deng, S.; et al. High dietary intervention of lauric triglyceride might be harmful to its improvement of cholesterol metabolism in obese rats. J. Agric. Food Chem. 2021, 69, 4453–4463. [Google Scholar] [CrossRef] [PubMed]
Ingredient (%) | Sow | Pre-Weaning | Post-Weaning | ||||||
---|---|---|---|---|---|---|---|---|---|
C | L | H | C | L | H | C | L | H | |
Corn | 62.9 | 63.4 | 63.3 | 35.0 | 34.8 | 32.0 | 48.5 | 50.0 | 51.5 |
Soybean meal | 10.0 | 9.4 | 7.1 | 5.0 | 4.2 | 2.8 | 22.0 | 20.8 | 19.5 |
Breadcrumbs | - | - | - | 23.0 | 25.0 | 30.0 | 10.0 | 10.0 | 10.0 |
Wheat flour | - | - | - | 5.0 | 5.0 | 5.0 | 5.0 | 5.2 | 5.5 |
Wheat bran | 0.0 | 0.0 | 2.5 | - | - | - | - | - | - |
Corn gluten feed | 4.4 | 4.5 | 4.5 | - | - | - | - | - | - |
Dried Distillers Grains Soluble | 4.2 | 4.4 | 4.4 | - | - | - | - | - | - |
Rice bran | 7.7 | 7.8 | 7.8 | - | - | - | 0.1 | 0.1 | 0.1 |
Black soldier fly larvae meal (defatted) | 0.0 | 2.3 | 4.6 | 0.0 | 12.5 | 25.0 | 0.0 | 4.0 | 8.0 |
Fish meal (CP60%) | - | - | - | 10.0 | 5.0 | 0.0 | 4.0 | 2.0 | 0.0 |
Fish meal (CP65%) | 4.6 | 2.3 | 0.0 | - | - | - | - | - | - |
Skimmed milk | - | - | - | 5.0 | 2.5 | 0.0 | 4.0 | 2.0 | 0.0 |
Whey protein concentrate (CP80%) | - | - | - | 5.0 | 2.5 | 0.0 | - | - | - |
Spray dried porcine plasma | - | - | - | 5.0 | 2.5 | 0.0 | 3.0 | 2.5 | 2.0 |
Corn oil | 0.5 | 0.1 | 0.0 | 4.0 | 3.0 | 2.0 | - | - | - |
Animal fat | 2.5 | 2.6 | 2.6 | - | - | - | - | - | - |
Tricalcium phosphate | 1.5 | 1.5 | 1.5 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 |
Calcium carbonate | 0.5 | 0.5 | 0.5 | - | - | - | - | - | - |
Salt | 0.3 | 0.3 | 0.3 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |
Vitamin mineral mix 1 | 0.2 | 0.2 | 0.2 | 0.5 | 0.5 | 0.7 | 0.8 | 0.7 | 0.7 |
Lysine hydrochloride | 0.7 | 0.8 | 0.8 | - | - | - | 0.1 | 0.2 | 0.2 |
L-Threonine | 0.0 | 0.0 | 0.0 | - | - | - | - | - | - |
Composition (%) | Sow | Pre-Weaning | Post-Weaning | BSF (Defatted) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
C | L | H | C | L | H | C | L | H | ||
Crude protein 1,2 | 16.33 | 16.20 | 15.28 | 23.30 | 23.00 | 22.62 | 19.58 | 19.54 | 19.46 | 55.23 |
Crude fat 1 | 6.12 | 5.90 | 5.86 | 6.99 | 7.06 | 7.16 | 6.16 | 5.91 | 5.67 | 11.06 |
Crude fiber 1 | 2.93 | 3.06 | 3.33 | 1.13 | 2.00 | 2.80 | 2.18 | 2.43 | 2.68 | 8.28 |
Crude ash 1 | 5.41 | 5.17 | 5.08 | 3.66 | 3.75 | 3.85 | 3.39 | 3.20 | 3.00 | 10.12 |
NFE 3 | 69.21 | 69.67 | 70.45 | 64.92 | 64.19 | 63.57 | 68.69 | 68.92 | 69.19 | 15.31 |
Ca 1 | 0.88 | 0.87 | 0.80 | 1.19 | 1.30 | 1.40 | 1.01 | 0.98 | 0.96 | 2.90 |
P 1 | 0.84 | 0.80 | 0.76 | 0.93 | 0.82 | 0.72 | 0.83 | 0.77 | 0.72 | 1.05 |
Na 1 | 0.23 | 0.19 | 0.19 | 0.26 | 0.26 | 0.25 | 0.26 | 0.24 | 0.22 | 0.08 |
Lysine 1 | 1.31 | 1.37 | 1.30 | 1.36 | 1.23 | 1.10 | 1.17 | 1.23 | 1.20 | 3.35 |
Methionine 1 | 0.30 | 0.29 | 0.27 | 0.39 | 0.40 | 0.41 | 0.33 | 0.32 | 0.31 | 1.14 |
Threonine 1 | 0.63 | 0.60 | 0.57 | 0.91 | 0.88 | 0.84 | 0.73 | 0.73 | 0.73 | 2.32 |
Chitin 1,3 | - | 0.15 3 | 0.30 3 | - | 0.82 3 | 1.64 3 | - | 0.26 3 | 0.52 3 | 6.54 1 |
ME (Mcal/kg) 3,4 | 4.10 | 4.10 | 4.09 | 4.27 | 4.24 | 4.21 | 4.21 | 4.20 | 4.18 | 3.80 |
Items | C | L | H | SEM | p-Value |
---|---|---|---|---|---|
Birth litter size † | 9.9 ± 1.3 | 8.8 ± 1.2 | 12.3 ± 0.8 | 0.68 | 0.064 |
Weaning litter size † | 9.0 ± 1.1 | 7.9 ± 1.3 | 10.9 ± 0.7 | 0.63 | 0.116 |
Weaning rate ‡ | 92.4 ± 2.1 | 89.4 ± 6.2 | 90.4 ± 4.8 | 2.60 | 0.833 |
Body weight at birth (g) ‡ | 1227.3 ± 66.7 | 1449.4 ± 98.2 | 1207.8 ± 54.9 | 46.75 | 0.162 |
Body weight at 21 d (g) ‡ | 6648.1 ± 449.8 | 7538.2 ± 527.8 | 5671.8 ± 233.8 | 274.65 | 0.100 |
Body weight at weaning (g) ‡ | 9113.1 ± 557.4 | 9956.3 ± 705.8 | 7685.4 ± 277.9 | 349.22 | 0.205 |
Body weight gain (21–28 d, g) ‡ | 2465.0 ± 162.3 | 2418.1 ± 224.0 | 2013.7 ± 110.9 | 102.96 | 0.518 |
Body weight gain (g) ‡ | 7925.0 ± 517.6 | 8498.1 ± 627.4 | 6439.8 ± 277.4 | 319.91 | 0.186 |
Items | C | L | H | SEM | p-Value |
---|---|---|---|---|---|
Body weight at 28 d (kg) † | 8.73 ± 0.38 | 9.65 ± 0.67 | 8.50 ± 0.31 | 0.24 | 0.364 |
Body weight at 35 d (kg) ‡ | 10.70 ± 0.43 | 11.20 ± 0.67 | 9.79 ± 0.24 | 0.29 | 0.241 |
Body weight at 63 d (kg) ‡ | 27.09 ± 1.46 | 28.91 ± 2.27 | 25.34 ± 1.43 | 1.04 | 0.809 |
Body weight gain (28–35 d, kg) ‡ | 1.97 ± 0.26 | 1.53 ± 0.30 | 1.29 ± 0.20 | 0.14 | 0.241 |
Body weight gain (35–63 d, kg) ‡ | 16.39 ± 1.49 | 17.75 ± 1.81 | 15.54 ± 1.55 | 0.92 | 0.786 |
Body weight gain (28–64 d, kg) ‡ | 18.36 ± 1.66 | 19.20 ± 1.99 | 16.83 ± 1.70 | 1.00 | 0.809 |
Feed intake (28–35 d, kg) ‡ | 3.44 ± 0.17 | 2.96 ± 0.34 | 2.81 ± 0.09 | 0.14 | 0.171 |
Feed intake (35–63 d, kg) ‡ | 33.38 ± 1.10 | 33.39 ± 3.71 | 30.69 ± 3.19 | 1.58 | 0.255 |
Feed intake (28–63 d, kg) ‡ | 36.81 ± 1.21 | 36.34 ± 3.82 | 33.50 ± 3.23 | 1.64 | 0.303 |
Feed conversion rate (28–35 d) ‡ | 1.94 ± 0.38 | 2.23 ± 0.41 | 2.45 ± 0.47 | 0.21 | 0.347 |
Feed conversion rate (35–63 d) ‡ | 2.11 ± 0.20 | 1.99 ± 0.32 | 2.01 ± 0.17 | 0.12 | 0.830 |
Feed conversion rate (28–63 d) ‡ | 2.08 ± 0.21 | 1.99 ± 0.29 | 2.02 ± 0.15 | 0.12 | 0.899 |
Items | C | L | H | SEM | p-Value |
---|---|---|---|---|---|
2 months after AI (60 d) | |||||
RBC (×1012) | 7.1 ± 0.3 | 6.9 ± 0.2 | 6.8 ± 0.3 | 0.14 | 0.74 |
WBC (×10⁹/L) | 14.4 ± 1.4 | 13.9 ± 0.9 | 12.4 ± 1.0 | 0.65 | 0.47 |
Lymph (×10⁹/L) | 6.2 ± 0.8 ab | 6.9 ± 0.5 a | 4.8 ± 0.4 b | 0.36 | 0.04 * |
Mon (×10⁹/L) | 0.8 ± 0.2 | 0.5 ± 0.1 | 0.5 ± 0.1 | 0.07 | 0.12 |
Gran (×10⁹/L) | 7.4 ± 1.1 | 6.5 ± 0.6 | 6.0 ± 0.7 | 0.44 | 0.51 |
Lymph (%) | 44.2 ± 3.9 | 50.4 ± 2.2 | 43.4 ± 3.8 | 1.88 | 0.25 |
Mon (%) | 5.0 ± 0.4 | 3.8 ± 0.3 | 4.2 ± 0.4 | 0.22 | 0.07 |
Gran (%) | 50.8 ± 3.8 | 45.9 ± 2.0 | 52.4 ± 3.7 | 1.79 | 0.30 |
PLT (×10⁹/L) | 161.1 ± 15.0 | 148.6 ± 14.7 | 185.0 ± 17.0 | 9.13 | 0.28 |
HGB (g/L) | 141.6 ± 4.4 | 136.6 ± 2.8 | 136.0 ± 6.1 | 2.62 | 0.66 |
HCT (%) | 45.1 ± 1.4 | 43.5 ± 0.9 | 43.6 ± 1.9 | 0.83 | 0.72 |
MCV (fL) | 64.0 ± 0.8 | 62.9 ± 0.9 | 64.0 ± 0.8 | 0.47 | 0.42 |
MCH (pg) | 20.0 ± 0.3 | 19.7 ± 0.2 | 19.9 ± 0.2 | 0.14 | 0.66 |
MCHC (g/L) | 313.7 ± 1.7 | 314.0 ± 1.3 | 311.2 ± 1.9 | 0.94 | 0.24 |
RDW (%) | 15.6 ± 0.3 | 15.4 ± 0.2 | 15.6 ± 0.3 | 0.15 | 0.82 |
MPV (fL) | 9.5 ± 0.3 | 9.2 ± 0.3 | 9.5 ± 0.3 | 0.15 | 0.59 |
PDW (%) | 16.9 ± 0.2 | 16.5 ± 0.1 | 16.8 ± 0.2 | 0.11 | 0.41 |
PCT (%) | 0.2 ± 0.0 | 0.1 ± 0.0 | 0.2 ± 0.0 | 0.01 | 0.25 |
2 weeks before farrowing (100 d) | |||||
RBC (×1012) | 6.8 ± 0.4 | 6.7 ± 0.2 | 6.4 ± 0.2 | 0.15 | 0.42 |
WBC (×10⁹/L) | 13.0 ± 1.0 | 13.0 ± 1.2 | 10.5 ± 0.8 | 0.60 | 0.15 |
Lymph (×10⁹/L) | 5.5 ± 0.6 | 6.1 ± 0.6 | 4.2 ± 0.3 | 0.33 | 0.06 |
Mon (×10⁹/L) | 0.6 ± 0.1 | 0.6 ± 0.1 | 0.4 ± 0.0 | 0.04 | 0.09 |
Gran (×10⁹/L) | 6.4 ± 0.8 | 6.7 ± 0.9 | 4.9 ± 0.3 | 0.43 | 0.21 |
Lymph (%) | 44.3 ± 1.5 | 45.5 ± 2.5 | 44.0 ± 1.9 | 1.19 | 0.88 |
Mon (%) | 5.0 ± 0.3 | 4.7 ± 0.4 | 4.4 ± 0.6 | 0.24 | 0.66 |
Gran (%) | 50.8 ± 1.6 | 49.8 ± 2.4 | 51.6 ± 2.1 | 1.20 | 0.84 |
PLT (×10⁹/L) | 111.9 ± 18.1 | 140.7 ± 22.8 | 154.7 ± 23.1 | 12.4 | 0.29 |
HGB (g/L) | 138.5 ± 6.7 | 131.4 ± 2.1 | 128.2 ± 4.0 | 2.70 | 0.28 |
HCT (%) | 43.8 ± 2.0 | 42.3 ± 0.7 | 40.7 ± 1.1 | 0.82 | 0.30 |
MCV (fL) | 64.6 ± 0.9 | 63.7 ± 1.0 | 64.3 ± 0.9 | 0.53 | 0.66 |
MCH (pg) | 20.3 ± 0.2 | 19.7 ± 0.3 | 20.1 ± 0.3 | 0.16 | 0.33 |
MCHC (g/L) | 315.4 ± 1.8 | 310.6 ± 2.1 | 312.5 ± 2.2 | 1.20 | 0.23 |
RDW (%) | 15.6 ± 0.3 | 16.4 ± 0.4 | 15.9 ± 0.3 | 0.19 | 0.19 |
MPV (fL) | 9.3 ± 0.2 | 9.4 ± 0.2 | 9.5 ± 0.3 | 0.14 | 0.85 |
PDW (%) | 17.2 ± 0.2 a | 16.5 ± 0.1 b | 16.6 ± 0.1 ab | 0.10 | 0.02 * |
PCT (%) | 0.1 ± 0.0 | 0.1 ± 0.0 | 0.1 ± 0.0 | 0.01 | 0.26 |
Weaning (142 d) | |||||
RBC (×1012) | 5.8 ± 0.3 | 6.1 ± 0.2 | 5.9 ± 0.1 | 0.12 | 0.61 |
WBC (×10⁹/L) | 14.4 ± 0.7 | 13.9 ± 1.4 | 13.8 ± 0.9 | 0.59 | 0.91 |
Lymph (×10⁹/L) | 4.2 ± 0.5 | 4.6 ± 0.6 | 3.6 ± 0.4 | 0.31 | 0.40 |
Mon (×10⁹/L) | 0.6 ± 0.1 | 0.7 ± 0.1 | 0.6 ± 0.1 | 0.04 | 0.64 |
Gran (×10⁹/L) | 9.1 ± 0.4 | 8.6 ± 1.0 | 8.9 ± 0.8 | 0.46 | 0.94 |
Lymph (%) | 30.0 ± 2.1 | 33.4 ± 2.4 | 28.3 ± 2.8 | 1.47 | 0.35 |
Mon (%) | 4.2 ± 0.4 | 5.0 ± 0.4 | 4.5 ± 0.5 | 0.26 | 0.53 |
Gran (%) | 65.8 ± 1.9 | 61.6 ± 2.6 | 67.2 ± 2.8 | 1.51 | 0.29 |
PLT (×10⁹/L) | 166.2 ± 20.3 | 191.9 ± 29.5 | 165.4 ± 27.6 | 14.7 | 0.73 |
HGB (g/L) | 104.8 ± 11.7 | 120.7 ± 4.3 | 118.4 ± 2.3 | 4.27 | 0.29 |
HCT (%) | 36.8 ± 1.6 | 38.7 ± 1.2 | 37.5 ± 0.6 | 0.69 | 0.57 |
MCV (fL) | 63.8 ± 0.8 | 63.7 ± 0.7 | 64.4 ± 0.6 | 0.40 | 0.53 |
MCH (pg) | 20.0 ± 0.3 | 19.8 ± 0.2 | 20.0 ± 0.2 | 0.13 | 0.51 |
MCHC (g/L) | 313.9 ± 2.2 | 311.1 ± 2.1 | 312.1 ± 2.2 | 1.23 | 0.69 |
RDW (%) | 15.4 ± 0.3 | 16.2 ± 0.4 | 15.7 ± 0.4 | 0.20 | 0.22 |
MPV (fL) | 8.8 ± 0.2 | 9.2 ± 0.2 | 8.9 ± 0.2 | 0.12 | 0.51 |
PDW (%) | 17.0 ± 0.2 | 16.6 ± 0.2 | 17.0 ± 0.2 | 0.13 | 0.38 |
PCT (%) | 0.1 ± 0.0 | 0.2 ± 0.0 | 0.2 ± 0.1 | 0.03 | 0.63 |
Items | C | L | H | SEM | p-Value |
---|---|---|---|---|---|
2 months after AI (60 d) | |||||
Glu (mg/dL) | 84.6 ± 1.8 | 82.8 ± 2.3 | 82.7 ± 3.7 | 1.50 | 0.851 |
T-Cho (mg/dL) | 75.7 ± 3.1 | 76.7 ± 1.7 | 78.0 ± 3.7 | 1.66 | 0.865 |
HDL-c (mg/dL) | 22.7 ± 1.8 | 25.1 ± 1.3 | 24.9 ± 3.6 | 1.37 | 0.681 |
LDL-c (mg/dL) | 53.0 ± 2.3 | 51.6 ± 1.6 | 53.1 ± 2.5 | 1.23 | 0.760 |
T-Pro (g/dL) | 7.0 ± 0.1 | 7.1 ± 0.1 | 7.0 ± 0.2 | 0.09 | 0.984 |
Alb (g/dL) | 4.1 ± 0.1 | 4.4 ± 0.1 | 4.2 ± 0.1 | 0.05 | 0.045 * |
2 weeks before farrowing (100 d) | |||||
Glu | 90.8 ± 3.3 | 91.0 ± 2.3 | 86.0 ± 2.4 | 1.56 | 0.210 |
T-Cho | 70.5 ± 3.1 | 70.8 ± 2.8 | 68.5 ± 3.4 | 1.75 | 0.838 |
HDL-c | 21.1 ± 2.1 | 20.2 ± 1.6 | 20.0 ± 2.3 | 1.12 | 0.926 |
LDL-c | 49.4 ± 2.0 | 50.6 ± 1.6 | 48.5 ± 1.8 | 1.04 | 0.736 |
T-Pro | 7.1 ± 0.1 | 7.2 ± 0.2 | 6.9 ± 0.2 | 0.09 | 0.659 |
Alb | 4.1 ± 0.1 | 4.2 ± 0.1 | 4.0 ± 0.1 | 0.05 | 0.441 |
Weaning (142 d) | |||||
Glu | 85.4 ± 5.9 | 84.7 ± 3.3 | 92.6 ± 6.6 | 3.11 | 0.483 |
T-Cho | 84.9 ± 4.8 | 89.0 ± 7.1 | 79.2 ± 3.3 | 3.06 | 0.451 |
HDL-c | 43.2 ± 4.0 | 44.5 ± 6.3 | 36.1 ± 2.7 | 2.66 | 0.420 |
LDL-c | 41.7 ± 2.2 | 44.5 ± 3.2 | 43.1 ± 2.5 | 1.49 | 0.706 |
T-Pro | 6.7 ± 0.1 | 6.9 ± 0.2 | 6.7 ± 0.1 | 0.08 | 0.472 |
Alb | 4.0 ± 0.1 ab | 4.1 ± 0.4 a | 3.7 ± 0.1 b | 0.07 | 0.038 * |
Items | C | L | H | SEM | p-Value |
---|---|---|---|---|---|
28 d (n = 10) | |||||
Body weight (kg) † | 8.3 ± 0.4 ab | 9.3 ± 0.3 a | 7.5 ± 0.3 b | 0.24 | 0.032 * |
Liver (g/kg) ‡ | 24.1 ± 1.0 | 22.8 ± 0.5 | 23.3 ± 1.0 | 0.48 | 0.541 |
Spleen (g/kg) ‡ | 2.1 ± 0.2 | 2.4 ± 0.2 | 1.8 ± 0.1 | 0.12 | 0.104 |
Kidney (g/kg) ‡ | 5.7 ± 0.2 a | 5.9 ± 0.2 a | 5.0 ± 0.2 b | 0.12 | <0.001 * |
Gastrointestinal tract (g/kg) ‡ | 56.1 ± 3.6 | 47.7 ± 1.5 | 52.9 ± 3.6 | 1.83 | 0.111 |
Stomach (g/kg) ‡ | 5.4 ± 0.3 | 4.9 ± 0.2 | 4.6 ± 0.3 | 0.16 | 0.077 |
Small intestinal weight (g/kg) ‡ | 32.7 ± 3.1 | 26.2 ± 0.6 | 32.1 ± 2.9 | 1.48 | 0.110 |
Small intestinal length (cm) § | 787.2 ± 52.2 | 730.4 ± 41.1 | 688.0 ± 37.1 | 25.60 | 0.157 |
63 d (n = 15) | |||||
Body weight (kg) ‡ | 26.3 ± 1.1 | 29.3 ± 2.0 | 24.0 ± 1.3 | 0.89 | 0.053 |
Liver (g/kg) ‡ | 26.7 ± 0.6 | 29.2 ± 2.6 | 26.1 ± 0.9 | 0.94 | 0.324 |
Spleen (g/kg) ‡ | 1.8 ± 0.2 | 2.1 ± 0.2 | 1.8 ± 0.1 | 0.11 | 0.532 |
Kidney (g/kg) ‡ | 5.9 ± 0.3 | 6.3 ± 0.7 | 5.5 ± 0.3 | 0.27 | 0.456 |
Gastrointestinal tract (g/kg) ‡ | 97.5 ± 3.1 | 94.6 ± 8.6 | 94.7 ± 4.3 | 3.30 | 0.918 |
Stomach (g/kg) ‡ | 7.6 ± 0.2 | 8.1 ± 0.9 | 7.7 ± 0.4 | 0.33 | 0.769 |
Small intestinal weight (g/kg) ‡ | 53.5 ± 2.8 | 57.5 ± 5.3 | 51.7 ± 2.5 | 2.14 | 0.500 |
Small intestinal length (cm) § | 1380.8 ± 57.4 | 1415.5 ± 23.6 | 1318.4 ± 46.3 | 25.92 | 0.271 |
Items | C | L | H | SEM | p-Value |
---|---|---|---|---|---|
28 d (n = 10) | |||||
Duodenum | |||||
Villi height | 510.6 ± 58.6 | 540.7 ± 54.7 | 543.9 ± 31.7 | 22.12 | 0.654 |
Crypt depth | 196.8 ± 13.7 a | 264.8 ± 10.3 b | 261.2 ± 13.5 b | 6.70 | 0.002 * |
Villi/Crypt | 2.6 ± 0.2 | 2.0 ± 0.2 | 2.1 ± 0.1 | 0.09 | 0.226 |
Jejunum | |||||
Villi height | 507.8 ± 34.1 | 480.7 ± 19.0 | 537.0 ± 34.1 | 13.88 | 0.609 |
Crypt depth | 194.7 ± 15.1 | 184.6 ± 9.4 | 210.5 ± 14.6 | 6.01 | 0.283 |
Villi/Crypt | 2.7 ± 0.2 | 2.7 ± 0.2 | 2.7 ± 0.3 | 0.10 | 0.919 |
Ileum | |||||
Villi height | 330.2 ± 16.3 | 328.4 ± 21.0 | 324.6 ± 18.6 | 8.29 | 0.217 |
Crypt depth | 172.0 ± 14.2 | 167.4 ± 17.0 | 159.6 ± 5.4 | 5.46 | 0.201 |
Villi/Crypt | 2.0 ± 0.1 | 2.1 ± 0.1 | 2.0 ± 0.1 | 0.06 | 0.873 |
63 d (n = 15) | |||||
Duodenum | |||||
Villi height | 375.3 ± 13.6 | 379.9 ± 20.2 | 426.8 ± 31.6 | 13.46 | 0.165 |
Crypt depth | 378.7 ± 20.8 | 368.3 ± 14.4 | 384.1 ± 18.3 | 10.23 | 0.842 |
Villi/Crypt | 1.0 ± 0.1 | 1.1 ± 0.1 | 1.1 ± 0.1 | 0.04 | 0.487 |
Jejunum | |||||
Villi height | 368.5 ± 20.8 a | 421.4 ± 19.0 ab | 429.0 ± 26.7 b | 13.29 | 0.051 |
Crypt depth | 255.4 ± 13.0 | 259.7 ± 6.7 | 282.3 ± 14.4 | 6.92 | 0.396 |
Villi/Crypt | 1.5 ± 0.1 | 1.6 ± 0.1 | 1.6 ± 0.1 | 0.06 | 0.508 |
Ileum | |||||
Villi height | 396.4 ± 27.9 | 309.7 ± 23.8 | 326.4 ± 21.1 | 14.91 | 0.036 * |
Crypt depth | 251.5 ± 10.0 | 241.3 ± 6.4 | 243.7 ± 10.8 | 5.26 | 0.718 |
Villi/Crypt | 1.6 ± 0.1 | 1.3 ± 0.1 | 1.4 ± 0.1 | 0.07 | 0.223 |
Items | C | L | H | SEM | p-Value |
---|---|---|---|---|---|
28 d (n = 10) | |||||
RBC (×1012) | 6.1 ± 0.2 | 6.2 ± 0.2 | 6.3 ± 0.1 | 0.11 | 0.843 |
WBC (×10⁹/L) | 11.4 ± 2.6 | 11.7 ± 1.3 | 6.7 ± 1.0 | 1.07 | 0.090 |
Lymph (×10⁹/L) | 5.8 ± 1.5 | 3.9 ± 0.8 | 3.4 ± 0.5 | 4.07 | 0.292 |
Mon (×10⁹/L) | 1.2 ± 0.3 | 1.2 ± 0.3 | 0.5 ± 0.2 | 1.67 | 0.155 |
Gran (×10⁹/L) | 7.2 ± 3.0 | 6.6 ± 1.5 | 2.5 ± 0.4 | 3.86 | 0.162 |
Lymph (%) | 47.9 ± 7.9 | 38.8 ± 8.1 | 53.4 ± 2.7 | 4.07 | 0.328 |
Mon (%) | 12.5 ± 5.3 | 9.2 ± 1.6 | 7.7 ± 1.9 | 1.67 | 0.564 |
Gran (%) | 43.9 ± 7.6 | 52.0 ± 7.8 | 38.9 ± 2.0 | 3.86 | 0.363 |
PLT (×10⁹/L) | 562.8 ± 45.7 | 414.2 ± 46.7 | 541.9 ± 21.5 | 25.27 | 0.033 * |
HGB (g/L) | 93.3 ± 4.1 | 93.6 ± 7.5 | 92.9 ± 3.8 | 3.01 | 0.817 |
HCT (%) | 31.2 ± 1.3 | 32.1 ± 2.5 | 31.8 ± 1.3 | 0.99 | 0.956 |
MCV (fL) | 51.7 ± 2.4 | 51.8 ± 3.2 | 50.6 ± 2.1 | 1.45 | 0.792 |
MCH (pg) | 15.4 ± 0.8 | 15.0 ± 1.0 | 14.7 ± 0.6 | 0.45 | 0.589 |
MCHC (g/L) | 298.1 ± 3.0 | 287.7 ± 2.6 | 291.8 ± 2.8 | 1.77 | 0.059 |
RDW (%) | 22.1 ± 1.7 | 22.2 ± 1.7 | 22.9 ± 1.1 | 0.84 | 0.627 |
MPV (fL) | 7.1 ± 0.2 | 7.5 ± 0.4 | 6.6 ± 0.1 | 0.16 | 0.053 |
PDW (%) | 15.8 ± 0.2 | 29.3 ± 14.0 | 15.3 ± 0.2 | 4.65 | 0.438 |
PCT (%) | 0.392 ± 0.033 | 0.300 ± 0.031 | 0.357 ± 0.01 | 0.02 | 0.094 |
63 d (n = 15) | |||||
RBC (×1012) | 6.3 ± 0.2 | 6.8 ± 0.2 | 6.3 ± 0.2 | 0.13 | 0.268 |
WBC (×10⁹/L) | 13.0 ± 0.8 | 15.5 ± 0.9 | 13.9 ± 0.8 | 0.49 | 0.104 |
Lymph (×10⁹/L) | 7.1 ± 0.5 | 7.8 ± 0.5 | 7.1 ± 0.5 | 0.27 | 0.548 |
Mon (×10⁹/L) | 0.7 ± 0.1 | 0.9 ± 0.1 | 0.7 ± 0.1 | 0.05 | 0.195 |
Gran (×10⁹/L) | 5.3 ± 0.5 | 6.8 ± 0.5 | 6.0 ± 0.4 | 0.28 | 0.063 |
Lymph (%) | 54.9 ± 2.2 | 50.4 ± 1.8 | 51.5 ± 1.6 | 1.11 | 0.247 |
Mon (%) | 5.2 ± 0.3 | 5.6 ± 0.5 | 5.2 ± 0.3 | 0.22 | 0.652 |
Gran (%) | 40.0 ± 2.1 | 43.9 ± 1.7 | 43.3 ± 1.5 | 1.05 | 0.266 |
PLT (×10⁹/L) | 404.6 ± 30.9 | 671.5 ± 199.1 | 735.1 ± 209.7 | 97.15 | 0.348 |
HGB (g/L) | 103.0 ± 5.2 | 103.3 ± 54.0 | 111.9 ± 2.2 | 2.61 | 0.278 |
HCT (%) | 34.1 ± 1.7 | 34.0 ± 1.9 | 36.3 ± 1.0 | 0.90 | 0.517 |
MCV (fL) | 54.2 ± 2.1 ab | 50.2 ± 2.2 a | 57.5 ± 0.6 b | 1.11 | 0.017 * |
MCH (pg) | 16.3 ± 0.6 ab | 15.2 ± 0.7 a | 17.8 ± 0.4 b | 0.37 | 0.009 * |
MCHC (g/L) | 301.3 ± 1.6 | 304.9 ± 5.2 | 309.4 ± 5.7 | 2.61 | 0.457 |
RDW (%) | 19.8 ± 0.8 | 22.1 ± 1.4 | 20.8 ± 1.8 | 0.79 | 0.504 |
MPV (fL) | 7.6 ± 0.3 | 7.7 ± 0.5 | 8.8 ± 0.6 | 0.28 | 0.191 |
PDW (%) | 15.5 ± 0.2 | 15.2 ± 0.2 | 15.5 ± 0.1 | 0.10 | 0.421 |
PCT (%) | 0.304 ± 0.020 | 0.347 ± 0.023 | 0.339 ± 0.024 | 0.01 | 0.244 |
Items | C | L | H | SEM | p-Value |
---|---|---|---|---|---|
28 d (n = 10) | |||||
Glu | 144.0 ± 9.5 | 129.3 ± 6.7 | 128.5 ± 4.8 | 4.28 | 0.345 |
T-Cho | 120.3 ± 12.3 | 118.2 ± 10.8 | 152.6 ± 14.4 | 7.60 | 0.169 |
HDL-c | 70.2 ± 4.3 | 61.6 ± 5.4 | 88.2 ± 6.0 | 3.58 | 0.051 |
LDL-c | 50.1 ± 9.6 | 56.6 ± 6.5 | 64.4 ± 9.7 | 4.98 | 0.388 |
T-Pro | 4.1 ± 0.2 | 4.4 ± 0.2 | 4.5 ± 0.1 | 0.10 | 0.250 |
Alb | 3.0 ± 0.2 | 3.0 ± 0.2 | 2.9 ± 0.1 | 0.11 | 0.546 |
63 d (n = 15) | |||||
Glu | 113.4 ± 3.2 | 120.9 ± 5.2 | 111.9 ± 3.5 | 2.37 | 0.164 |
T-Cho | 73.6 ± 2.7 | 77.3 ± 2.4 | 80.7 ± 3.6 | 1.72 | 0.237 |
HDL-c | 31.7 ± 1.9 | 32.0 ± 2.3 | 37.6 ± 3.3 | 1.51 | 0.139 |
LDL-c | 41.9 ± 1.5 | 45.3 ± 1.1 | 43.1 ± 1.3 | 0.76 | 0.139 |
T-Pro | 5.0 ± 0.2 | 4.9 ± 0.1 | 4.7 ± 0.1 | 0.07 | 0.372 |
Alb | 3.0 ± 0.1 | 3.0 ± 0.1 | 2.9 ± 0.1 | 0.07 | 0.734 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kawasaki, K.; Zhao, J.; Takao, N.; Sato, M.; Ban, T.; Tamamaki, K.; Kagami, M.; Yano, K. Sustenance Trial to Analyze the Effects of Black Soldier Fly Larvae Meal on the Reproductive Efficiency of Sows and the Hematological Properties of Suckling and Weaning Piglets. Animals 2023, 13, 3410. https://doi.org/10.3390/ani13213410
Kawasaki K, Zhao J, Takao N, Sato M, Ban T, Tamamaki K, Kagami M, Yano K. Sustenance Trial to Analyze the Effects of Black Soldier Fly Larvae Meal on the Reproductive Efficiency of Sows and the Hematological Properties of Suckling and Weaning Piglets. Animals. 2023; 13(21):3410. https://doi.org/10.3390/ani13213410
Chicago/Turabian StyleKawasaki, Kiyonori, Junliang Zhao, Natsu Takao, Masaki Sato, Takuma Ban, Kaoru Tamamaki, Masanori Kagami, and Kiminobu Yano. 2023. "Sustenance Trial to Analyze the Effects of Black Soldier Fly Larvae Meal on the Reproductive Efficiency of Sows and the Hematological Properties of Suckling and Weaning Piglets" Animals 13, no. 21: 3410. https://doi.org/10.3390/ani13213410
APA StyleKawasaki, K., Zhao, J., Takao, N., Sato, M., Ban, T., Tamamaki, K., Kagami, M., & Yano, K. (2023). Sustenance Trial to Analyze the Effects of Black Soldier Fly Larvae Meal on the Reproductive Efficiency of Sows and the Hematological Properties of Suckling and Weaning Piglets. Animals, 13(21), 3410. https://doi.org/10.3390/ani13213410